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" Abstract

In this paper the output process of a class of slotted
multi-user random-access communication networks is
approx:matcd by a 2™-order Markovian process. The out-
put process is defined as the process of the successfully
transmitted packets within the network. The parameters of
the approximating process are analytically calculated for a
network operating under a specific random access algo-
rithm. The involved methods can also be applied in the
calculation of these parameters in the case of any random
access algorithm within a class.

The performance of the approximation is measured by
considering a star topology of interconnected multi-user
random-access communication networks. The mean time
that a packet spends in the central node of the above topol-
ogy is calculated under the proposed approximation on the
output processes of the interconnected networks. The
results are compared with simulation results from the
actual system.

I. Introduction

A lot of work has been done towards the direction of
developing communication protocols which determine how
a single common resource can be efficiently shared by a
large population of users. By now, it is well known that
fixed assignment techniques are not appropriate for a sys-
tem with large population of bursty users. In the latter
case, random access protocols are more efficient and many
of them have been suggested [1], [2]. In most of the sys-
tems, time is divided into slots of length equal to the time
needed for a packet transmission (slotted systems).

The deployment of an ever increasing number of
multi-user random access communication networks
brought up the question of how packets, whose destination
is another network, should be handled. Thus, the issue of
network interconnection or multi-hop packet transmission,
arises, [3], (6], [7]. The basic problem in analyzing inter-
connected systems is that of characterizing the output pro-
cess of a multi-user random access communication system;
i.e., the departure process of the successfully transmitted
packets. The output process of a multi-user random-access
communication system depends on the deployed protocol.
Description of that process is a difficult task and only
approximations based on special assumptions have been
attemnpted, [4]-{7].
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In a previous work, [8], the problem of the characteri-
zation of the output process is addressed. There, a Ber-
noulli and a first-order Markov approximations are pro-
posed. It tumns out that the first-order approximation per-
forms better for moderate and heavy traffic load, with
respect to a certain measure of performance which is of
practical interest. In this paper, a 2".order Markov
approximation on the output process of a mult-user
random-access communication network is proposed. The
2"_order Markov approximation is intuitively more pleas-
ing than those suggested in [8], since it captures better the
dependencies in the output process. These dependencies
are introduced by the collision resolution algorithm which
the random-access algorithm deploys.

“IL The approximation of the output process

A slotted multi-user random access communication
network is considered. It is assumed that the packet input
rate to the system is A packets per slot and that A is in the
stability region of the system. For such values of A, all the
processes associated with the description of the system are
stationary. The communication channel can be in one of
the following states: I (idle), if no user is using the channel
at that time; S (success), if only one user is transmitting;
C (collision), if more than one users are transmitting at that
time. In the above channel description we have made the
assumption that if only one user transmits, then his packet
is successfully transmitted. Successfully transmitted pack-
ets appear in the output process of the network, while the 1
and C states of the channel do not result in a packet output
from the network. It is assumed that capture events are not
present, [18], and that channel errors cannot occur.

We define the output process of a slotted multi-user
random-access communication system, {a} 20, 0 be a
discrete-time binary process associated with the end of the
slots. The random variable a' takes the value 1 if a success-
ful packet transmission occurs in the j" slot, and O other-
wise. It is clear that the output process can be interpreted
as a two-state channel-status process {x}) j20, Where
xJe{S,NS}; by NS we denote the union of the states I and
C. The purpose of this interpretation of the output process
is to relate it to the channel-status, which is in interaction
with the random-access protocol. The latter is true since
the evolution of the channel-status process (which deter-
mines completely the output proces) depends on the current
(and possibly the past) channel state and the deployed pro-
tocol. This happens because the state of the channel is fed
back to the users, who determine their action based on this
feedback and the protocol. A type of feedback information
is required by any stable random-access algorithm.

From the above discussion, we conclude that the out-
put process, {a'}j>9, and the two-state channel-status pro-



cess, (¥) o, arc identical. The problem of characterizing

the output process of a multi-user random-access commun-
ication network is identical to that of characterizing the
channel-status process, {x!}j>. The channel-status process
(%'} ;20 is controlled by the deployed random-access algo-
rithm. In this paper, we approximate this process by a
2" _order Markov process, ()'(j }jz0 which has the same state
space as (x'};»¢ and is ergodic within the stability region of
the random access algorithm. To study the process (X'} 200
we can equivalently study the underlying first-order Mar-
kov process {y')jo defined as follows: {¥)je0 is a
discrete time first-order Markov process associated with
the end of the slots. The state space at this process is Z =
{(5,8) = a, (S,NS) = b, (NS,S) = ¢, (NS,NS) = d}; the first
part of each pair corresponds to the state of the approximat-
ing process (X'} ;20 at the end of the (j—1)* slot; the second
part corresponds to the state of the process {X'} jz0 at the
end of the j™ slot. Having defined the underlying first-
order Markov chain {y’}j>p, we can obtain the binary pro-

cess (i’})zo with state space {0,1} from the stationary
function a: S — {0,1); where
- lify=aorc
a)=10ify=bord M

The process {a') j20 approximates the output process of the
random-access communication network. It depends on the
first-order Markov process (¥ }js0, which also describes
the 2™-order process (x') j20; the latter approximates the
channel-status process. To completely determine the
underlying first-order Markov process {¥'}jz0, we need to
estimate its steady-state and transition probabilities. Then
the approximating process (a@'};»0 is completely deter-
mined by (1).

III. Parameters of the Markov process

Since the first-order Markov process, {yl) j20 is only
an approximation, it seems natural to estimate its steady
state and transition probabilities, by calculating the steady
state probabilities that a particular state or state transition
occurs in the true process, under stable network operation.
This calculation is not always straightforward. The pro-
cedure to be followed depends on the class of the deployed
random access algorithms.

The possible state transitions of the first-order Markov
chain {y’};>o are shown in Fig. 1. Notice that not all state
transitions are possible. Since (y')j20 is 2 Markov chain,
the following equation must hold:

nP=n )
where == (n(a), n(b), x(c), n(d)) is the vector of the
steady state probabilities and
p(a,a) p(a,b) pa,c) p(a,d)
_ | p(b,2) p(b,b) p(b,c) p(b,d
~ | p(c,a) plc,b) plc,c) plc,d)
p(d,a) p(d,b) p(d,c) p(d.d

is the matrix with the transition probabilities of the Markov
chain {y'};,. From Fig. 1, it is easily concluded that the
following equations hold.

p(a,a) +p(a,b)=1 p(b,c) +p(b,d)=1 (3a)

i

p(c,a) + p(c,b)=1 p(d,d)+ p(d,c)=1 (3b)

p(a,c) = p(a,d) = p(b,a) = p(b,b) =0 (4a)

p(c,c) = p(c,d) = p(d,a) = p(d,b) = 0 (4b)

Assuming that the steady state probabilities and the transi-
tion probabilities p(b,c) and p(a,a) are all known, the
remaining transition probabilities can be calculated from
equations (2), (3) and (4). If one of the steady state proba-
bilities, e.g. m(c), is known, then the rest of them can be
calculated from the following equations which relate mar-
ginal with joint probabilities.
P(NS,NS) = P(NS) — P(NS,S) — n(d) = 1-A — n(c)
P(S,S) = P(S) — P(NS,S) — n(a) = A — r(c) (&)
P(S,NS) = P(S) - P(S,S) = n(b) =n(c)
P(S) denotes the probability that a slot is successful and
P(NS) is its complement. Under stability, P(S) =A.

_ To summarize, all parameters of the Markov process
(¥} 20 can be calculated from the probabilites w(c), p(b,c)
and p(a,a). The rest of this section is devoted to the calcu-
lation of those probabilities. The procedure to be followed
depends on the deployed random-access algorithm within
the network.

We consider multi-user random-access slotted com-
munication networks in which a binary-feedback,
(collision/non-collision, C/NC), limited-sensing collision-
resolution algorithm is deployed. The network traffic is
assumed to be Poisson with intensity A packets per slot.
The considered algorithm has been developed and
analyzed in [11], [10] and [12]. The characterization of the
process of the successfully transmitted packets, i.e, the out-
put process of the network, is an open problem.

A brief description of the collision-resolution algo-
rithm is provided at this point. Each user is assigned a
counter whose initial value is zero (no packet to be
transmitted). This counter is updated according to the steps
of the algorithm and the feedback from the channel. Upon
packet arrival, the counter value increases to one. Users
whose values are equal to one at the beginning of a slot,
transmit in that slot. If the channel feedback is collision
(C), each counters whose value is greater than one
increases it by one; each counter whose value equals one,
maintain this value with probability p (splitting probability)
or increases it to two with probability 1-p. If the channel
feedback is non-collision (NC), all non-zero counters
decrease their values by one. A detailed description of the
algorithm can be found in [10], [11].

Figure 1.

State transition diagram of the Markov chain (yi} 20-
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An importan{quamit'y@fdr the analysis of random- '

access algorithms which induce regenerative points, is the
session. A session is defined as the time interval between
two renewal points in the operation of the system, [11,
[14]. The length of such sessions is easy to describe via
recursive equations. The multiplicity of a session is defined
as the number of packet transmission attempts in the first
slot of the session.

At this point we calculate the probabilities n(c), p(b,c)
and p(a,a) of the Markov process {y’};»g for the previously
described random-access algorithm. The proccdure to be
followed can be applied to any limited-sensing stack-type
random-access algorithm, [13], [14]. The authors believe
that the method can also be applied in the case of other
limited-sensing or continuous-sensing random-access algo-
rithms, [15], [16], [17], which operate in statistically identi-
cal cycles of finite length (under stability). The following
quantities are useful in the analysis that is presented in this
section.
(NS,S) pair: A pair of consecutive slots with

. the first slot being in state NS
and the second in state S.
An (NS,S) pair is internal if both
slots belong to the same session.

A triplet of consecutive slots that
are in states S, NS, S.

A triplet of consecutive slots that
are in states S, S, S.

A (x,y,z) triplet whose all three
slots belong to the same session

internal (NS,S) pair:
(S,NS,S) triplet:
(S, S, S) triplet:

internal (x,y,z) triplet:

Ig: Length of a session of multiplicity k (in
N slots).

Ly: Expected'value of k.

L Expected value of Ly with respect to k.

tfs S, Number of internal (NS,S) pairs in a session

of multiplicity k.
TES S; Expected value of tfs's.
TNS.S Expected value of TY>'S with respect to k.

Ifs: A random variable associated wnh the last
slot of a session of mulnphcny kIS =1if
that slot is idle; 1{;l =0 if that slot is
involved in a successful transmission.

LE‘S: Expected value of I}S,

LNS: Expected value of LIS with respect to k.

g NS:S (1§:5:5).  Number of internal (S,NS,S) triplets

(internal (S,S,S) triplets) in a session of
multiplicity k.

Expected value of ty"
Expected value of T}

A random variable associated with the
last two slots of a session of multiplicity
k; Ik =1 if the last g‘alr of slots of that
sessxon is (S,NS); Ik = 0, otherwise
(25 =1 if the last pau' of slots of that
session is (S,S); lk =, otherwise).

ke A random variable associated with the
last slot of a session; I§=1 if the last slot
of that session is S; [/} =0 otherwise.

TE,NS.S (TE.S.S)

TS:NS.S (—IG.S.S):

NS (1S):

S.NS.S (£5.5.5)
NS,S (78.5.5)

e

A random variable assocxated wnh the
—d

first two slots of a session of multiplicity
k; iNSS = 1 if the first pmr of slots of

that session is (NS,S); ™% =0 other-
wise.,
LE'NS (Lﬁ, Ns.s L§ s) Expected value of Iﬁ'NS
g, if'ss, s
LSNS (.S NS 1SSy, E gccted value of LJSS
IS, L3S)

An important quanmy for the calculation of the
desired probabilities is the mean session length, L. The
latter can be calculated by following procedures similar to
those that appear in [11], [13], [14], [15]. In fact, for the
specific algorithm under consideration, L has been calcu-
lated in [10] and [11]. We believe that the recursive equa-
tions with respect to /i which describe the operation of the
system will be very helpful for the better understanding of
the procedure for the calculation of P(NS S). For this rea-
son we start by calculating L.

From the description of the algorithm the following
equations can be written, with respect to Iy, k=1,2,....

=1, =1 (6a)
Ik=1+1¢x+f|+1k‘¢x+fz , k22, (6b)

f, and f, come from two independent Poisson random vari-
ables over T=1 (length of a slot) with probability function
P¢() and intensity A; ¢; comes from a Binomial with
parameters k and p (p = .5) and probability function by ().
Equation (6b) can be explained as follows: The length of a
session of multiplicity k22 consists of the slot wasted in the
collision, plus the length of the sub-session of multiplicity
¢, + f; (which will be initiated in the next slot), plus the
length of the sub-session of multiplicity k—¢;+fz, (which
will be initiated after the end of the sub-session of multipli-
city ¢; +f;). Sub-sessions are statistically identical to the
sessions of the same multiplicity. ¢, is the number of users
whose counter content remained one after the splitting;
f), fp is the number of new users which will be activated
(have a packet for transmission) and enter the system in the
first slot of the corresponding sub-session.

By considering the expected values in the previous
equations with respect to all random variables involved, we
obtain an infinite dimensional linear system of equations of
the form

Lk=hk+2akij , k20 (7)
=0

The most widely used definition of stability is the one
which relates it with the finiteness of Ly, for k<ee. In [10],
[11] it has been found that the system is stable for Poisson
input rates A<S;. = .36 (packets/packet length). The
authors in [10], [11] were actually able to find a (linear)
upper bound on Ly which is finite for k<ee. S, is then
defined as the supremum over all rates A for which such a
bound, L}, was possible to obtain.

The existence of L{ <ee, for k<ee, implies that (7) has a
non-negative solution, Ly; the solution Ly of the finite
dimensional system of equations

- J ~
Ly =hg + Z Aj LJ , 0=k<J, ®)
j=0

is a lower bound on Ly and Lk——)Lk as J—oo, [11], [14].
[15]



It turns out that for sufficiently large J (e.g. 15) Lt is
extremely close to Ly; thus, for all practical purposes, Ly
is considered to be equal to Ly, especially for A outside the
neighborhood of Spax. The latter can be shown by calcu-
lating a tight upper bound on Ly and observing that it
almost coincides with Ly (see [11], [14], [15] for the pro-
cedure). By solving (8), we calculate the mean session
length of multiplicity k. Since the multiplicities of succes-
sive sessions are independent and identically distributed
random variables, the mean session length, L, is calculated
by averaging Ly over all k; k is the number of arrivals in a
slot from a Poisson process with intensity A. In fact, the
average for k<J is sufficient.

To calculate TNS:S, TSNS.S TS.S.S NS 1§ |SNS
and INSS | we follow a procedure similar to that in the cal-
culation of the mean session length L; ie, by writing
recursive equations with respect to the corresponding ran-
dom variables and by considering the resulting systems of
linear equations. By solving truncated versions of those
infinite dimensional systems of linear equations, we com-
pute the above quantities. Actually, as it is the case with
the calculation of L, what is calculated is a lower bound on
the corresponding quantities. As the number of equations
considered increases, the bound conmges to the true
value.

It can be shown, [22], that the steady-state probability
n(c) = P(NS,S) and the joint probability of having a triplet
(S, NS, S) and a triplet (S, S, S) in the output process are
given by the expressions

NS
LoHaet l'f (9a)
N§,§ S.NS
P(S,NS,S) = L "‘ . L L
L T!
+"—. At (ob)

S5 188 .
P(S,S,S)= T’; ) Dl gy

+ LT' Ae Ae2(9c)

The steady-state probabilities are calculated from (9a)
and (5). The transition probabilities p(b,c) and p(a,a) can
be computed from the equations

P(S.NS,S) _ P(S.NS,S)

POO="psNS) - w) 1o
_PESS) _ PESS)
PAY="p55) - ma (10%)

The rest of the transition probabilities are calculated from
equations (2), (3) and (4).

IV. Performance of the approximation

Perhaps, the most interesting application, for which
the characterization of the output process of a multi-user
random-access communication network is of great impor-
tance, is that of analyzing the performance of systems of
interconnected multi-user random access communication
networks. In such systems, one can find star topologies of
interconnected networks. There, the mean time that a
packet spends in the central node is an important perfor-
mance measure of the interconnection; it is thus desired

length.

_thit'thi's'quantity be calculated. This is the reason for the

selection of the previous mean time as a performance
measure for the proposed approximation. The value of the
mean time is not by itself a performance measure for the
approximation. It is the comparison of this quantity, calcu-
lated under the approximation, with the one from the simu-
lation of the actual system that indicates how good the
approximation is.

A star topology of N interconnected networks is
shown in Fig. 2. Each input stream represents the output
process from a multi-user random-access slotted communi-
cation system. Let A; be the output rate (in packets per slot
) of the i network. Apacketarnvalmthecemralnodels
declared at the end of the slot in which the packet was suc-
cessfully transmitted. Thus, the arrival process associated
with each input line is a discrete process. The arrival
points in all streams coincide; that is, the networks are
assumed to be synchronized and all slots are of the same

—

central
node

Figure 2
A star mpology of interconnected networks.

The service time in the central node is constant and
equal to one, which is assumed to be the length of a slot.
This implies that arriving and departing packets have the
same length. The first in-first out (FIFO) service policy is
adopted. More than one arrivals (from different input
streams) that occur at the same arrival point are served in a
randomly chosen order. The buffer capacity of the central
node is assumed to be infinite.

A discrete time single server queueing system with
finite number of independent input streams and per stream
arrivals governed by an underlying finite-state Markov
chain, has been analyzed in [9]. The system that is con-
sidered in this section is a special case of the general sys-
tem in [9). If A; is within the stability region of the
corresponding network and if, [18],

N
T A<,
=1

then the queueing system is stable. The average number of
packets, Q, in the central node can be calculated as the sum
of the solutions of 4N linear equations, [9). Then, the mean
nme that a packet spends in the central node, D, is given in

sion.

D=—2_
i A (11).
=



Note that under stable operation of the networks the
adopted mapping rule in (1) implies that the input rate of
the i stream to the central node is equal to the input rate
to the corresponding network.

Let us denote by X and y the N-dimensional vectors
that describe the states of the N Markov chains in two con-
secutive time slots, X, yeZ Z'xZtx --- xZN; p(""')
denotes the transition probability from state X to state y
Let p(j;y) denote the probability that there are j packets in
the central node and that the N-dimensional Markov chain
is in state ¥, and let P(z;y) be the corresponding gcneraung
function. Then, the average number of packets in thc sys-
tem, Q, is given by the sum of the solutions of 4N linear
equations, [9]. These equations are given by

3 ¥ 2D (10 + (v-1)-2P(R)
v=0 %eF,

+2(v=1)p(0;x)]=0 (12a)

and any 4N.1 from the following:

N
PLH=Y 3 [(v-DPLO+P (PO 0IPE.Y)
v=0 x¢F,
+p(ODIPR.) , €S (12b)
The unknown quantities in (12) are P'(1;¥), y€S; P’ Ly

denotes the value of the derivative of P(z;y) at z=1. The set
F, is given by

F, ={i=(x1. XN EZ gai(xi)“’}'
i=1

where 2;() is the mapping associated with the i network.
Since the input streams to the central node are independent,
we have that

N N
P& =TT pilxi,yi) » P(O;X)=po [T mi(x;)
i=1 =1

N
P(1;x) = n(x) = [T m(x;)
=1
where mi(x;) and p;(x;, y;) are the steady state and state
transmon probabilities of the Markov chain associated with
the i™ input stream; py is the probability that the central
node is empty. The latter is given by, [9],

N
Po=1—__Zl7»i-

By solving the 4N linear equations that are given by
(12) and summing up the solutions, the average number of
packets in the central node, Q, is obtained. Then, the mean
time that a packet spends in the system is calculated from

1n.

V. Results and conclusions

In this section, the performance of the proposed
approximation model of the output process is compared
with the performance of the actual system. The mean time
that a packet spends in a central node which receives and
retransmits packets originating from N=3 slotted multi-user
random access networks, is used as the performance meas-
ure. It is assumed that the random-access algorithm
described in section III is deployed within each of the net-

works.

The mean time that a packet spends in the central
node of the star topology was calculated from the expres-
sions given in the previous section. The results (in slots)
are shown in Table 1, together with the results obtained
from the simulation of the actual system. The maximum
per network output rate under stable operation of the partic-
ular algorithm is .36 packets per slot. On the other hand,
the queueing system of the star topology is stable for total
input rates less than 1.00 packets per slot, [18].

By companng the analytical results, obtamed under
the approximation of the output process by a 2"-order
Markov chain, with the simulations we conclude that the
approximation performs well for the whole range of per
network input rates. The case of N=2 is not of practical
interest, since the resulting queueing problem is not severe
(A14+22<.72). The proposed approximation seems to per-
form better than the Bernoulli or the first-order Markov
approximations discussed in [8], under heavy traffic.
Under heavy traffic the dependencies introduced by the
random-access algorithms are strong and it seems that they
are best captured by the proposed approximation. Of
course, the performance of the proposed approximation
depends on the random-access algorithm deployed within
the network. In this paper, we developed the approximat-
ing model and the methods to compute its parameters for a
class of random-access algorithms. Results are presented
only for a special case and the conclusions can be extended
to other cases only intuitively.

A n(c) | P(a,a) | P(b,c) | Markov [ Sim.
01 0098 | .0136 .0100 1.01 1.00
.10 |f L0862 | L1271 .0999 1.15 1.01
20 || .1488 | .2381 2006 1.58 1.21
25 ]| .1728 | .2896 | .2520 2.19 1.70
30 || .1922 | .3403 | .3050 4.69 4,28
31 | 1955 | 3506 | .3160 6.49 6.25
32 1 .1985 | 3609 | .3271 10.99 11.37
33 |f 2014 | 3714 | .3385 42.55 48.89

‘Tablel.

‘Results for the mean packet delay in the central node of a

star topology of 3 interconnected networks; A is the per
network input (output) rate. The results are under the Mar-
kov approximation and from the simulation of the actual
system.

For N24, the dimensionality of the system of linear
equations which need to be solved, (12), increases rapidly.
For such systems, simulation results have shown that the
Bemoulli approximation on the output process performs
well; its performance improves as N increases. The latter
can be explained by the fact that the increased number of
independent input streams reduces the dependencies in the
total input traffic to the central node. The per network out-
put traffic must also decrease, for the queueing system to
be stable. The latter implies that either each network
operates away from its stability region and thus the depen-
dencies in its output process are not strong, or that not all
successful packets are forwarded to the central node; the
packet selection introduced in the latter case results in
increased independence in the output process.
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