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Abstract

In this paper, Bernoulli and first-order Markov
processes are used to approximate the output pro-
cess of a class of slotted multi-user random-access
communication networks. The parameters of the
approximating processes are analytically calculated
for a network operating under a specific random
access algorithm. The mean time that a packet
spends in the central node of the star topology is
calculated under the proposed approximations of
the output processes of the interconnected net-
works. The results are compared with simulation
results of the actual system. It turns out that the
memoryless . approximation gives satisfactory
results up to a certain per network traffic load.
Beyond that point, the first order Markov process
performs better.

I. Introduction

A lot of work has been done towards the direc-
tion of developing communication protocols which
determine how a single common resource can be
efficiently shared by a large population of users.
By now, it is well known that fixed assignment
techniques are not appropriate for a system with
large population of bursty users. In the latter case,
random access protocols are more efficient and
many of them have been suggested [1], [2]. Usu-
ally, the amount of information (in bits) transmitted
per time is of fixed length, called a packet. In most
of the systems, time js divided into slots of length
equal to the time needed for a packet transmission
(slotted systems).
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The deployment of an ever increasing number
of multi-user random access communication net-
works brought up the question of how packets,
whose destination is -another network, should be
handled. Thus, the issue of network interconnec-
tion or multi-hop packet transmission, arises, [3],
(6}, [7}.

The basic problem in analyzing interconnected
systems is that of characterizing the output process
of a multi-user random access communication sys-
tem; i.e., the departure process of the successfully
transmitted packets. Another problem is how a ran-
dom access protocol operates in the presence of a
node that forwards exogenous traffic coming from
other networks. The latter problem can be avoided
by assigning a separate channel to the exogenous
traffic. In this case, the operation of the system is
not affected by the exogenous traffic but the prob-
lem of optimum allocation of the available
resources (channels), arises. The latter issue has
been discussed in [3], where the objective is to
maximize the throughput of the interconnected net-
works. In [3], delay analysis was not performed
and only simulation results were obtained.

The output process of a multi-user random-
access communication system depends on the pro-
tocol that has been deployed. Description of that
process is a difficult task and only approximations
based on special assumptions have been attempted,
[4}-[7].

In this paper we model the output process as a
Bernoulli and as a discrete-time first-order Markov
process. The detailed description and the motiva-
tion behind these approximations are given in the
next section.

In section III we introduce the class of random
access algorithms whose output processes are
approximated. An algorithm from that class is dis-
cussed in detail and the parameters of the approxi-
mating processes are analytically calculated for the
specific algorithm.
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In section IV, a measure of the performance of
the proposed approximations is introduced. In sec-
tion V, the results for the performance of the pro-
posed approximations are given under the employ-
ment of the specific algorithm described in section
L.

1I. The approximation of the output’ process

A slotted multi-user random access communi-
cation network is considered. It is assumed that the
packet input rate to the system is A packets per slot
and that A is in the stability region of the system.
For such values of A, all the processes associated
with the description of the system are stationary.

In any system as the above, the communica-
tion channel can be in one of the following states: I
(idle) if no user is using the channel at that time; S
(success) if only one user is transmitting; C (colli-
sion) if more than one users are transmitting at that
time. In the above channel description we have
made the assumption that if only one user transmits,
then his packet is considered as a successful one.
Successfully transmitted packets appear in the out-
put process of the network, while I and C states of
the channel do not result in an output from the net-
work. It is assumed that capture events are not
present, [18], and that channel errors cannot occur.

We define the output process, { aJ}J>0, to be a
discrete-time binary process associated with the end
of the slots of a slotted multi-user random-access
communication system. The random variable a
takes the value 1 if a successful packet transmission
took place in the j slot, and takes the value 0 oth-
erwise. It is clear that the output process can be
interpreted as a_two-state channel-status process
{x}j>0, where xie{S,NS}; by NS we denote the
union of the states I and C. The purpose of this
interpretation of the output process is to relate it to
the channel-status, which is in interaction with the
random-access protocol. The latter is true since the
evolution of the channel-status process (which
determines completely the output proces) depends
on the current (and possibly the past) channel state
and the employed protocol. This happens because
the state of the channel is fed back to the users, who
determine their action based on this feedback and
the protocol. A type of feedback information is
needed by any random-access algorithm.

From the above discussion turns out that the
output process, {&'};>0, and the two-state channel-
status process, {x'};>, are identical. The problem
of characterizing the output process of a multi-user
random-access communication network is identical
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to that of characterizing the channel-status process,
{xi} 0. From now on, we will be referring to the
process {x}) j20 Tather than to the process { al} 20 tO
emphasize the dependence of the output process on
the employed random access algorithm and
understand qualitatively the implications of the pro-
posed approximations.

Let {yJ]Po be a choulh—type process with
probablhty of success A; S is the successful event
and NS is its complement. By approximating
{x }j>0 by the process (y'}j0, we actually assume
that the state of the channel at the current slot is
independent from the channel state in the previous
slot. In a random-access algorithm operating under
light traffic, the collision resolution algorithm is
"idle" most of the time, since packet collisions are
extremely rare. Since it is the collision resolution
algorithm that introduces the dependencies among
channel states in seccessive slots, it is implied that
the Bernoulli process is a reasonable approximation
of the channel-status (output) process. Under
moderate or heavy traffic load, the - collision-
resolution algorithm is in effect. In this case, at
least intuitively, the Bernoulli-type approx1mat10n
is not pleasing.

Under moderate and especially under heavy
traffic load, the dependencies introduced by the col-
lision resolution algorithm are strong and extend
beyond successive slots. We will try to capture
some of these dependencies by proposing a
discrete-time first-order Markov process, {Z! }j20 to
approximate the channel-status (output) process
{x)};>0; the state space of the proposed Markov
process is {S,NS}. We expect that the Markov
approximation will perform better than the
Bemnoulli-type one, under heavy traffic load.

So far we have not made any assumptions on
the type of random-access algorithm which is used
in the network. Thus, the previous discussion con-
cerning the characterization of the output process
makes sense for any multi-user random-access com-
munication network. The single parameter of the
Bernoulli-type process, i.e. the probability of hav-
ing a successful packet transmission, is trivially cal-
culated for any random access algorithm; it equals
the packet input traffic rate, A, under stable opera-
tion of the network. The steady-state probabilities
of the discrete-time Markov process, {z )20, are
also trivially calculated. If n(S) is the steady-state
probability of the channel process being in state S,
and m(NS) is the corresponding steady-state proba-
bility for the state NS, then it is obvious that
7(S)=A and A(NS)=1-A.

The method to analytically calculate the tran-
sition probabilities of the discrete-time Markov



process, {z'}j>0 depends on the random-access
algorithm employed. In the next section, a specific
random-access algorithm is considered and the tran-
sition probabilities are calculated. The method
developed can be applied to most of the limited-
sensing random access algorithms, [12], [13]. We
speculate that the method can be applied to any
algorithm whose analysis is based on the concept of
the session (explained in the next section) and
which operates in statistically identical cycles of
finite length. The class of such algorithms is large
and includes many well known random-acces algo-
rithms, [14], [19], [20].

ITI. Transition probabilities for a limited-
sensing random-access algorithm

We consider multi-user random-access slotted
communication networks in which a binary-
feedback, (collision/non-collision, C/NC), limited-
sensing collision-resolution algorithm is deployed.
The input traffic to the network is assumed to be
Poisson with intensity A packets per slot. This algo-
rithm has been developed and analyzed in [11] and
[10]. There, analysis was limited to the derivation
of the maximum stable throughput and the average
packet delay. In [21] analysis was extended to the
calculadon of other quantities of interest as well.
The characterization of the process of the success-
fully transmitted packets, i.e. the output process of
the network, is still an open problem.

A brief description of the collision-resolution
algorithm is provided at this point. Each user is
assigned a counter whose initial value is zero (no
packet to be transmitted). This counter is updated
according to the steps of the algorithm and the feed-
back from the channel. Upon packet arrival, the
counter content increases to one. Users whose
counter content is equal to one at the beginning of a
slot, transmit in that slot. If the channel feedback is
collision (C), the counters whose content is greater
than one increase it by one; the counters whose con-
tent is one maintain this value with probability p
(splitting probability) or increase it to two with pro-
bability 1-p. If the channel feedback is non-
collision (NC), all non-zero counters decrease their
content by one. A detailed description of the algo-
rithm can be found in [10], [11].

Most of this section is devoted to the calcula-
tion of the transition probability p(S/NS). The rest
of the transition probabilities are, then, trivially cal-
culated at the end of this section. To calculate the
transition probability p(S/NS) it seemed easier to
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compute the joint probability p(NS,S) at first; ie.
the probability of having an NS slot followed by an
S slot in the approximating process {z'}j>. The
transition probability p(S/NS) is then calculated
from the joint probability p(NS,S) and the steady-
state probability T(NS). The joint probability is cal-
culated as the probability that a pair (NS,S) of con-
secative slots occurs in the channel-status process,
{xi} 20, under stable operation of the network.

An important quantity for the analysis of most
of the limited and continuous-sensing random-acces
algorithms is the session. A session is defined as
the time interval between two renewal points of the
operation of the system. The length of such ses-
sions is easy to describe via recursive equations.
The multiplicity of a session is defined as the
number of packet transmission attempts in the first
slot of the session. The following quantities are
useful in the analysis that is presented in this sec-
tion.

(NS,S) pair : A pair of consecative slots with the
first slot being in state NS and the

second in state S.
internal (NS,S) pair : An (NS,S) pair is internal if
both slots belong to the same

session.

| Length of a session of multiplicity k
(in slots).

Ly: Expected value of 1.

L: Expected value of Ly with respect to
k.

Ts:S Number of internal (NS,S) pairs in a
session of multiplicity k.

TES'S : Expected value of tgs.s .

TNS:S Expected value of TNSS  with
respect to k.

ig ¢ A random variable associated with
the last slot of a session of multipli-
city k; ix=1 if that slot is idle; ix=0
if that slot is involved in a successful
transmission.

I : Expected value of ix.

I: Expected value of Iy with respect to
k.

As it will become clear later, an important
quantity for the calculation of the joint probability
p(NS,S) is the mean session length, L. The latter
can be calculated by following procedures similar
to those that appear in [11], [12], [13], [14]. In fact,
for the specific algorithm under consideration, L
has been calculated in [10] and [11]. We believe
that the recursive equations with respect to Iy which
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describe the operation of the system will be very
helpful for the better understanding of the pro-
cedure for the calculation of p(NS,S). For this rea-
son we start by calculating L.

From the description of the algorithm the fol-
lowing equations can be written, with respect to Iy,
k=1,2,....

(1a)
(1b)

b=1,
1k=1+1¢1+f1+1k'¢1+fz , k22,

=1

f, and f, come from two independent Poisson ran-
dom variables over T=1 (length of a slot) with pro-
bability function P¢() and intensity A ; ¢; comes
from a Binomial with parameters k and p (p = .5)
and probability function by() . Equation (1b) can
be explained as follows: The length of a session of
multiplicity k>2 consists of the slot wasted in the
collision, plus the length of the sub-session of mul-
tiplicity ¢;+f; (which will be initiated in the next
slot), plus the length of the sub-session of multipli-
city k—¢;+f,, (which will be initiated after the end
of the sub-session of multiplicity ¢;+f1). Sub-
sessions are statistically identical to the sessions of
the same multiplicity. ¢, is the number of users
whose counter content remained one after the split-
ting; fy, f is the number of new users which will
be activated (have a packet for transmission) and
enter the system in the first slot of the correspond-
ing sub-session.

By considering the expected values in (1) with
respect to all random variables involved, we obtain
an infinite dimensional linear system of equations
of the form
Ly=h+ ¥ a;L; , k20. [¥))

=0

The most widely used definition of stability is
the one which relates it with the finiteness of Ly, for
k<oo. In[10], [11] it has been found that the system
is stable for Poisson input rates A<Smax =.36
(packets/packet length). The authors in [101, [11]
were actually able to find a (linear) upper bound on
Ly which is finite for k<eo. Sp,x is then defined as
the supremum over all rates A for which such a
bound, L, was possible to obtain.

The existence of L} <ee, for k<co, implies that
(2) has a non-negative solution, Ly; the solution Ly
of the finite dimentional system of equations

~ J -
Li=he+ Y ag5L; , 0<k<l, ?3)
=0

is a lower bound on Ly and I:k —Ly as Joeo, [11],
[14], [15]. It turns out that for sufficiently large J
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(e.g. 15), Ly is extremely close to Ly and thus, for
practical purposes, Ly is considered to be equal to
Ly, especially for A outside the neighborhood of
Smax - By solving (3), we calculate the mean ses-
sion length of multiplicity k. Since the multiplici-
ties of successive sessions are independent and
identically distributed random variables, the mean
session length, L, is calculated by averaging Ly
over all k ; k is the number of arrivals in a slot from
a Poisson process with intensity A. In fact, the aver-
age for k<J is sufficient.

From the description of the algorithm it can be
concluded that the last slot of a session can be
either idle or involved in a successful transmission.
We proceed by calculating the probability that the
last slot of a session be idle, since this probability is
used in the calculation of p(NS,S).

By thinking in a way similar to that in the
derivation of the recursive equations for I, the fol-
lowing equations are obtained for iy; iy is the indi-
cator function of the event "the last slot of a session
of multiplicity k is idle".

ip=1, i1, =0, ik=ik—¢,+f1 , k22, @

By considering the expected values in (4) we obtain
the following infinite dimensional system of linear
equations

1, I,=0

Ip (5a)

Mz

k
L= 2_‘,0 Pg (Fo=f3) by (@1=¢1) Ik—¢,+5,-(5b)
£,20 6,

&

Notice that Iy is the probability that the last slot of a
session of multiplicity k is idle; Iy <1<es , for
k<oo. The system in (5) is of the form of that in (2).
By using the same arguments as those used in the
calculation of L¥ we can solve a truncated, up to
J=13, version of (5) and obtain a very good approxi-
mation of Iy. By averaging the latter over all k<J,
we can approximate I; I is actually the probability
that the last slot of a session is idle.

Up to this point, the average session length, L,
and the probability that the last slot of a session is
idle, I, have been calculated. The objective is to
calculate the joint probability p(NS,S). As a last
step before the calculation of this probability, we
calculate the average number of internal (NS,S)
pairs in a session. The following recursive equa-
tions are obtained with respect to tfs's; tks,s
denotes the number of internal (NS,S) pairs in a ses-
sion of multiplicity k.

HSS=0 , S=0 (62)



NS,S

s NS,$

=Thod + ot + L =1, k=t +6=1)

+1p4n=1) » k22. (6b)

Notice that the idle slots which are the last of a ses-
sion and are followed by a session of multiplicity 1
(that would give an (NS,S) pair), are not considered
by the expressions in (6).
By considering the expected values in (6), we
obtain an infinite dimensional system of linear
uations with respect to TS, Since
TS $ <1y < oo for k<eo, the comments that were
made in the calculanon of Ly apply to this case
again. Thus, TRSS can be calculated by solving a
truncated version of the system in (6). The result-
ing finite dimensional system is of the form of that
in (3). The average number of internal (NS,S) pairs
in a session, T >, is then approximated by averag-
ing TYS:S over all k<.

By invoking the strong law of large numbers,
[16], and the ergodic theorem for stationary
processes, [17], it can be shown that the joint proba-
bility p(NS,S) is given by the following expression

TNS,S A 1
p(NS,S) = L +Ae” T )

The last term in the above equation takes care of the
non-internal (NS,S) pairs of slots. The transition
probability p(NS,S) is then calculated from the
expression.

p(S/NS) = RAS.S)

w(NS)

_ P(NS,S)
1-A

The rest of the transition probabilities are computed
from the following expressions.

p(NS/NS) = 1 — p(S/NS)

n(NS)
w(S)

p(NS/S) =1-p(S/S)

p(S/8)=1-p(S/NS)— —

The approximating Markov process, {7/} 20, 18
now completely determined since the steady-state
and the transition probabilities have been calcu-
lated.

IV. Performance of the approximations

on_the output process

The most interesting, probably, application for
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which the characterization of the output process of
a multi-user random-access communication net-
work is of great importance, is that of analyzing the
performance of systems of interconnected multi-
user random access communication networks. In
such systems one can find star topologies of inter-
connected networks. In such topologies, the mean
time that a packet spends in the central node is an
important measure of the performance of the inter-
connection and it is usually desired that this quan-
tity be calculated. This is the reason for the selec-
tion of the previous mean time as a performance
measure of the proposed approximations. The
value of the mean time is not by itself a measure of
the performance of the approximations. It is the
comparison of this quantity, calculated under the
various approximations on the input traffic to the
central node, with the one from the simulation of
the actual system, that indicates how good the
approximations are.

A star topology of interconnected networks is
shown in Fig. 1. Each input stream represents the
output process from a multi-user random-access
slotted communication system. Let A, be the out-

put rate (in packets per slot) of the n™ network. A
1
2
central
node
N
Figure 1.

A star topology of interconnected networks.

packet arrival in the central node is declared at the
end of the slot in which the packet was successfully
transmitted. Thus, the arrival process of each input
line is a discrete process. The arrival points in all
streams coincide; that is, the networks are assumed
to be synchronized and all slots are of the same

length.
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The service time in the central node is constant
and equal to one, which is assumed to be the length
of a slot. This implies that arriving and departing
packets have the same length. The first in-first out
(FIFO) service policy is adopted. More than one
arrivals (from different input streams) that occur at
the same arrival point are served in a randomly
chosen order. The buffer capacity of the central
node is assumed to be infinite.

If the output process of a network is approxi-
mated by the Bemnoulli-type process {y'};>o, then
the resulting queueing system in the central node
has been studied and the mean time that a packet
spends in the central node, Dy, is given by, [8],

N N
2 X bdn

n=1 m>n

Di=|1+

If the output process of a network is approxi-
mated by the Markov process {z'};», then the
resulting queueing system in the central node has
been studied in [9] and the mean time that a packet
spends in the central node, Dy, is given by

N N Yo Ym
D =
DM= 1+ N N
A-X ) T A ‘
n=1 n=1

where ¥, = P(S/S) - P(S/NS).

V. Results and conclusions

We consider systems of N=2 and N=3 multi-
user random-access communication networks inter-
connected according to the star topology described
in the previous section. It is assumed that the
limited-sensing collision resolution algorithm,
described in section II, is deployed in each of the
networks. The output process of each of the net-
works is approximated by a Bernoulli-type and a
discrete-time Markov process. The parameters of
the approximating processes are calculated accord-
ing to the procedures developed before.

In Table 1, the values of the transition proba-
bilities p(S/NS), calculated for various per network
input rates A and according to the procedures
developed in section II, are compared with the
corresponding values obtained from the simulation
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of the actual system. The coincidence (up to the
third decimal point ) between the analytical and the
simulation results, shows that the estimation of this
probability by solving truncated systems of J=15
linear equations, is extremely good.

A || Anal. | Simul.
.01 || 0.009 | 0.009
.10 || 0.095 | 0.095
.20 || 0.186 | 0.186
30 || 0274 | 0.274
.33 || 0.300 | 0.300

Table 1.

Analytical and simulation results on the transition
probability p(S/NS) of the channel-status process of
a single network with Poisson packet generation
process of intensity A (packets per slot).

The mean time that a packet spends in the cen-
tral node of the star topology was calculated from
the expressions given in the previous section. The
results (in slots) are shown in Tables 2 and 3,
together with the results obtained from the simula-
tion of the actual system. The network induced
mean packet delay is also shown in the last column
of these tables; it is the average time between the
packet generation instant and the time when this
packet is successfully transmitted (and appears in
the output process). The results were taken from
[10] and are provided to indicate the average total
delay (in the network and in the node) that a packet
undergoes. The maximum per network output rate
under stable operation of the particular algorithm is
.36 packets per slot. On the other hand, the queue-
ing system of the star topology is stable for total
input rates less than .99 packets per slot ,[22].

In the case of N=2 interconnected networks,
the maximum total input rate to the central node is
.72 packets per slot, far from the stability limit of
the queueing system. The latter implies that the
queueing problems will not be severe in the case of
two interconnected networks. Indeed, it turns out
that the queueing delay is less than .5 slots. Both
approximations perform satisfactorily in this case in
which the queueing problem is not significant.

In the case of N=3, the total input traffic to the
central node can be as high as the stability limit of
the queueing system (in fact even above that).
Under such conditions the performance of the two
approximations begin to differentiate. As the



results in Table 3 indicate, when the per network
traffic is large ( A>.3 ) and the queueing problem
in the central node signifficant ( total input traffic >
9), then the Markov approximation performs better
than the Bernoulli-type one. This is due to the fact
that the Markov model captures some of the strong
dependencies introduced by the collision-resolution
algorithm. These dependencies affect considerably
the mean time that a packet spends in the central
node only when there is a signifficant queueing
problem.

A || Indep. | Markov | Sim. | Net. Del.
.10 1.06 1.06 1.00 1.97
22 1.20 1.21 1.02 3.85
25 1.25 1.29 1.05 5.30
30 1.37 1.44 1.13 11.38
33 1.48 1.57 1.21 30.00
35 1.58 1.70 1.30 87.70

Table 2.

Results for the mean packet delay in the central
node of a star topology of 2 interconnected net-
works; A is the per network input (output) rate.
The results are under the Bernoulli-type approxima-
tion, under the Markov approximation and from the
simulation of the actual system. Net. Del. is the
algorithm induced delay within the network (in
slots).

A || Indep. | Markov [ Sim. [ Net. Del
.10 1.14 1.15 1.01 1.97
20 1.50 1.56 1.21 3.33
25 2.00 2.16 1.70 5.30
.30 4.00 4.54 4.28 11.38
31 5.42 6.23 6.25 15.00
32 9.00 10.47 11.37 20.00
33 [ 34.00 40.14 | 48.89 30.00

Table 3.

Results for the mean packet delay in the central
node of a star topology of 3 interconnected net-
works; A is the per network input (output) rate.
The results are under the Bernoulli-type approxima-
tion, under the Markov approximation and from the
simulation of the actual system. Net. Del. is the
algorithm induced delay within the network (in
slots).
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As a last comment on the performance of the
Bemnoulli-type approximation, we note that the
good performance of this model under moderate per
network traffic (e.g. N=3 and A =.2) is due to the
fact that , although dependencies are introduced by
the collision-resolution algorithm, some indepen-
dency is introduced to the cumulative input traffic
to the central node from the mutually independent
input streams. We expect that as the number of
interconnected networks increases (and the per net-
work output rate decreases, for the stability of the
queue) the Bernoulli-type model will perform satis-
factorily ,with respect to the performance measure
under consideration, for increasingly larger cumula-
tive input rates to the central node.

More than 3 interconnected networks can also
be considered. In such a system one should make
the assumption that only a portion of each network
traffic is destined outside the particular network and
thus needs to be forwarded to the central node.
This assumption is clearly necessary for the stabil-
ity of the queue. The output process of a network in
such a system is not determined by the two-state
channel-status process, {x};p. Itisa combination
of the channel-status process and a binomial pro-
cess, if there is a probability that the destination of a
successfull packet is outside the particular network.
In the latter case, an S-state will result in an output
with some probability.

References

1. F. A. Tobagi, "Multiaccess Protocols in
Packet Communication systems", IEEE Tran-
sactions on Communications, Vol COM-28,
No. 4, April 1980.

2. B.S. Tsybakov, "Survey of USSR Contribu-
tions to Random Multiple-access Communi-
cations", IEEE Transactions on Information
Theory, Vol. IT-31, No. 2, March 1985.

3. L. Merakos, G. Exley, C. Bisdikian, "Inter-
connection of CSMA Local Area Networks:
The Frequency Division Approach”, IEEE
Transactions on Communications, Vol
COM-35, No. 7, July 1987..

4. FE. A. Tobagi, "Packet Delay and Interdepar-
ture Time", Journal of the Association for
Computing Machinery, Vol. 23, No. 4, Oct.
1982.

5.  H. Takagi, L. Kleinrock, "Output Processes in
Contention Packet Broadcasting Systems",
IEEE Transactions on Communications, Vol.
COM-33, No. 11, Nov. 1985.

0905



10.

1.

12.

13.

14.

15.

16.

17.

18.

0906

F. A. Tobagi, "Analysis of a Two-Hop Cen-
tralized Packet Radio Network-Part I: Slotted
ALOHA", IEEE Transactions on Communi-
cations, Vol. COM-28, No. 2, Feb. 1980.

F. A. Tobagi, "Analysis of a Two-Hop Packet
Radio Network-Part II: Carrier Sense Multi-
ple Access", IEEE Transactions on Commun-
ications, Vol. COM-28, No. 2, Feb. 1980.

M. Reiser, "Performance evaluation of data
communication systems”, Proceedings IEEE,
Vol. 70, Feb. 1982.

A. M. Viterbi, "Approximate Analysis of
Time Synchronous Packet Networks", IEEE
Journal on Selected Areas in Communica-
tions, Vol. SAC-4, No. 6, Sept. 1986.

P. Mathys, "Analysis of Random Access
Algorithms", Ph.D. dissertation, Diss. ETH
No. 7713, Swiss Federal Institute of Technol-
ogy (ETH), Zurich, 1984.

N. D. Vvedenskaya, B. S. Tsybakov, "Ran-
dom Multiple Access of Packets to a Channel
with Errors", pp. 131-147 in Plenum Press
translation of article in Problemy Peredachi
Informatsii, Vol. 15, No. 2, pp. 52-68, Apr.-
Jun. 1983.

B. S. Tsybakov, N. D. Vvedenskaya, "Ran-
dom Multiple-Access Stack Algorithm", pp.
230-243 in Plenum Press translation of article
in Problemy Peredachi Informatsii, Vol. 16,
No. 3, pp. 80-94, Jul.-Sept. 1980.

I. Stavrakakis, D. Kazakos "A Multi-user
Random Access Communication System for
Users with Different Priorities”, Technical
Report UVA/525656/EE8T/101, University
of Virginia, Feb. 1987, also submitted for
publication.

L. Georgiadis, P. Papantoni-Kazakos, "Lim-
ited Feedback Sensing Algorithms for the
Broadcast Channel”, IEEE transactions on
Information Theory, March 1985.

L. V. Kantorovich, V. I. Krylov, "Approxi-
mate methods of higher analysis", pp. 20-26,
Interscience Publishers, 1958.

K. L. Chung, "A course in Probability
theory", pp. 126, Academic Press Inc., 1974.

D. P. Heyman, M. J. Sobel, "Stochastic
Models in Operations Research”, Vol. I, pp.
367, McGraw-Hill, 1982.

R. E. Kahn, S. A. Gronemeyer, J. Burchfield,
R. C. Kunzelman, "Advances in Packet Radio
Technology", Proceedings of IEEE, Vol. 66,
No. 11, Nov. 1978.

9B.1.8.

19.

20.

21.

22

R. G. Gallager, "Conflict Resolution in Ran-
dom Access Broadcast Networks", Proc.
AFOSR Workshop on Communication
Theory and Applications, Provincetown, MA,
pp- 74-76, Sept. 1978.

J. L. Massey, "Collision-Resolution Algo-
rithms and Random Access Communica-
tions", in Multi-user Communication Sys-
tems, G. Longo, ed., CISM Courses and Lec-
tures, No. 265, pp. 73-137, Springer Verlag,
New York, 1981.

G. Fayolle, P. Flajolet, M. Hofri, P. Jacquet,
"Analysis of a Stack Algorithm for Random
Multiple-Access Communication”, IEEE
Transaction on Information Theory, Vol. IT-
31, No. 2, pp. 244-254, 1985.

L. Kleinrock, "Queueing Systems’, Vol. I,
pp-279, John Wiley and Sons, 1976.



