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"ABSTRACT

In this paper, a star topology of interconnected net-
work subsystems is analyzed. A general description of
the dependent packet process generated by a network
subsystem is introduced, based on an underlying Markov
chain associated with the operation of the subsystem.
The statistical multiplexer, which is formed in the central
node of the topology, is analyzed under the described
dependent packet arrival processes.

The developed analysis is applied in the case of a
specific dependent packet arrival process and exact delay
results are obtained. These results are compared with
those obtained under the Bernoulli and the Markov
(arrival / no arrival) models and some interesting conclu-
sions are drawn.

'L INTRODUCTION

Packet communication networks have been widely
adopted as an efficient means of transferring information.
Such networks extend from small local area networks to
large systems of interconnected networks covering
extended geographical areas, [1]. The development of
local area petworks (or, in general, single networks) has
been the focal point of extended research over the last
two decades, [1]. The performance evaluation of these
networks has been facilitated by the adopted models on
the packet generation mechanism. The Bernoulli process
has been widely used to model the per user packet gen-
eration process of a small (finite) user population system
over a fixed time interval (slot). In the case of a large
(infinite) user population system, the Poisson model has
also been adopted for the cumulative packet generation
process. These models are in accordance with the ran-
domness and the unpredictability of the packet generat-
ing mechanism, which is captured by the memorylessness
nature of these processes.

The single communication network imposes severe
limitations on the information exchange capabilities of
the supported users. To enchance these capabilities, sim-
ple communication networks (or, in general, network sub-

systems) are interconnected,x}esulting in larger and more
complex systems, [2], [3]. At the same time, new network
components are created to support the interconnection of
the involved subsystems. These new components form
the backbone network. In this paper, a network subsys-
tem is defined as a system that generates packets. Such
network subsystems can be local area networks, network
switches or repeaters, statistical multiplexers, single user
dedicated lines, links which carry the mixed packet traffic
of a multi-hop environment, affected by routing decisions,
etc.

In this paper we analyze the performance of a star
topology of interconnected communication subsystems.
The star topology may be the only interconnecting
scheme present, or it may be one of the interconnecting
points in a Metropolitan Area Network (MAN), support-
ing a number of different information transfer facilities,
[2], [3]. The critical component of a star interconnecting
scheme is its central node. The performance of this net-

work component determines the quality of the
interconnection. Anuccurate evaluation of the delay

induced by the central node is important to the correct
identification of the bottlenecks of the large communica-
tion system and may lead to certain effective adjustments
resulting in the improvement of the overall network per-
formance.

The characteristics and the operation of the central
node of the star topology of interconnected network sub-
systems, that is considered in this paper, is presented in
the next section. The central node is seen as a statistical
multiplexer which is fed by the output traffic of N net-
work subsystems. The critical issue in the analysis of
such multiplexers is the characterization of the packet
arrival process; the latter is the packet traffic generated
by the corresponding network subsystem. The arrival
processes to the multiplexer, considered in this paper, are
described by incorporating a general model which could
be an exact description (or a satisfactorily close approxi-
mation) of dependent packet departing processes, gen-
erated by the network subsystems. The commonly
adopted i.i.d. or first order Markov models for the
description of the packet departing process can be seen as
special cases of our model.



The paper is organized as follows. In the next sec-
tion, the characteristics of the interconnecting node are
described; previous work on related statistical multi-
plexers is also cited. In section III, the analysis of the
equivalent statistical multiplexer is carried out. In sec-
tion IV, an example is presented and the developed
analysis is applied. The example illustrates the dramatic
effect of the packet arrival process on the induced delay,
by comparing exact results with those obtained under an
i.i.d. or first order Markov approximations on the packet
arrival processes.

'IL_THE INTERCONNECTING NODE

In this section, we describe the general model for the
central node which receives and forwards traffic from
more than one network subsystems. This interconnecting
node is the central component of the interconnecting
topology investigated in this paper and it can be
described in terms of a statistical multiplexer fed by N
independent input lines.

1 —
2 _—> gg\llglLEER —>
N %

Figure 1,

The central node of a star interconnecting topology.

Consider the queueing system shown in Fig.1. The
N input lines are assumed to be the mutually indepen-
dent links which carry the traffic generated in the
corresponding subsystems. These lines are assumed to be
slotted, and packet arrivals and service completions are
synchronized with the end of the slots. A slot is defined
as the fixed service time required by a packet. At most
one packet can be served in one slot. The first-in first-
out (FIFO) service discipline is adopted. Packets arriving
at the same slot are served in a randomly chosen order.
The buffer capacity is assumed to be infinite. The packet
arrival process associated with line i is defined to be the
discrete time process {aji}jzo, i=1,2,...,N, of the number
of packets departing from subsystem i at the end of the
i*® slot; a.ji=k, 0=<k=o, if k packets leave the subsystem
i at the end of the j*2 slot.

Let {zji}jzo, be a finite state Markov chain imbedded
at the end of the slots, which describes the state of the
subsystem i. Let S'={x}x! --- ,x]hi}, Mi<®, be the
state space of {zjl} j=o- It is assumed that the state of the

underlying Markov chain determines (probabilistically)
the packet departure process from the corresponding sub-
system. That is, if a.i(xi) : S‘-Zo, is a probabilistic map-
ping from S! into the nonnegative finite integers, Zy,
then the probability that k packets arrive at the central
node at the end of the j"h slot is given by
¢(z},k)=Pr{a‘(z})=k}. Furthermore, it is assumed that
there is at most one state, x4 such that (b(x(‘,,Q))O and
that the rest of the states of the underlying Markov chain
result in at least one packet departure, i.e. ¢(xli(,0)=0, for
1=k=M!. All packet departures are assumed to occur at

the end of the slots.

Previous work on similar statistical multiplexers can
" be found in [4]-[8] (and the references cited there). All
previous models differ significantly from the one
presented here. In [4], the authors assume a single arrival
line and a two state Markov Modulate Poisson arrival
process. In [6], the author considers a single input line
and arrivals that depend on an underlying two state Mar-
kov chain. In [5], [7] and [8], the system of Fig.l is
analyzed. In [5], it is assumed that the packet arrival
process of each of the identical input lines depends on an
underlying two state Markov chain (active/inactive). In
[7] it is assumed that the per line packet arrival process is
a first order Markov chain and at most one packet arrival
is possible. A closed form solution for the mean packet
delay has been derived for the latter case. In [8], a closed
form expression for the mean packet delay in the case of
Bernoulli per line arrival can be found. The systems
presented in [5], [7], [8] (and some special cases of the sys-
tem in [6]), are special cases of the general system investi-
gated here.

I ANALYSIS OF THE STATISTICAL MULTIPLEXER

IMla. General case : Asymmetric system.

In this section we study the statistical multiplexer
described before. The asymmetry of the system is due to
the fact that although all arrival processes are described
by the same general model, no two of them are identical.

Let wi(k) and p'(k, j), k,je S, denote the steady
state and the transition probabilities of the ergodic
underlying Markov chain, {zj‘}jzo, associated with the i*®
input line, i = 1, 2, -, N. Let also p"(j ; ¥) denote
the joint probability that there are j packets in the sys-
tem at the n'® time instant, or beginning of slot, (arrivals
at that point are included) and the states of the Markov
chains are v ¥ o, yN, where
¥y =y - Y); the arrivals which result from
the state ¥ are not included at this time instant. The
vector ¥ describes the state of a new ergodic Markov
chain generated by the N independent Markov chains
described before. Let w(¥) and p(X, ¥) be the steady state
and the transition probabilities, respectively, and
§ = §'xS%x - - xSN be its state space. The evolution



of the buﬂ'er occupancy can be descrlbed by an N + 1
dimensional Markov chain imbedded at the beginning of
the slots, with state space T = (0,1, 2, -+ )x § and
state probabilities given by the following recursive equa-
tions

R
P =3 3 p*(+1-v;%)

xe¢S v=0

p(x, ¥) g5(v) , j =R+l (1a)

Pi)=3 zp" Y(k;%)p(%,7)gz(i+1—k)

xeS k=1

+3p"7(0) p(x, Y)gs(i) , 0=j=R (1b)

xeS

where R is the maximum number of arrivals from all
input lines over a slot, x is the state of the N-dimensional
Markov chain at time instant n-1 and

N
g;(v):Pr{iglai(xl,)=v} (2a)

with o= z vg(v) , o= E Vig(v)  (2b)

v=1
g;(v) is the probability that the N dimensional underlying
state X results m v packet arrivals. There are totally

M'xM?x - -+ xMN equations given by (1) for a fixed j
and all ¥ € S, where M! is the cardinality of st i= 1, 2,
ey, N.

Ergodicity of the Markov chains associated with the
input streams implies the ergodicity of the arrival
processes {a.jl}jzo, i=1,2, ---, N. The latter together
with the ergodicity condition for the total average input
traffic A

A= S < 1 ©

xeS
imply that the Markov chain described in (1) is ergodic
and there exist steady state (equilibrium) probabilities.
Thus, we can consider the limit of the equations in (1) as
n approaches infinity and obtain similar equations for the
steady state probabilities. By considering the generating
function of these probabilities, manipulating the resulting
equations, differentiating with respect to z and setting
z=1, we obtain the following system of linear equations.
P'(1y)=3P(1;%) p(X,3)

xeS

+3 (b= 1p(xy)m(x)+ 3 p(0X)p(xy) , yeS§ (4
xeS xeS

where

w@=[76) , pED=[176)

- p(0;%)=poP(Xo/%)

,,,,, -

where py=1-—N\ is the probabxhty that the buﬁ'er of the
multiplexer is empty and X,=(xd,x3, * *  ,x) is the only

state that results in no packet arrival.

The M'x - -- MN linear equations with respect to

y € 5 that are described by (4) are linearly dependent.
This is the case when the equations have been derived
from the state transition description of a Markov chain.
By adding up all the equations in (4) and by using
L’Hospital’s rule, we obtain an additional linear equation
with respect to P (1 ; ¥), ¥ €5, which is linearly indepen-

dent from those in (4) and is given by

p 2(ui_1)P'(1;i)+2(“i_1)P(0;§) o

xe§
+] 2+(r;-—3p.;]'rr()?)]=0 (5)
By solving the M'x -+ xMN dimensional linear
system of equations that consists of (5) and any
M!x -+ xMN — 1 equations taken from (4), we com-

pute P(l X), x€S. Then, the average number of
packets in the system, Q, can be computed by summing
up all the solutions. The average time, D, that a packet
spends in the system can be obtained by using Little's

formula as the ratio Q/\.

Consider the special case in which the per stream
arrival process is Bernoulli. The underlying Markov
chain has one state and the equations (4) and (5) become

p(0)=1-p
and )
2(n—1)P (1)+2(n—1)p(0)+[2+0—3]=0

where

N1 N i yiy, 2
p=N , o= AN({1-N)+p
i=1 i=1

4)

(5"

sp 1 where A! is the rate of the i*® network. From (5),
by substituting (4’) and manipulating the resulting
expression, we get the following equation with respect to

P(1)

N N i j
S IAN 4 u(l-p)
i=1 j=1

(1-p)

P(1)=Qp=

“where Qp is the average number of packets in the system.
The mean packet delay, Dy is given by Qg/p, which is a

known result, [8].

IIb. Special case : Symmetric system,

Let us now assume that the parameters of the input
processes are identical, i.e. the parameters of all such
processes are identical. Let M be the cardinality of each

of the involved one dimensional Markov chains.

As it



will be shown shortly, the number of equations which
need to be solved for the calculation of the mean delay in
the multiplexer, is reduced significantly. This can be
easily seen by observing that the unknown quantities in
(4) and (5), P'(1;X), are the same for certain values of X.
For instance, the quantity that corresponds to state
X==(X;,Xg,X3, " * " ,Xn) i3 equal to that of state
x=(%g,X],X3, * " * XN)-

If v(x)=(v,{x),vy(x), * - * (X)) is an M-dimensional
vector with vi(X), i=1,2,...,M, denoting the number of
input processes in stafﬁ x;, then each such vector v(x),

with the constraint > vj(X)=N, represents a class of

i=1 _
equivalent states X. The number of equivalent states x in
a class v(x) is given by (pp. 20, [9])

_ [ N _ N!
o(x)= vi(®)va®), cvM®)) T vy @) - !

Let F be the set of representative states x of the
symmetric system (i.e. no two states XeF belong to the
same class of equivalent states); let v(x,) be the class of
the equivalent to X, states. For each X,,y,eF, equations
(4) and (5) can be written as follows.

P(iF)=3{ 3 p7,)}P(1%)

X.eF XeV(x,)

+E(u;—l)p(f,?o)w(§)+_Esp(0;ﬂp(iio) » YoeF (43)
xeS xe€
S )2k, ~DP (15%,)

X, eF

+3 [elu o0+ 2og-3ugdn®] =0 (5,

xeS

By solving the above equations with respect to
P (1;x,), X,€F, we obtain the average number of packets
in the multiplexer under input state X,, for each X,eF.
Then the average delay in the queueing system can be
obtained from

S P'(1%,)e(X,)

X.eF

Do=""rm

where A\ is given by (3). Depending on the number of
input streams, the reduced number of equations, K, in
(4a) and (5a) is easily computed. For the practical case
of N=2 and 3 input streams (or interconnected network
subsystems) the number of those equations is given by
the next theorem. Similar expressions for N>3 can be
easily derived.

Theorem
Let M be the cardinality of the state space of the 1-

dimensional underlying Markov chain defined before.
The number of classes of equivalent N-dimensional states

X=(X1,Xg, * * * ,XN), » Xx€S}, k=1,2, * - - M, is given by K,
where
K=M+ M N2I_1 for N=2

K=M(M+ M%(Ml) for N=3

" Proof:

The proof is based on the enumeration of all M
dimensional vectors

TR =(ra@a(®), + - - V() with év@ﬂ, and

where vi(x) is the number of input processes in state x;
(pp- 20, [9]).

The above theorem indicates that significant reduc-
tion in the number of equations can be achieved under
symmetric inputs. In the later case the required number
of linear equations is K versus MY for the general asym-
metric case. Partially symmetric inputs will also result in
a significant reduction of the number of the equations.

IV. RESULTS AND CONCLUSIONS

In this section we use the results of the previous
analysis to evaluate the mean packet delay induced by
the central node of a star topology of interconnected net-
work subsystems. Each of the input lines is assumed to
carry at most one packet over a slot. The following
traflic situations are considered.

(a) Bernoulli arrivals per slot (arrival / no arrival).

(b) First order Markov arrivals per slot (arrival / no
arrival).

{¢c) Arrivals appear in blocks of length L (slots), where L
follows a general distribution. The arrival of the
first packet after an idle slot (occurring with proba-
bility r ) is assumed to be followed by consecutive
packet arrivals over the next L-1 slots.

Model (c) may be incorporated in the description of
the traffic of a message switched line (or node), where a
message may consist of more than one packets. A mes-
sage switched line may be one dedicated to an important
user (information is generated by a message generating
mechanism, in this case), or a single message buffered
switch {messages are received by the switch only if it is
empty). Model (c) may also describe the output process of
a multi user communication network (one successful
transmission is possible over a slot). Particularly, the
output traffic of a reservation multi user communication
network could be described by a general distributed
number of packets, transmitted over a number of con-
secutive slots, during a reservation period. Notice that in
those message arrival models, packets are transmitted one
at a slot and the resulting packet arrival process is



different from one which would assume simultaneous
arrivals of all packets of a single message.

To describe the arrival process in terms of the gen-
eral model introduced before, we define the state of line i
at the end the j*® slot to be given by z where zj--O if
no packet arrived in the j*! slot and z '—-k 1=k=<L, if
there are k packets of a message to be transmltted over
the next k slots, starting with the j+1% slot. In this
environment, a message describes a block of packets
arriving througth the same line over consecutive slots.
According to the message arrival model described above,
a message is generated during a slot with probability r if
the slot is empty, and with probability 0 if the slot is
occupied. This scenario of the message arrival process
could describe the output of a reservation multi user ran-
dom access slotted communication network, where an idle
slot is necessary for the release of the channel. If no such
a slot is necessary, we allow a nonzero message generation
process over slots in states 0 and 1; in this case the next
message transmission may start right after the end of the
previous one (the coming end is declared by the line state
1). This second scenario may also represent the output
of a single message buffer which can receive a new mes-
sage while in the last stage of the transmission of the pre-
vious one. We can also generalize, by defining the line
state to be the content of the buffer at the other end of
the line; L in this case denotes the buffer capacity.
Different message acceptance disciplines may also be
incorporated. For instance, if the length of the new mes-
sage arriving at the buffer exceeds the available capacity
at that time, the message can either be rejected or be
accepted in part. All these cases can easily be translated
into the appropriate transition probabilities of the process
{zj} which can be easily shown to be a Markov chain
with state space S5={0,1, ... ,.L}.

The process {zj} in the case of the initial scenario (
a message is generated only when the line state is 0), is a
Markov chain with state transition probabilities given by
( we omit the superscript i for simplicity)

1 j=k—-1, 1=k=L
. Ic k=0, 1=j=<L
p(k,j) = ;. k=j=0
0 otherwise

where d(j) is the probability that the length of a message
(block) is i, 1=j=L. The probabilistic mapping in this
case is

[t 1sk=L
all) = 1o k=0
The steady state probabilities of {zjl} can be easily
obtained from the system of equations

nI=1IP

L
S w(k)=1
k=0

where II is the vector of steady state probabilities and P
is the matrix of the transition probabilities.

The equivalent Bernoulli model for the packet
arrival process described before has parameter p (packet
arrivals per slot) equal to p=1—w(0). The equivalent
first order Markov model (arrival=1, no arrival=0) has
the following parameters

Tn(0)=m(0) , ﬂm(1)=1_"m(0) '

Pm(0,0)=1~py(0,1) , pyu(1,0)=1-py(1,1)

where

Ta(0)
(1)

For this model, we define the burstiness coefficient v to

Pm(0,1)=r , pm(1,1)=1;p(0,1)

be equal to

Y=Px(1,1)-pn(0,1)

At this point we consider N=3 network subsystems
interconnected according to a star topology. It is
assumed that the packet output process generated by
each of them is described by the message (block) arrival
process described before. Let L=>5 and d(1)=.1, d(2)=.2
d(3)=.3 d(4)=.3 d(5)=.1. The exact value of the mean
packet delay in the central node of the interconnection,
Dg, can be obtained by solving the equations (4) and (5).
The approximate delay results under the Bernoulli (Dp)
and the Markov (Dy) models are calculated from the
closed form expressions that are available for these cases,
(7], [8], and are given by

N N
> 3 AT
*D = |1+ n=] m>an
B = N N
(1- 3\ 5
n=1 n=1
“and
S S Anm [1+1—7’—n —11——]
7DM= 1+ n=:1 m>n —Y -=Y

N N
(1-3 A7) 3 A

n=1 n=1

where Al is the packet arrival rate of the i*® line.

The delay results for different values of per network
message (block) arrival rate r, which result in a per line
packet arrival rate r,,, and a total packet arrival rate
Tiot, together with the corresponding burstiness coefficient
v, are shown in Table I. From these results, a number of
interesting conclusions may be drawn. It can be noticed



r Tout Tiot Dg Dy Dy Y
.05 | .134 | .403 1.654 | 1.224 1.982 | .63
.10 | .236 | .710 2.997 | 1.816 4.045 | .58
12 | 271 | .813 4.330 [ 2.453 6.113 | .56
.14 | .303 | .908 8.064 | 4.287 | 11.97 .54 |
15 | 317 | .952 | 14.84 7.643 | 22.47 53 |
Table L.

Results for the mean packet delay in the central node of
the star topology of N=3 interconnected network subsys-
tems, under dependent packet arrival processes.

r Tout Dg Dg - error Dy - error

.05 | .134 | 4.861 3.771 -22.4% 5.693 +17.1%
10 | .237 [ 5.229 3.967 -24.1% 6.350 +21.4%
.20 | .383 | 4.809 3.943 -18.0% 5.953 +23.7%
.30 | .482 [ 4.105 3.724 -09.3% 5.082 +23.8%
40 | .554 | 3.481 3.464 -00.05% | 4.282 +23.0%
.50 | .608 | 2.984 | 3.210 +07.6% 3.636 +21.8%
60 | .650 | 2.597 | 2.977 +14.6% | 3.128 +20.4%

Table II.
Results for the mean packet delay in the central node of
the star topology of N=3 interconnected network subsys-
tems, under dependent packet arrival processes.

" that the Bernoulli approximation results in smaller delay
than the one calculated under the Markovian approxima-
tion. This is always the case; the latter can be shown
directly from the corresponding equations, keeping in
mind that y=0 in the case of the Bernoulli model while
>0 under the Markovian model. The latter fact can be
explained intuitively as well. Under the Markov model,
packet arrivals tend to arrive in bursts. Whenever simul-
taneous bursts of arrivals occur, the content of the buffer
of the node will keep increasing until the end of all but
one burst and cannot start decreasing before the end of
all bursts. Clearly, this situation (not present under the
Bernoulli model) results in the increased packet delays.
We believe that the latter behavior of the Markov model
(or the geometrically distributed message length) is the
reason for the larger delay results obtained under this
approximation, when the true arrival process has the gen-
eral length distribution described before. The Markov
mode]l creates concrete blocks of packets of average

length equal to the average length of the generally distri-
buted message length. On the other hand, generally dis-
tributed message lengths result in better randomized
empty slots which reduce the intensity of the queueing
problems.

In Table II, similar results are presented. In this
case it is assumed that two of the packet arrival processes
are exactly described by the Bernoulli model and one by
the message length distribution used before. The total
input traffic is .90 packets per slot; r,, is the intensity
of the non-Bernoulli line and (.9-ry)/2 is the intensity of
each of the Bernoulli lines. The delay error introduced
by the adoption of the Bernoulli model for the packet
arrival process of the non-Bernoulli line, is also shown.
Notice that the error is significant (720%) even when the
dependent input line carries less than 15% of the total
load. This observation implies that even if more than
85% of the total traffic is accurately described, the error
in the approximation can still be large.
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