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A Limited Sensing Protocol for Multiuser Packet
Radio Systems

IOANNIS STAVRAKAKIS, MEMBER, IEEE, AND DEMETRIOS KAZAKOS, SENIOR MEMBER, [EEE

Abstract—In this paper, a protocol for a multiuser packet radio
communication channel is proposed. The basic functions of this protocol
are determined by a modified stack-type limited sensing collision
resolution algorithm. In fact, the developed protocol is a hybrid of pure
random access and a reservation scheme. A message consists of a number
of packets which are capable of revealing the current activity of the
channel. The performance of the system in terms of throughput and
average message delay is investigated and analytical results are provided.

1. INTRODUCTION

LOT of work has been done towards the direction of

developing communication protocols which determine
how a single common resource can be efficiently shared by a
large population of users. By now it is well known that fixed
assignment techniques are not appropriate for a system with
large population of bursty users. In the latter case, random
access protocols are more efficient and many of them have
been suggested [1], [2], [3]. In most of the systems, time is
divided into slots of length equal to the time needed for a
packet transmission (slotted systems).

In local area networks which use cable as a transmission
media (e.g., Ethernet), the users can sense the channel and
obtain almost immediate feedback information concerning the
channel activity. When a collision occurs the users can detect
it and abort their transmission. Due to the early channel
feedback (limited by the network end to end propagation
delay) and the abortion capability, the performance of local
area network can be very high, depending on the adopted
protocol and the system parameters. In a packet radio
environment, fast channel sensing is not possible. It is
generally assumed that a significant portion of the packet
should be wasted before any reliable information concerning
the channel status is obtained.

This paper focuses on random access techniques for
multiuser packet radio communication systems. It is assumed
that a large number of identical and bursty users share a
common communication channel. The users can be static or
mobile. The unit of information is the message and the
aggregate message generation traffic is assumed to be Poisson
distributed. Each message consists of one or more packets. In
this paper, a packet is defined as the minimum amount of
information whose transmission time is greater than a thresh-
old B; 8 is the minimum time required in order for the users to
obtain the feedback information concerning the channel
activity. Proper design of the length of a packet can result in
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the reduction of the channel capacity wasted in a conflict under
the adoption of the proposed protocol.

The first hybrid of a pure random access and a reservation
scheme was proposed in [15] with the R-ALOHA protocol, to
improve the throughput of a satellite channel beyond that of
slotted ALOHA. R-ALOHA can also be used for any other
broadcast media. In [16], an approximate analysis of the R-
ALOHA is presented. In these systems the user population is
finite.

In the next section, we develop a limited sensing stack-type
random access protocol which is a hybrid of pure random
access and reservation scheme. The protocol developed in this
paper is appropriate for a Poisson infinite user population
system where limited channel feedback is available. All users
compete for the channel until the first successful packet
transmission. After that, the channel is reserved for the
successful user and the rest of the packets of that user are
transmitted conflict free. A stack-type algorithm is used for
conflict resolutions, [6]. The performance of the system is
expected to increase as the number of packets per message
increases. The latter does not imply that a message should be
cut into as many packets as possible. The minimum packet
detection time, determined by 3, sets a lower limit on the
packet length. Furthermore, one has to consider the packet
overhead which is present in every packet. This overhead
results in the reduction of the channel utilization and sets
another lower limit on the packet length, if the packet is to
carry a significant amount of useful information.

Whenever a reservation scheme is adopted, there is the
possibility that the channel be monopolized by certain users,
unless restrictions are imposed. For instance, a very large
message could be cut into a number of smaller ones. Such
issues are beyond the scope of this paper. Due to the statistical
similarity of the user population, the users will be equally
served in the long run, under stable operation of the system.

In the case of multiuser packet radio system in which
frequency hopping transmission is adopted to achieve good
performance in fading multipath channels, privacy, [4], [5],
and coexistence with other systems, [7]-[10], the proposed
protocol can still be applied. In that case, the length of the
frequency hopping pattern determines the packet length and
the known carrier sensing is equivalent to the frequency
hopping pattern sensing. The desired length of the hopping
pattern and the packet overhead set a lower limit on the packet
length in that case.

II. THE PrROTOCOL

It is assumed that an infinite population of bursty users share
a common communication channel. A user can have at most
one message to be transmitted per time. The cumulative
message arrival process is modeled as a Poisson process with
intensity N\ messages per message length. Time axis is slotted
and the length of a slot is equal to one time unit. All users are
synchronized and a message transmission can start only at the
beginning of a slot. A message is assumed to consist of a fixed
number M of packets. Each packet has length equal to one
time unit.
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A user is considered to be active if he has a message to
transmit. An active user keeps sensing the channel starting
from the slot that follows its message generation instant until
this message is successfully received at the destination (limited
channel sensing). At the end of each slot a ternary feedback
information is available to all active users revealing the
channel status, i.e., whether the channel was idle, involved in
a successful transmission, or involved in a collision. These
states of the channel correspond to zero, one or more than one
transmission attempts in the same slot. Capture phenomena are
not considered in this paper; more than one transmissions in
the same slot result in the destruction of all messages. If
capture can take place then the analysis presented here reflects
a worst case performance of the system.

Users are geographically separated and it is assumed that
the status of a user (i.e., the existence or nonexistence of a
message in that user) cannot be communicated to the rest of the
population. The common channel is the only part of the
communication system which can be monitored by all users
and which can communicate its status to each one of them. In
mobile packet radio systems there is usually a central station
which broadcasts the channel status to all the users. The
channel status is assumed to be the only information available
to the whole user population. Thus, a channel access protocol
should be based on this information and should operate in a
distributed fashion.

The nature of the user population suggests that a random
channel access protocol be used. As a result, collisions arise
when more than one packets are transmitted in overlapping
slots. A collision resolution algorithm that belongs to the class
of the stack algorithms is developed, [6], [11]. The concept of
the stack is used to illustrate the operation of the algorithm.
The content of a counter (assigned to each user) determines the
cell of the stack which the particular user belongs to; it also
determines the class of users to which he belongs. Users
whose counter content equals &, & = 0, belong to the class By.
B denotes the class of the inactive users, i.e., those users who
do not have a message for transmission. B, denotes the class of
new active users, i.e., those users who have a message to
transmit but no message transmission has been attempted so
far. B, is the class of active users who attempt packet
transmission at the beginning of the slot that follows. Each
user’s counter content is updated at the end of the slots
depending on the outcome of the channel, the steps of the
algorithm and the counter content itself; the new value of the
counter determines the class which the user enters. Clearly,
U >_, B, is the set of all active users. Users who belong to

n
U*_. B, and have entered class B, at least once since the

ins'{arllt when they became active for the last time, are the
blocked users, i.e., the users who have attempted at least one
unsuccessful transmission of their current message.

Each user is assigned a downcounter w in addition to the
counter which determines the class which the user belongs to.
The initial value of the downcounter is M and it decreases by
one unit per slot, starting from the slot in which the first packet
of the message was successfully transmitted. The existence of
this counter serves two purposes. The first one is to determine
the time when the user becomes inactive. The second one is to
provide some protection against the loss of a packet, due to
erroneous feedback information. In the latter case, another
user might attempt transmission while a successful transmis-
sion was in progress, resulting in a collision and destroying the
original message. The user who was interrupted still belongs
to the class B; and thus he attempts transmission at the
beginning of the next slot. Thus, message loss is avoided and
some priority is given to the unlucky user as well. Since the
analysis of the protocol will be based on the assumption of
error free channel, such events will not be considered in the
analysis.

Let F denote the feedback information; it takes values from
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the set {7, S, C} depending on whether the channel was
sensed to be idle, involved in a successful transmission or
involved in a collision. The random access algorithm can be
described by the following changes of the user classes.

D If F = §, then ’

2 B if w>0

N B ifw=0" C) Bk_’Bk, k=2.

a) By~ Bo, b) B,

2) If F = C, then
a) B0_>Bl9 b) Bk_’Bk+], k=2

7 B, with probability 1 —p

¢) Foreach b € Bi, b (g \ith probability p

3) If F = I, then
a) By— B,
b) If last nonidle slot was involved in a collision, then

2 B, with probability 1—p
Foreach b € By, b g Gith probability p

B,—By, k=3

¢) If last nonidle slot was involved in a successful
transmission, then

¢;) if the current slot is the first idle slot after
the successful one, then B,—B;, k=2

¢;) if the current slot is not as in ¢;), then
Bk“’Bk, Is k=2,

It should be made clear that a packet collision can be
detected by all active users. When this event occurs, the
sender aborts his transmission before the end of the current
slot. As a result, only one slot is wasted in a collision.
Successful transmissions are never interrupted by new or
blocked users. We assume that a message transmission is
successful once its first packet has been successfully transmit-
ted.

Users in class By (i.e., new active users) are allowed to
attempt packet transmission after a slot involved in a collision.
This makes sense since the detected collision will be ended
before the beginning of the next slot. Step ¢;) gives priority to
new active users over the blocked ones, after a successful
transmission. At that time new active users are given the
chance to either transmit successfully or join the blocked
users. The probability of having at least one message during a
sequence of successful slots (which has length equal to M
slots) is significant. This algorithmic step emphasizes the
continuous entry characteristic of the proposed protocol.

III. THROUGHPUT ANALYSIS

An important quantity in the analysis of the random access
algorithm under consideration is the session length. A techni-
cal definition of the session can be given via the use of an
imaginary marker. The marker is originally placed in cell O.
Upon collision, the marker is placed in cell 2 of a conceptual
stack. The position of the marker changes in the same way in
which the counter content of the users of class B; changes,
depending on the channel feedback. The slot in which the
marker returns to cell O is the first one of the session that
follows and it is always idle. When the marker is in cell O and a
successful transmission occurs the market is placed in cell 1
and moves up or down as described before. Idle slots do not
move the marker from cell O and they are considered as
sessions of length one.

From the definition of the session it is implied that the first
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slot of a session is a renewal point, i.e., the system regenerates
itself statistically after that point. The number of users who
attempt packet transmission in the slot which follows the first
idle one of the session, determines the multiplicity of that
session. All users who attempt packet transmission in that slot
plus the one who enter the system before the end of a session,
transmit successfully during that session. The last two slots of
a session are idle and thus multiplicities of the sessions are
independent Poisson distributed random variables with inten-
sity A,

Let /, denote the length of a session of multiplicity & (in time
slots), K = 0. The following recursive equations can be
written with respect to /;, kK = O:

lO - 1 I’

Il:1+M+IFM (1a)

L=1+{1+Lo} I orm-op+ v r v md I s mrseoys

k=2 (lb)

bo={1+ho} Iinsr-0y + { Ly v iy Y b1y} Dy s Py 20y »

k=2 (lc)

where I; ., is the indicator function and Fyy, Fy, F>, F3, Fy, 1),
I, are independent random variables; F,, F», F;, and F, are
Poisson distributed random variables over one slot (with
probability density P;), Fy, is Poisson over M + 1 slots (with
probability density P,s) and I, I are binomial with probability
density

b1y = ph(l=p)*n, (2a)

!
Li'(k-1))!

bi(h) = p(1=p)*"2.(2b) (2b)

!
Li(k—1,)!

The equations in (1) can be explained as follows. a) The
session of multiplicity O consists only of the idle slot which
marks the beginning of this session. b) The length of a session
of multiplicity 1 consists of the following parts. i) The idle slot
which is always the first of the session. ii) The M slots
involved in the successful transmission of the single packet of
the system. iii) The length /g, which is the same as the length
of a session of multiplicity Fy. Fj is a random variable
associated with the number of message arrivals in M + 1 time
units; it is Poisson distributed over M + 1. ¢) For &k = 2, the
length of the session consists of the following. i) The idle slot
which is always the first of the session. ii) Since collision
occurs we have to distinguish between two cases. Let I, be the
number of users which remain in class B, after the splitting
and let F; be the number of new messages which arrive in the
slot before the collided one. ii,) If I} + F; > Owe add /; . r, +
I~ 1, + Fy to the length of the session since the original session is
split into two with the corresponding multiplicities. iiy) If I; +
F, = 0, we add another slot to the session since no
transmission takes place, plus /; o. The latter quantity is equal
to the length of a session of multiplicity & without including
the slot of the original collision, i.e., ko = L — 1.

Let L, be the expected value of a session of multiplicity k.
By considering the expectation of both sides of the equations in
(1), we obtain the following infinite dimensionality linear
system of equations with respect to L;:

Lk=hk+2 akij, k=0.

Jj=0

3
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where
1
ho=1, h=M+1, hhy=—————,2<k
0 ! L = be(0) P, (0)
ay;=0,0<j, a;;=Puy.1(J),j=0

ko= hibi(k) P (0), 2=k

ai;=1(hy) [bk(O)Pl(j)+2 () P(j—1)

i=1

J
+3 bk(k—i)Pl(j~i):|, 1<j<k-1,2<k

i=0

ay=1(hi) [bk(0>P1(j>+bk<0>[1 ~POIPG=K)

K k
+3 b Pi(J—k+i)+ ) bi(i) Py (j—i)] ,

i=1 i=0
k<j, 2=<k.

Since it is impossible for the above system to be solved,
approximate solutions for Ly, k = 1, will be found, [6], [11],
[12]. These solutions will provide upper and lower bounds on
the mean session length and the maximum stable throughput,
Smax- Before we proceed in the analysis, we state the following
definition of the stability.

1) Stability Definition: If for an input traffic rate X L, <
o for kK < oo, then the operation of the system is stable and A
belongs to the stable region of the throughput. The maximum
over all rates A, which result in a stable system, is defined to
be the maximum stable throughput of the system and is
denoted by S;.x-

By following procedures similar to those in [6], the
following Lemma can be proved.

Lemma 1: If {x{}7_, is an infinite sequence of real
numbers which satisfy the following conditions:

1) 0=sx{<oo, 0=k<oo,

2) hk+2 aij}‘sxz, 05k<m,
Jj=0

3) h=0, a,;=0, for k=0, j=0,

then the infinite dimensionality linear system of equations

P+ Y, agx;=xi, 0<k<oo )

j=0

has a unique nonnegative solution {x,}*_; that satisfies 0 <
Xk = x4, 0= k < oo O

If x; represents the expected value of a session of
multiplicity &, then the range of input traffic rates \ for which
a sequence {x%}y  which satisfies the above conditions
exists, belongs to the stable region of the throughput. For A <
A\! and for some value of the splitting probability p, 0 < p <
1, we were able to find a quantity L = B\, pYk — v(\, p)
which satisfies the conditions of Lemma 1 (actually numerical
search determined \! for p = 0.48). Thus, L, < LY for B(\,
p), ¥(N\, p) and k finite and A' is a lower bound on the
maximum stable throughput. The values of A! (in number of
messages per message length) are computed for M = 1, 2, 5,
10, 100 packets per message. The results are shown in Table I.

An upper bound on the maximum stable throughput can be
obtained by considering a truncated version of the infinite
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TABLE I
UPPER AND LOWER BOUNDS ON THE MAXIMUM STABLE THROUGHPUT
FOR M PACKETS PER MESSAGE. [\" IS THE TIGHT LOWER BOUND
CALCULATED FROM (14)]

1| .273 .283

2 | .443 453

5 | .678 .686

10 | .812 .817

100 | .977 .978

dimensionality system in (3)
N
L(l):l, L/I(:hk+z akij!, l<k<N. (5)

j=0

Let A% be the maximum over all Poisson rates for which the
truncated system in (5) has a unique nonnegative solution. Let
also S, be the maximum over all Poisson rates for which the
infinite dimensionality system in (4) has a unique nonnegative
solution that satisfies the condition

lim max {E akij} =0.

MowN>M Ty

Then, A% decreases monotonically as N increases and limy-, o
A% = Smax, [11]. Clearly, A% is an upper bound on the
maximum stable throughput S,,,. By solving the system in (5)
for N = 24 and for the cases of M = 1, 2, 5, 10, 100 packets
per message, an upper bound on S, is obtained. The results
appear in Table I.

IV. DELAY ANALYSIS

In this section, we derive bounds on the mean message delay
for input traffic rates A < A!. The important result of this
section is the following expression for the average message
delay D and for A < AL

1 u

C C
D4+ ESDSDA + ﬁ (in message lengths)  (6a)

where

6(1= MM+ 1)+ MM+ 1)2M +3)

D
A aM

(6b)

L', L¥ denote lower and upper bounds on the mean session
length L. C', C* denote lower and upper bounds on the mean
cumulative in system delay of all messages arriving in a single
session. The in system delay is defined to be the time that
elapses between the instance when a message enters class B,
for the fist time and the instant when the whole message has
been successfully received by the receiver. The mean cumula-
tive in system delay is defined as the expected value of the sum
of the in system delays of all messages arriving during a single
session. Let 7 = O be the time when the system starts operating
and let us define the following quantities.

/i The ith session after the beginning of the operation of

the system.

a;: The number of message arrivals in the ith session.

c;: The cumulative in system delay of the messages arriving

in the ith session.

Since the operation of the algorithm represents a renewal
process and the multiplicities of the sessions are independent
and identically distributed random variables, we conclude that
the random variables /;, i = 1, 2, 3, - - - are independent and
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identically distributed. Clearly, the same holds for the random
variables, @; and ¢;, 1, 2, 3, - - -. The following theorem is a
direct application of the strong law of large numbers (p. 126,
[14]).

Theorem 1: For A < \!, the mean in system delay D is
given by

c o
DS=E , with probability 1

where C = E{c;} and L = E{/;}.

Proof: Since each of the /;, ¢;,, a;, i = 1, 2, -+, are
independent and identically distributed random variables and
since we known that L = E{/;} < o, for A < A, we
conclude that C = E{c¢;} < oo and that E{a;} = AL < oo.
The mean in system delay is given by

1

— C

D,=lim ! :nmn’:El wEta} €

4 n E{a,‘} AL
4

with probability 1; equality (*) is justified by the strong law of
large numbers. O

In the sequel, we define the access delay A td be the time
period that elapses between a message arrival instant and the
instant when the message enters class B, for the first time. The
next theorem provides an expression for the mean access
delay.

Theorem 2: The mean access delay D, is given by

D 6 -NMM+ 1) +ANM+1)2M+3)

4 2 for every A<l

Proof: Let 8 be a random variable associated with each
message arrival that takes the values IC or S depending on
whether the first time slot following the message arrival is
idle/involved in a collision or involved in a successful
transmission, respectively. If A denotes the access delay of a
random message, then

3
E{A/§=IC} =5 and (7a)

2M+3
4M

E{A/0=S8}= (message lengths).  (7b)

Clearly, E{A} = D4, = E{A/60 = IC}P{6 = IC} + E{A/
0 = S}P{# = S}. To calculate the probabilities involved in
the previous expression we define the following random
variables. Let 7! be the number of slots of the ith session
which were idle/involved in a collision, and 7§ be the number
of slots of the /th session which were involved in a successful
transmission. The random variables T}C, i = 0 are independent
and identically distributed; the same holds for 'rf, i = 0. Since
E{7!} < wand E{7}} < oo forevery A < N!, by applying
the strong law of large numbers we have

NG

Ic
¢ E{r} E{r}
CE{L} L

X -

P{=1IC} = lim —=!

n—oo 1

with probability 1
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and

1

- E 7 s N
PLo=§} =tim " Etrl}_Etr}

= =|1m = =
me oty EUY L
n i=1 I
with probability 1.
Now since
E{rS}=NE{l,}=\L and E[r$} + E{rIC} =E{l} =L

we obtain that E{7/} = (1 — MM + 1))L. The last
expressions together with (7) complete the proof of the
theorem. O

The expressions in (6) become obvious in view of the
Theorems 1 and 2. In the following sections we derive upper
and lower bounds on the mean session length L and the mean
cumulative in system delay C.

A. Bounds on the Mean Session Length
Definition: If

Xk:Ak+E Byx;, 0<k=<oo and (8a)
j=0
yk=ak+2 byy,, 0<k=oo (8b)

Jj=0

are infinite dimensionality linear systems of equations with A4,
= |a;|and By; = |by|, 0 <= k < 0,0 < j < oo, then we say
that the system in (8a) is a majorant for the system in (8b);
similarly, the system in (8b) is a minorant for the system in
(8a).

The following theorem can be found in [13].

Theorem 3: If a majorant for a given system has nonnega-
tive solutions x;, k = 0, then the given system has the solution
yr which satisfy |y| = x4, 0 = & < oo, |

Note that the infinite dimensionality linear system of
equations in (4) is a majorant for its truncated version in (5)
and the system in (4) has a nonnegative solution for every A <
A!' by Theorem 1. Thus, Theorem 3 implies that, for every A
< N!, the solutions L of the finite dimensionality system in
(5) are lower bounds on the expected value of the length of a
session of multiplicity k£, Ly. A lower bound L' on the mean
session length for input traffic rates N < A! can now be
obtained by using the expression

L1=E{L;}=§: P(K)L! ©)

k=0

where P(k) is the Poisson (over one slot) distribution of the
multiplicities of the sessions. L,‘(, 0 <= k = N, are the
solutions of the system in (5) and L} equals zero for k > N;
the latter choice makes sense since despite the fact that zero
may not be a tight lower bound on L, for kK > N, the
probability that a session of multiplicity K > N occurs is
extremely small for large NV and the input rates of interest.

The values ofL,‘(, 0 < k =< N, for some values of A < \!
and for M = 1, 2, 5, 10, 100 packets per message, are
computed by solving the finite dimensionality system in (5) for
N = 24. The mean session length is then calculated from the
expression in (9). The results appear in Table II.

An upper bound on the expected value of the length a
session of multiplicity k& has already been calculated and it is
given by L}. An upper bound on the mean session length L,
can now be obtained by considering the expectation of L,
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TABLE I
UPPER AND LOWER BOUNDS ON L AND C AND VALUES OF D (IN
MESSAGE LENGTHS) FOR A < \' AND M = 1, 2 PACKETS PER MESSAGE

M| » [L~tw | C'~C"| D
010 [ 1.020 010 | 2535
.050 1.117 .069 2.735
100 | 1290 222 | 3.200
150 | 1.584 643 | 4132

1| 200 | 2211 2.300 | 6.602
.250 4.760 19.239 17.542
260 | 6580 | 41.559 | 25.662
270 | 11157 | 135.282 | 46.273
273 14.280 230.128 60.394
.010 1.015 .010 1.762
050 | 1082 057 | 1.823
100 | 1184 139 | 1.938
150 | 1317 265 | 2114
.200 1.498 484 2.396

2 | 250 | 1764 912 | 2.849
300 | 2199 1.896 | 3.662
350 | 3.049 4868 | 5.355
400 5.474 21.032 10.405
440 | 20075 | 359.548 | 41.510
443 | 25541 | 592653 | 53.184

(@)
TABLE II

UPPER AND LOWER BOUNDS ON L AND C AND VALUES OF D (IN
MESSAGE LENGTHS) FOR X < \! AND M = 5, 10, 100 PACKETS PER

MESSAGE
M A LI ~Lw Cl ~Cu D
.010 1.012 010 1.305
.100 1.137 118 1.337
.200 1.362 .301 1.477
.300 1.607 .641 1.735
5 | .400 2.077 1.428 2.158
500 3.045 3.981 3.090
.600 6.231 21.617 6.292
650 14.321 130.382 14.533
.670 31.075 647.895 31.652
.678 59.217 2404.230 60.506
.010 1.011 .010 1.193
.100 1.124 114 1.211
.200 1.285 274 1.302
.300 1.508 .524 1.438
10 | .400 1.831 974 1.651
.500 2.356 1.944 2.012
.600 3.360 4.688 2.730
.700 6.062 18.028 4.695
770 14.647 118.671 10.999
812 | 116.156 8037.010 85.706
.010 1.010 .010 1.019
.100 1.112 119 1.070
.200 1.253 2587 1.141
.300 1.435 461 1.234
.400 1.680 771 1.360
500 2.027 1.294 1.538
100 | .600 2.557 2.304 1.812
.700 3.467 4.672 2.284
-800 5.395 12.425 3.288
.900 12.214 70.183 6.842
.950 33.395 552.386 17.893
.970 | 109.410 6065.790 57.647
977 | 539.488 | 150042.000 | 285.163
(b)

with respect to &, i.e.,
Le=E{L{} =B\, p)A—v(\, p)[1 = P0)]+ P(0).

The values of L* were found to be very close to those of L!
for N < =0.8 A'. As A approaches A!, the upper bound
increases rapidly. Later in this chapter, a tighter upper bound
on the mean session length will be calculated.
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B. Bounds on the Mean Cumulative in System Delay, C

To derive bounds on the mean cumulative in system delay,
we follow a procedure similar to the one employed in the
derivation of the bounds on the mean session length. The
following recursive equations for the cumulative in system
delay c; can be written by thinking in a similar way as in (1) ¢
is the cumulative in system delay of a session of multiplicity k.

=0, c=M+cp,
c=k+enrm k=1 r+ s m ) i ry 20y
+lk—croll{n s -2 <k <o
co=k+colinsrmeotichimt(K—h)chir,
+ k- pirdl{nip=-02<k<oo.

By considering the expectation of both sides of the previous
equations we obtain an infinite dimensionality linear system of
equations of the form of (3)

Ci=g+ Y, ayCy, k=1, (10a)
i=0
where ay; is as in (3) and g, is given by
£&=0, g=M (10b)

ge=r(he) [k+ D

11=0 Fy=0,1;+F#0
: bk(ll)P(Fl)[k"11]L11+Fl] , k=2. (10c)

By setting the upper (lower) bound on L; ,p in (10c), we
obtain an infinite dimensionality linear system of equations
which is a majorant (minorant) for the system in (10a). Upper
and lower bounds on C; (C% and Cﬁ(, respectively) can be
computed by following procedures similar to those used for
the derivation of the corresponding bounds on the mean
session length of multiplicity k, & = 0. An upper bound on C
on the form

Cu=0,

5 Ci=vik?+vk+v;, k=1

was obtained for all input traffic rates N < A! where vy, v,, v3
are some finite constants, which depend on \ and p. An upper
bound C* on the mean cumulative in system delay can be
calculated by considering the expectation of C¥ with respect to
k. Thus,

CH=E{C¥} = (AN, + Az + (1 = P(0))vs.

By solving a truncated version (N = 24 equations) of the
infinite dimensionality system of equations in (10a), we obtain
lower bounds on Ci. Then by using C} = 0, k¥ > 24, and
considering the expectation of C}( with respect to k, we obtain
a lower bound on the mean cumulative in system delay C'.
The values of C! for some values of A < A'and for M = 1, 2,
5, 10, 100 packets per message, are shown in Table II.

The lower bounds on L and C that were calculated by
solving finite systems for N = 24, are the same with those
found for much smaller value of N. Since

}/im L}(=Lk and [lvim C.=C
our results indicate that the lower bounds are very tight. On
the other hand, the upper bounds which were calculated
previously are arbitrary and probably very loose. The next
theorem is employed for the derivation of tighter upper
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bounds; its proof is based on Lemma 1 and the theory of
majorant systems, [13].

Theorem 4: Let {x%} 7 , be a sequence of real numbers
which satisfies

(@) 0sxi<oo, 0=k<oo and (B) A+ D, a X< x}
j=0

with (y) Ay = o. Then the
following hold.

a) The finite dimensionality system of linear equations

0,a; =0, for0 = k, j <

o N
lezhk*' E aijj’f+2 aij}” 12)

Jj=N+1 i=0

has a nonnegative solution x' which satisfies x¥ < x%, 0 = k
< N.
b) If x is a nonnegative solution of the system

Xk:hk+2 QX kZO, (13)
j=0
then x, = x¥, 0 <= k < N. O

By employing the sequences {L%} 7, and {C%}*_ in the
place of the sequence {x{}7_, in the above theorem and
solving the resulting finite dimensionality linear systems of
equations given by (12), tight upper bounds on L; and C; were
obtained, for kK <= N = 24. By considering the tight upper
bounds on Li(L}') and on C(CY') for k = N and the upper
bounds L¥ and C¥ for k > N, tight upper bounds on L(L*)
and C(C*) are obtained, respectively. The values of L* and
C* for some values of A < ANl'and for M = 1, 2, 5, 10, 100,
are shown in Table II. Note that the tight upper bounds
coincide with the lower bounds (up to at least the first three
decimal digits).

V. RESULTS AND CONCLUSIONS

By substituting the values for the tight upper and lower
bounds on the mean session length and the mean cumulative in
system delay into expression (6a), upper and lower bounds on

the average message delay are obtained. Since L = L' and
C“ = C! we obtain the approximate expression
C!
D=Djy+—
AN

for the mean message delay. The accuracy of the previous
expression is restricted by the accuracy of the fourth, or
beyond that, decimal digit in C' and L!. The values of the
mean message delay for some values of A < A! and for M =
1,2, 5, 10, 100 packets per message are shown in Table I1. A
plot of the mean message delay D versus the input traffic rate
for M = 1, 2, 5, 10, 100 appears in Fig. 1.

The lower bound on S, that appears in Table I is not tight.
In fact, we can assert that Sy, = A¥ (where A\¥ = A5,). The
fact that the upper bound \%,, which is calculated by solving
the finite system in (5) for N = 24, is the same (up to the third
decimal digit) with \Y, which is obtained by solving (5) for N
= 5, indicates that N\“ is very close to the value S,,, given by
the infinite dimensionality system; the latter is the limit of AY
as N approaches infinite. The previous argument can be
justified by repeating the procedure of finding X! and using for
the upper bound x% of Lemma 1 the expressions, [12],
l<k<7

xi=1, x¢=(l+e)Ll, (14a)

xX{=B(\, pYk—v(\, p), 8<k< (14b)
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Fig. 1. Analytical results for the average packet delay D, versus the input

traffic rate \ with the number of packets per message M as a parameter.

where € is an arbitrarily small positive number. A sequence
{x{}7_, as in (14) which satisfies the conditions of Lemma 1,
was possible to obtain for N = A" (where N = A up to the
third decimal digit), and thus S, = A“ Then, the mean
message delay D, for A' = N\ < A%, was computed and it was
found that it increases rapidly to infinity, as it was expected.

From Table I and Fig. 1 it can be concluded that the
performance of the system increases substantially as the
number of packets per message M increases. This was
expected since the portion of time that it involved in the
channel sensing (in message lengths) decreases as M in-
creases. As a result, the suggested protocol turns out to be
efficient in systems in which a message is formed by a number
of packets, the length of the latter being determined by the
minimum time required for the channel status identification.
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