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In this paper a system of two interconnected nodes is
analyzed. Then, the behavior of the buffers is investigated under
some simple routing policies adopted in the first node.

L_Introduction

In this paper, the queueing behavior of the interconnected
buffers shown in Fig. 1 is investigated; Rk] denotes the packet
traffic which enters node k and is to be forwarded to node j,
through possibly more than one paths; R denotes the packet
traffic departing from node k and forwarded directly to node j.
This system of interconnected buffers may be found in the simple
topology shown in Fig 2. At first, the behavior of both buffers of
the system shown in Fig. 3 is studied, under a general indepen-
dent discrete time packet arrival process Ri, and a dependent
discrete time packet arrival process R23 Notice that no routing is
incorporated in node 1 and thus A{, = A%, where )\{j and A
denote packet rates associated with the packet processes R,; and
Ry, respectively. Three steps are followed in the analysis of this
queueing system. At first, the queueing behavior of buffer 1 is
analyzed. Then, the (dependent) packet output process R, is
described. Finally, buffer 2 is analyzed by incorporating the
(dependent) packet processes R and Ri;. In the sequel, the
behavior of both buffers of the system in Fig. 3 is studied under
some simple routing policies applied to node 1, by following the
three steps described before. By maintaining a fixed packet out-
put rate, A% (assuming that A, is constant), it is observed that the
routing pohcnes in node 1 result in different queueing behavior of
buffer 2. This is due to the fact that, despite the equality of the
intensity of the resulting packet rate, different routing policies in
node 1 generate statistically different packet output processes R.

! lysis. of two buffers witl o decisi

In this section, the system shown in Fig. 3 is analyzed. The
packet service rates at both nodes are constant and equal to one
packet per slot; the slot is defined to be the time distance between
two consecutive potential packet arrival instants. The packet input
process to the first node, R{,, is assumed to be a Generalized Ber-
noulli Process (GBP). That is, the number of packets arriving at
node 1 at the potential arrival instants is an independent process
and it follows a general distribution. This process is determined
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7 Figure 1

A system of two interconnected buffers with packet routing.

by a message (or multi packet) arrival rate, r, and a general dis-
tribution, g(j), 1=j=Ng, of the message (or multi packet) size in
packets; Np is the maximum message length or number of pack-
ets which may arrive during a single slot. The packet input pro-
cess to node 2 is assumed to be a compound process consisted of
two independent packet streams. Input R, represents the packet
output process from the first node. Input Ri; is assumed to be
described by a Markov Modulated Generalized Bernoulli Process
(MMGBP) which is, in general, a dependent process. That is, st
is described by a discrete time process {aj};.o Which depends on
an underlying Markov chain (z;}2; a(zj)=k with probability
¢(z,,k) Furthermore, it is assumcd that there is at most one
state, x, such that ¢(x,,0)>0 and that the rest of the states of the
underlying Markov chain resuit in at least one (but a finite
number of) packet arrivals.

A 3-node element of a topology of a packet communication network.

IL.1. Queuecing behavior of buffer 1,
The queueing behavior of the buffer in node 1 is studied for
the cases of finite' (K<) and infinite capacity. The outcome of
this study is the derivation of the expressions for the calculation of
the first two moments, Q, and Q,, respectively, and the variance,
V, of the buffer occupancy and the mean packet delay, D,
induced by buffer 1. Let A denote any onc of these quantities,

Ac (Qsz;V,D}-

11.1-(a) Infinite buffer capacity.

Closed form expressions for the queueing quantitics of
interest, A, are computed by using the results of the analysis of
the multiplexer in [3]; a single state underlying Markov chain
describes the GBP. The following closed form expressions are
obtained in this case.
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where o is the second moment of the packet arrival process. By
applying Little’s theorem to the previous the following expression
for the mean packet delay D', is obtained.
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The variance of the buffer occupancy is given by
V= Q- (Qy
where Q] is the second moment of the buffer occupancy given by

Q- 3(11-1) p"+3p"(o,'-|+x)] +Q]

D'=1

where
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11.1-(b) Finite (moderate size) buffer capacity

When the capacity K of the buffer in node 1 is finite and of
small or moderate size, then the queueing quantities A induced by
node 1 can be calculated from the following equations

Ql - f;ow(i)i , V= Ql-(Q)? (13)
Ql = S=()? , D' = QI/A (1b)
i=0

where 7 (i), 0sisK, are the steady state probabilities of the Mar-
kov chain (d;};zo, Where d; denotes the number of packets in the
buffer of node 1 at the j slot. Since,
djﬂ = (drl)‘ + aj

where (x)* = x if x=0 and it is zero otherwise and a; denotes the
packet arrivals during the j™ slot, it is clear that (d;};zo is a Mar-
kov chain; its transition probabilities can be easily obtained. The
steady state probabilities m(i), 0=i<k can be obtained from the
equations

i_ilu(i)-n . mP=Tl @

where I1 is the vector of the steady states probabilities and P is
the matrix of the transition probabilities.
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Figure 3 _ )
A system of two interconnected buffers without packet routing.

11.1-(c) Einite (arbitrarily large) buffer capacity.

When the buffer capacity K is finite but large, the accurate
values of the quantities of interest can be obtained, in principle,
from equations (1). The steady state probabilities w(i), 0sisK,
are obtained from the solution of a large number of equations
given by (2). When the system operates outside its instability
region (i.e. A<l1-¢, €>0), the expected solutions (i), 0sisK,
given by (2) become vanishingly small as i increases. These solu-
tions may also be inaccurate particularly beyond some kg, ko<K.
To overcome this computational difficulty, bounds on the queue-
ing quantities of interest are derived, by introducing the concept

of the dominan« systems.

Consider the two nodes C* and C* which are identical to
node 1, except from the capacity of the corresponding buffers.
Node C™ has an infinite capacity buffer; node Cb has a buffer
capacity of size L<K, where K is the capacity of node 1. Let Al,
denote the queueing quantity A associated with node CJ, j=L,®.
It is casy to justify that

Qf=Q;=Q, Q=Q,=Q; (3a)
D'=DsD" (3b)

Q}-(QFP=V=Q,-(Q) s Q7 -(Q}? (3¢)

where Q,, Q,, V, and D are the queueing quantities, A, associ-
ated with node 1. The previous equations establish upper and
lower bounds on Q,;, Q,, V and D. In most practical applica-
tions, where buffer overflow is not desired, K should be suffi-
ciently large so that w(K) be extremely small. Under such condi-
tion it is expected that A<A®, Ae(Q, Q, D,V].

To analyze the queueing behavior of buffer 2 an accurate
description of the packet (output) process generated by node 1 is
required.

11.2. The packet output process of node 1, R,

Although the packet input process to node 1, described by a
GBP, is an independent one, the process of the packets departing
from this node is not, due to the dependencies introduced by the
operation of the node. This process is shown to be accurately
described by a MMGBP.

Let (d;)jzo be the Markov chain defined in section I1.1-(b)
which describes the number of packets in node 1 at the end of the
j™ slot. Let S = {0,1,2, ,K] be its state space, where K, Ks, is
the buffer capacity of node 1. If K is finite and of small or
moderate value, then (d;};ao can serve as the underlying Markov
chain of the MMGBP to be used for the description of Rf;. If K
is very large or infinite, then a new Markov chain, {d}‘}lgo. with a
state space of reduced cardinality L, L<K, will be incorporated in
the description of Ry, to lead to tractable computations of the
queueing quantities in node 2. Although the description of Rf;
based on (d]");=o is an approximate one, it turns out that it results
in a very accurate calculation of the queueing quantities of
interest at node 2. The MMGBP which describes the packet out-
put process Rf, is determined by the probability distribution
&(d; k), where

#(0,0)=1 , &(d;,1)=1 for 4>0 , deld;,d") @

since node 1 outputs one packet when ai>0 and zero packets oth-
erwise. -

Let (a;}jz9 and (a);2o be the packet output processes deter-
mined by the probability distribution given by (4) and the underly-
ing Markov chains (d;};> and [dj"}j“, respectively. As it is men-
tioned before, the queueing quantities A associated with node 2
are fairly accurately calculated under the approximation of the
true packet output process (d;}j=o by the process (d}jxo, as long
as node 1 operates outside its instability region. Under the latter
conditions, states i, i>ko, for some ky<L, are almost never visited
by the true Markov chain (d));=o. Thus, the Markov chain
(A=, for some L>ko, is expected to be a good approximation
of {dj};zo- In addition, the number of packets, a;, generated by
node 1 in the j' slot, is the same under both Markov chains and
independent of the their state, as long as it is a nonzero state (see
(4)). Due to the latter observation, an additional refinement in
the approximation of (d;)jxg by (d])juo. 8s seen from the output
process (al)jzo, is introduced, as long as L>0. Finally, the
queueing process in node 2 is a complex one and it may also
introduce some smoothing on the differences between the



proccsscs {ajliz¢ and {a; },Zo, and consequently deemphasize the
difference between. {d; ),zo and {d; },zm as inferred from the values
of the queueing quantities A cvaluatcd at node 2. The previous
arguments offer some non-rigorous explanations of the expected
(and observed) accuracy of the approximation of {d, iliz0 by {d; ],Zo
(and, consequently, of the approximation of (a; jJizo bY (a; },zo)» as
measured by the accuracy of the calculation of the queucmg quan-
tities A at node 2.

~11.3. Queueing behavior of buffer 2

At this point, the queueing behavior of node 2 is studied
under the packet arrival processes R% and Rl,, each of which is
modeled as a MMGBP; Ry, is the packet output process from
node 1 and it is described in section 11.2; R{, is an arbitrary
MMGRBP as defined at the beginning of section 1I. The queueing
quantities A associated with node 2 are calculated when the cardi-
nalities of the Markov chains associated with Rf, and Rj; are of
small or moderate value.

When the capacity of buffer 2 is infinite, then the analysis
presented in [3] can be applied and the queueing quantities of
interest A, Ae{Q; Q,V,D} be computed. The obtained results
are exact if the underlying Markov chain associated with R} is
the true one (i.e. if the capacity of buffer 1 is of small or of
moderate size) and they are approximate otherwise.

When the capacity of buffer 2 is (i) of small or moderate size
or (ii) large but finite and the operation of node 2 is away from its
instability region, then the queueing quantities of interest can be
computed as described in sections I1.1-(b) and I1.1-(c), where the
Markov chain {d;};zo is replaced by the 3-dimensional Markov
chain (x] Xj id ],zo, X; denotes thc underlying Markov chain of the
packet arrival proccss R%; xj denotes the underlying Markov
chain of the packet arrival process Rij; g dcnoles the buffer
occupancy of node 2.

I lysis of two buff , : lici

In this section, the queueing system shown in Fig. 1 is stu-
died. The only difference between this system and the one shown
in Fig. 3 (studied in section II) is that routing decisions diverse
some of the packet input traffic to node 1, Rlis. The system
shown in Fig. 2 appears in network topologies such as the one
shown in Fig. 2, where the packet traffic which enters node 1 and
is to be forwarded to node 3 has two alternate routes; a direct one
from node 1 to node 3 and an indirect one through node 2. The
routing policies at node ! may be adopted for the regulation of
the rate of the traffic which is forwarded to node 2. As a result,
overloading of the links between nodes 2 and 3 and between
nodes 1 and 3, may be avoided. The following routing policies
will be considered; all packets to be forwarded to node 2 are
stored in buffer 12.

(P,) Buffer 12 stores all packets up to a maximum number @<,

(P,) Buffer 12 stores half (or a portion) of the packets arriving
over a slot (or half of them plus one in case of an odd
number of packet arrivals), according to a deterministic split-
ting, up to a maximum ©,; €, can be infinite.
0 ing behavior of node 1

The queueing quantities of interest A, Ae[Q,,Q,,V,D}, are
computed by applying the analysis presented in section II. 1-(b),
where the buffer capacity K is set to be equal to © under policy
P,. The analysis presented in sections 11.1-(b), I1.1-(¢c) or I1.1-(a)
is applied for the calculation of A, Ae{Q,,Q,,V,D]}, under policy
P,, depending an whether the buffer capacity ©, is small, large or
infinite, respectively. Notice that the splitting of the packets
which arrive over the same slot modifies the message length distri-
bution g(j), as seen from buffer 12, resulting in a better random-
ized packet output process under this routing policy.

L1,

“111.2. The packet output process from node 1, RS

The packet output process R, is modeled as a MMGBP, as
described in section 11.2. The (exact) underlying Markov chain
{d;}j=0 is incorporated in the description of the packet output pro-
cess (aj)jzg under policy P,, (if ©, is small). The (approximate)
underlying Markov chain {d; ]JP-O is incorporated in the description
of the (approximate) packet output process [al‘] under policy P,
when @, is very large or infinite.

“111.3 Queueing behavior of node 2.

The queueing quantities of interest A, Ae(Q,,Q,,V,D] are
computed by applying the analysis approach presented in section
IL.3.

" IY. Numerical results

The following parameters for the input process to node 1 are
considered: Ng=5, g(1)=.1, g(2)=.3, g(3)=.3, g(4)=.1, g(5)=.1 and
various values of the message arrival rate r. Let r,, and r,,, be
the packet input and the packet output rates associated with node

At first, the system shown in Fig. 3 is considered. For vari-
ous values of r and K (the capacity of buffer 1), 1=K=w, the
queueing quantities A, associated with node 1, are exactly com-
puted. The results are shown in Table 1. From these results, the
monotonicity of the quantities Q;, Q, and D with respect to the
buffer capacity K, as indicated by equations (3), is clearly
observed. Notice also that the values of A, computed for the case
of the largest finite value of K shown in Table 1, practically coin-
cide with those obtained under infinite buffer capacity. The latter
suggests that the closed form expressions mentioned in 11.1-(a)
may be used for the computation of A, for any buffer capacity
which is larger than a certain value.

When the buffer capacity of buffer 1 is finite and equal to 20
and the capacity of buffer 2 is infinitely large, the queueing quan-
tities of interest, A, associated with node 2 are are shown in
Table 2; v is the clusterness coefficient associated with_the packet
output process from node 1, R, defined as y = p(0,0)-p(0,0),
where 0 is the zero packet generating state of the underlying Mar-
kov chain of the MMGBP which models the process R{} (as
described in section [1.2), and 0 is the unjon of all the packet gen-
erating states of this Markov chain; p(0, 0) denotes the transition
probability from 0 to 0. As it is observed below, the parameter vy
affects the values of the queueing quantities of interest associated
with node 2. The (independent from R{) packet arrival process
R}, is assumed to be a 2-state MMGBP with clusterness coeffi-
cient y'=.2 and packet arrival rate equal to .9-r,,, where 1, is
the packet rate of Rf;, and .9 is the total packet traffic load
offered to node 2. A 2-state MMGBP is completely determined
by rand y. Notice that for r=<.20 the behavior of buffer 1 is
ldcnncal to that of a buffer with infinite capacity (12, =r> , where
rX, is the packet output rate of a buffer of capacity K) and that
the clusterness coefficient vy is identical to that corresponding to
the packet output process of an infinite capacity buffer. The
latter is true since practically no packet rejection, which would
modify the clusterness of the packet output process, takes place
and, thus, vy is completely determined by the message size distri-
bution g(j) and not by the message input ratc to node 1, r. For
r=.3, some packet rejection takes place ( r2%,=.777 < 78 = Tou )
which leads to a slightly reduced clusterness coefficient v.

When the capacity of the buffer 1 is infinite, then the queue-
ing results in node 2 are obtained as presented in 11.1-(a), where
the MMGBP describing the packet output process Ry, is approxi-
mately described based on a truncated Markov chain with state
space of cardinality L, as described in section 11.2. The results
for the queueing quantities of interest associated with node 2 are
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“shown in Table 3, for various message input rates to the first

node, r, and different values of L. For message input rates r less
than .20, a truncation of the true underlying Markov chain associ-
ated with R, at L=20 gives result which remain, in essence,
unchanged for any L>20; the latter is observed at L=50 when
r=.3. If processes Ry, and Ru are approximated by a Bernoulli
process, then the mean packet delay induced by node 2 is given in
Table 3, for the various input rates r and total traffic load offered
to node 2 equal to .9. By comparing the mean delay results in
node 2, shown in Table 3, under the MMGBP and the Bernoulli
process modeling Rp, it is easily established that the Bernoulli
approximation leads to significant underestimation of the queue-
ing problems induced by node 2.

Finally, when the packet routing policies P, and P, are con-
sidered in buffer 1, the queueing quantities of interest associated
with node 1 and 2 are shown in Tables 4 and 5, respectively. The
message size probability distribution g(j), 1=<j=<5, remains the
same as before, The message arrival rate is different in each case
and it is such that the output rate r$ be equal to .45; ri; = .45 and
vi=.3. Various values of the buffer limit © have been considered
under policy P,. Notice that the value of A, increases in both
nodes as © increases, although rp, remains constant, due to the
increased clusterness vy (affecting the value of A associated with
node 2) and the increased buffer size © (affecting the value of A
associated with node 1), under the same probability distribution
g(j), 1=j=S. Finally, the results under policy P, and for various
values of the buffer constrain €, (denoted by ©) are given in the

same table. The new probability distribution g (), 1=j=3, is
given by  g(1)=g(1)+g(2)=.5, g (2)=g(3)+g(4)=4  and
g (3)=g(5)=.1. Notice that as the buffcr constrain © increases the

values of A, also increase for the reasons stated before. Notice
that the values of A under policy P, are smaller than these under
policy P; corresponding to the same value of ©, the reason being
that the probability distribution g'(j), 1=j=3, has been changed
under policy P, and less clustered packets are generated by g (O
The values of A obtained for ©=10, under policy P, remain
unchanged if a larger value of © is considered. Thus, these values
of A can be considered to be equal to the ones obtained for ©=o,

L) Tin Tous K Q, Q. A\ D_|
10 | .26 100 1 .100 100 .090 | 1.000
10 | .26 253 5 .579 1.693 1.358 | 2.288
10 | .26 258 7 .621 1.980 1.594 | 2.404
10} .26 | .260 | 10 .636 2.116 1.710 | 2.450
10 § .26 | .260 | o .638 2.141 1.733 | 2.455
20 | .52 | .200 1 .200 .200 .160 | 1.000
20 | .52 | .484 511234 3.963 2.440 | 2.550
20 | .52 | .506 7| 1.457 5.565 3.444 | 2.877
20 | .52 517 | 10 | 1.610 7.066 4.473 | 3.117
20 | .52 | .520 | 15 | 1.676 7.951 5.143 | 3.225
20 | .52 520 | 20 | 1.685 8.125 5.286 | 3.241
20 | 52 | .520 | o 1.687 8.159 5.314 | 3.243
.30 78 | .300 1 .300 .300 .210 | 1.000
30| .78 | .680 511949 6.843 3.044 | 2.868
.30 78 | .752 | 10 | 3.228 | 18.804 8.381 | 4.293
30| .78 | 777 | 20 | 4.293 | 39.892 | 18.462 | 5.527
30| .78 | .780 | 30 | 4.540 | 43.737 | 23.118 | 5.825
30| .78 ] 780 | o | 4.598 | 46.028 | 24.885 | 5.895
Table 1

Queueing behavior of buffer 1 without routing policies.

T o | Bernoulli Q Q v D

.05 | .130 2.112 3.390 | 22.963 | 13.859 | 3.767

.10 | .260 2.849 5.402 | 59.330 | 35.554 | 6.000

15 | .390 3.210 6.897 | 99.634 | 58.960 | 7.664

20 | .520 3.195 7.796 | 131.000 | 78.026 | 8.662

30| .77 2.060 6.257 | 87.895 | 55.000 | 6.953
Table 2

Queueing behavior of buffer 2 without routing policies in node 1
and buffer 1 capacity K=20 (y=.615).

r To=law | L Q Q, v D Bernoulli
10 .26 1] 5.642 64.928 | 38.734 | 6.269 2.849
10 .26 S| 5.292 55.643 | 32.932 | 5.880 2.849
10 .26 10 | 5.401 59.283 | 35.516 | 6.000 2.849
10 .26 20 | 5.402.| 59.344 | 35.565 | 6.002 2.849
20 .52 1] 6.532 83.163 | 47.032 | 7.257 3.195
20 .52 5| 7.176 | 104.446 | 60.124 | 7.974 3.195
20 .52 10 | 7.753 | 128.475 | 76.121 | 8.614 3.195
20 .52 20 | 7.803 | 131.403 | 78.317 | 8.670 3.195
30 .78 1| 3.568 | 21.707 | 12.547 | 3.964 2.040
30 .78 5| 4800 | 44.093 | 25.854 | 5.333 2.040
30 .78 10 | 6.014 | 78.058 | 47.201 | 6.682 2.040
30 .78 20 | 6.569 | 102.015 | 65.422 | 7.300 2.040
30 .78 30 | 6.641 | 106.611 | 69.145 | 7.379 2.040
30 .78 50 | 6.651 | 107.516 | 69.922 | 7.391 2.040
Table 3

Queueing behavior of buffer 2 without routing policies in node 1
and infinite capacity of buffer 1 (y=.615).

P T P . ] © Q Q, v D_|
P1 | .2794 | .7264 | .687 2 .687 | 1.160 .689 | 1.526
Pl 1845 | 4797 | 590 51 1.128 | 3.571 | 2.297 | 2.506
P1 | 1738 | 4519 | .614 | 10 | 1.306 | 5.311 | 3.605 | 2.901
Pl .1731 .4501 615 | 20 | 1.331 | 5.718 | 3.945 | 2.958
P2 | .3210 | .5136 | .288 2 642 | 1,024 612 | 1.424
P2 | .2822 | .4515 | .373 5 796 | 1.784 | 1.150 { 1.769
P2 | .2813 | .4508 { .375 | 10 .808 | 1.882 | 1.229 | 1.795
Table 4

Queueing behavior_of buffer 1 under some routing policies with 7,y=.45

P T Tin Y (<] Q Q. Vv D

P1 2794 | .7264 | .379 2 | 4.247 30.810 | 17.039 | 4.716
Pl | .1845 | .4797 | .590 S5 | 6.161 73.569 | 41.771 | 6.846
P1 | .1738 | .4519 | .614 | 10 | 7.223 | 108.527 | 63.581 | 8.025
P1 | .1731 | .4501 | 615 | 20 | 7.395 ]| 116.005 | 68.715 | 8.216
P2 | .3210 | .5136 | .288 2| 4.126 28.924 | 16.028 | 4.584
P2 | .2822 | .4515 | .373 5 4.959 45.720 | 26.081 | 5.511
P2 |-.2813 | 4508 | .375 | 10 | 5.041 47.912 | 27.535 | 5.602

i References

[1] M. Reiser, "Performance Evaluation of Data Communica-
tion Networks”, Proceedings of the IEEE, Vol. 70, No. 2,
Feb. 1982.

[2] H. Kobayashi, A. Konheim, "Queueing Models for Com-
puter Communications Systems Analysis”, IEEE Transac-
tions on Communications, Vol. COM-25, No. 1, Jan. 1977.

[3] 1. Stavrakakis, "A Statistical Multiplexer for Packet Net-
works”, IEEE Transactions on Communications (submitted),
also presented at INFOCOM’90, San Francisco.





