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Abstract

The major problem in the analysis of large
packet communication networks is related to the
difficulty in characterizing the involved packet traffics.
In this paper, a general description. of the packet
processes generated by network components is
presented. Based on this description, an analysis
approach to multi level networking is developed. The
packet traffic generated by a lower level (which is the
input traffic to an upper level) is described as a gen-
eralized Bernoulli process whose intensity depends on
the state of that level. This characterization is shown
to be exact, or a well performing approximate one, for
many practical systems. The general approach is
illustrated through the analysis of a specific multi
level packet communication network.

L. Introduction

In this paper, a network component is defined as
a network subsystem which generates packets. Such
components can be a local area network, a network
switch or a repeater, a statistical multiplexer, a link
that carries traffic from another large network, or any
line carrying packetized information of virtually any
kind. We define the First Stage Component ( FSC )
to be a network component whose packet input pro-
cess is determined by simple first-born traffic. The
simple first-born traffic is defined as a traffic which is
not modulated by any network component. This type
of traffic is modeled as an independent process.

In a large packet communication network
(defined here as a network with more than one com-
ponents), there is always a mechanism which provides
for the backbone network that supports the intercon-
nection of the involved components. Clearly, (some
of) the packet processes in this system are the output
processes from the supported components. We define
the Second Stage Component (SSC) to be a system
whose input process is (at least partially) determined
by the output processes of other network components.

The performance evaluation of a large network
requires the analysis of all FSCs and SSCs. The
analysis of FSCs has received much attention in the
past and many analytical techniques have been
developed for that purpose. The nature of the models
for the simple first-born traffic has played an impor-
tant role in the development of these techniques. The
analytical tractability provided by the Bernoulli /
Poisson models for the simple first-born traffic has
tempted many researchers to adopt these models for
the description of the input processes to SSCs as well,
[1]-[3]. Such models are usually inaccurate since,
although the input process to a FSC might be con-
sidered as memoryless, the FSC introduces dependen-
cies to its output process.

In this paper, an alternative to the i.i.d.
(independent and identically distributed) characteriza-
tion of the packet (output) processes generated by the
components of a communication network, is
presented. The proposed model is exact and it is
presented in the next section. The output process is
described as a generalized Bernoulli process whose
intensity depends on the state of an underlying Mar-
kov chain describing the operation of the component.
The cardinality of the state space of this Markov
chain may be almost arbitrarily large. To provide for
a numerically tractable solution in the later case, the
exact model is appropriately modified. For this pur-
pose, a meaningful approximate model on the output
process, based on the dominant states of the underly-
ing Markov chain, is introduced. The approximate
model is described by introducing the concept of the
a%-exact model.

II. Models for the output processes.

II.1 The exact model.

The description of the dependent packet process
generated by a network component (FSC or SSC) is
essential to the analysis of a SSC since the input
processes to the latter are determined by the packet
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processes generated by the feeding network com-
ponents. The proposed exact model on the output (or
packet departure) process of a network component is
described through the following definitions. The dis-
cussion in this paper is confined to discrete time net-
work components, as formulated by slotted packet
communication systems.

Definition 1 The packet generation (output) process of
a network component is defined to be the discrete
time process of the departing packets, {a }Jaﬁ, a;=p,
0=p<, if p packets leave the component at the i
time instant.

Definition 2 Assume that the network component
satisfies the following:

(a) There exists an ergodic Markov chain {z;}j=g
associated with the deseription of the state of the
component; let S={x,; x,,...,xp}, M<®, be the
state space of {z;};>¢ and p(x,x;), 7(xy), Xy, X;€S,
be the corresponding state transition and steady
state probabilities.

(b) There exists a stationary probabilistic mapping
a(z;) : S-Zy where Zy is the set of nonnegative

finite integers), which describes the number of
packets departing at the end of the Jth time
interval (slot). Let a(z;)=p, 0=p=oo, z;S, with
probability d>p(zj).
Then, the output process of the component is given
by
{a}i=0=1{2j(z;)}20 (1)
i.e, it is described as a Markov modulated generalized
Bernoulli process. Notice that the process {a;};=q, as
given by (1), describes exactly the output process of a

network component, provided that the conditions in
Definition 2 are satisfied.

T -exact model.

To define the a%-exact model on the dependent
process generated by a network component consider
two processes {z;};=9 and {a;(z;)};=0, as described in
Definition 2, associated with the component. We
define the new Markov chain {z; }J =¢ With state space
s {xl, -+ x4} for some M <M. The states
Xy, - x1:4 , of the new Markov chain are identical
to the M —1 dominant states of the original Markov
chain; x}:{' is the union of the remaining states of the
original Markov chain. Dominant states are the states
with the largest probability mass. The steady state
and state transition probabilities of the new Markov
chain are obtained by appropriate averaging of those
of the original Markov chain. We define {a; }JZO to be
a process similar to {aJ}JZO with a corresponding
underlying Markov chain {z; }Jzo and probabilistic

mapping a’(zj'): S'»Zo obtained by appropriate averag-
ing of that of the original output process.

Clearly, the process {aj' }j=0 is an approximation
on the true packet output process of the network
component described by {a;};=¢ . The approximation
is introduced by the reduction of the state space of
the original underlying Markov process {zj}jzo ,
which describes completely the operation of the com-
ponent. In view of the construction of the approxi-
mate process {a }, it is reasonable to expect that as
M’ increases, {3-1}330 approaches {a;};=¢; that is, the
approximate model approaches the exact one. When
M =M, the approximate model coincides with the
exact one. It is also reasonable to expect that the
larger the total probability mass of the (unchanged)
M —1 states the better the approximation achieved by
the reduced state space process. In view of the previ-
ous observations, we provide the following definition-
measure of the approximation on the exact process

{aj}jzo .

Definition 3 The process {aj}lzo defined as before is
called a% -exact if the cardinality M of the
corresponding approximate underlying Markov chain
{zj' }j=0 (as defined before) is such that,
S w(x)=a and 3 w (%) <o

1=sk=M'-1 1sk=M'-2
That is, the total probability mass of the unchanged
states of the original Markov chain {z_,},zo is at least
o and the total probability mass of the M'—2 dom-
inant states is less than a.

Assuming ergodicity of all processes involved,
Definition 3 can be roughly interpreted in the follow-
ing way: An a%-exact output process {a; }JZO is
based on the true packet generating mechanism (state
of the system) a% of the time; (100—a)% of the time,
the output process is based on an average packet gen-
erating mechanism. An average packet generating
mechanism is the only one assumed present when
{a;}j=0 is approximated by a (generalized) Bernoulli
process. The latter case corresponds to merging all
states of the true underlying Markov chain into a sin-
gle one (M' = 1). An average number of outputs is
generated under the latter model throughout the time
horizon, independently of the true state of the under-
lying packet generating mechanism. In view of
Definition 3, the exact model on the output process
{aj}j=0 corresponds to a=100. 100—a can also be
seen as a measure of the smoothing on the output
process introduced by the merging of the states of the
true packet generating mechanism.

From the deﬁmtlon of the a%-exact process and
the construction of {z; }120 turns out that the cardi-
nality of the state space of {z; }JZO (i.e. M) increases
with @. Thus, it is reasonable to expect that the
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larger the value of a the better the approximation on
the packet output process. Assuming that this is gen-
erally true, there is a trade off between the degree of
the accuracy of the approximating process and the
introduced complexity in its description, as measured
by M. The real concern at this point is not about the
complexity in the description of the approximating (or
exact) packet output process itself, but it is on the
tractability of the analysis of other components of a
large network, whose input processes are described by
the proposed models.

III. The output process of some network components

Example 1: Bursty traffic network links.

Consider a link which carries traffic modulated
by various other components of a large network and
by routing decisions. The network component in this
case is the link and its input and output processes are
identical. In [4] it has been found that network
packet traffic is bursty. As a result, a first order Mar-
kov model could be adopted in the description of this
packet process. If p(0,1) and p(1,1) are the condi-
tional probabilities of a packet arrival (departure)
given that 0 or 1 arrivals (departures) occurred in the
previous slot, respectively, then the burstiness
coefficient is defined, [4], as

v = p(1,1)-p(0,1)
This traffic model can be easily described in terms of
the proposed model on the packet process generated
by the link (network component). The parameters of
the packet output process of a network component
which generates bursty traffic can be determined from
the packet rate w(1) and the burstiness coefficient .

Example 2: The single message node

Consider now a network node which is capable of
storing and forwarding a single message at a time. It
is assumed that the input process to this component is
Bernoulli with intensity p messages per slot. Each
message is assumed to consist of a variable number of
packets; let o(i) = Pr{message consists of i packets},
1=i=<K. The single message buffering assumption
implies that messages which find the component non-
empty are either discarded or served by a (buffered)
low priority link. Without loss of generality, it is
assumed that a new message is also accepted if there
is only one packet (the last of the previous message)
in the node. It is assumed that arrivals occur at the
beginning of a slot. As a result, a new message may
start being served right after the end of the previous
message transmission. The packet output process of
this component is definitely a non-Bernoulli process.
It can be easily described in terms of the processes
{2;}j=0 2nd {a;};=¢ defined in the previous section. If
z; is the number of packets in the node at the end of

the j'® slot, then it can be easily shown that {z;};= is
a Markov chain with state space $={0,1,2, - - - K}.
The nonzero transition probabilities are given by

p(0,i))=p(1,i)=no(i) , 1=i<K

p(0,0)=p(1,0)=1—p , p(k,k—1)=1 for 2<k=K
Given p and o(i), 1=<i<K, the steady state probabili-
ties (i), 0<i<K can be easily computed. The map-
ping given by (1) is deterministic in this case and has
the following parameters

di(k) =1, 1=ksK , ¢;(0)=0
bolk) = 1—d;(k) , 0=k=K,

A Bernoulli approximate model on the output
process of the node would have intensity 1—w(0). A
better approximate model on the true packet output
process could be a first order Markov model. If 1 and
0 denote one or zero packet outputs, respectively,
then the parameters of this Markov model are given
by

u(0) = m(0) , my(1) = 1-wy(0)
Pw(0,0) = 1-p5(0,1) , Pn(1,0) = 1-py(1,1)

_ a(0)
pm(o’l) =K, pm(ltl) = l_pm(o!l)w—(l)

Example 3: A node with arbitrarily large buffer.

In this case it is assumed that all messages which
would fit into the buffer of size M<® are received;
no message is partially received. Let g(k), 0=k=K,
be the probability that a message with k packets
arrives over a slot; k=0 corresponds to no message
arrival.

Similarly to the previous example, the output
process of the finite buffer node can be easily
described in terms of the processes {2}j20 and
{2;}j=0- If z; is the number of packets in the node at
the end of the j*® slot, then {%;}j=0 is a Markov chain
with state space S = {0,1,2,..,M}. The transition
probabilities are given by (assume g(k)=0 for k>M)

p(0,j) = g(j) , 0=j=M
p(k,j) = g(i—-k+1) , 1=<k=M, k—-1=<j=<M

and the probabilistic mapping is given as in Example
2. The Bernoulli and the Markov approximations on
the resulting packet output traffic can be determined
as in the previous example.

. Performance analysis o e network

In this section, the multi-component network
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shown in Fig. 1 is analyzed and the mean packet
delay in Cq is calculated. The SSC of this network is
a common queueing system which has been analyzed
under various input processes; the single server is
assumed to have a buffer of infinite capacity. The
arrival processes {aji}jzo,i = 1,2, - - - ,N, are assumed
to be synchronized discrete time processes, and at
most one arrival can occur in each input line per unit
time. The time separation between successive poten-
tial packet arrival instants is constant (slot). The first
in-first out (FIFO) policy is adopted and the service
time is assumed to be constant and equal to one slot.
More that one arrivals that occur at the same time
instant are served in a randomly chosen order.

When each of the output process of the com-
ponents Cj, C,,...,Cy is a Bernoulli or a first-order
Markov process, the mean packet delay in C, is given
by a closed form expression (see [4], [5]). When the
output processes of the components C;C,, - - ,Cy
are given by (1) (see section II), then the mean packet
delay in C, is obtained from the solution of
M!xM?*x - -+ MY, linear equations, [5], where M is
the cardinality of the underlying Markov chain of the
ith component (or by a smaller number of equations,
in symmetric cases).

In the sequel, we derive some results for the
mean packet delay in C, under various network
components Cj,...,Cy and under exact or approximate
descriptions of their packet output processes (Fig.1).
These results lead to some conclusions regarding some
commonly made oversimplifying assumptions on the
packet processes generated by network components.
N=3 network components (other than C,) are con-
sidered in the following cases.

Case L:

Let C, be the network component described in
Example 1 with parameters w(l1) =.1 and y = 3.
Let C, be the network component described in Exam-
ple 2 with parameters K=5, ¢(0) =0 , o(l) = .1,

o(2)=23, o3)=.3, o4)=.2, o¢(5)=.1 and
p = .1, which result in a packet output rate of .244
packets per slot. Finally, let C; be the network com-
ponent described in Example 3 with parameters
M=50 (buffer size), r=g(0) = .8 (probability of no
message arrival in a slot), g(1)=.1(1-r),g{2)=.3(1-1),
g(3)=.3(1—r) g(4)=.2(1—r) and g(5)= .1(1—r), where
g(k) , k=1,...,5, is the probability that a message con-
sists of k packets. The output processes of com-
ponents C; and C, are exactly described as mentioned
in section III. For the description of the output pro-
cess of component Cj, both, the exact (which involves
an underlying Markov chain with a state space of car-
dinality 51) and the a%-exact approximate (which
involves an underlying Markov chain of cardinality
less than 51) models, are adopted (see Section II).

For the network described above, the mean
packet delay induced by the SSC Cg is shown in
Table I. Exact results, obtained by incorporating the
exact models on the input processes to Cg, are shown.
Results for various degrees of approximation, a, of
the output process of C; are shown, as well. For a
certain value of a, the range of the dominant states is
also shown. It can be easily seen that, e.g., the 97%-
exact model] (resulting in a Markov chain of cardinal-
ity 10) gives mean delay results in C; very close to the
accurate ones obtained by solving 5 times more linear
equations. This observation indicates that a
significant reduction in the numerical complexity of
the problem can be achieved by incorporating an
approximate model based on the dominant states of a
component, at the expense of an insignificant
deviation from the accurate results. Other possible
approximations on the true output process, which also
simplify the analysis, are the Bernoulli and the Mar-
kov ones. Results under these approximations are
shown in Table I. As it can be easily concluded the
Bernoulli model completely fails to approximate the
accurate result, while the Markov model is clearly
inferior to the a%-exact model for sufficiently large a.
Some more conclusions about the performance of the
a%-exact model are drawn in the next case.

Case 2:

Let Cj3 be as in Case 1 and C; and C; be network
components as described in Example 1. Let
w(1) = .17 and y=.3 for each of the components C,
and C,. The delay results in Cy under various models
on the output processes of C,, C,, and Cj; are given in
Table II, for y=.3, and in Table III for y=.0; the
latter value of y corresponds to Bernoulli traffic.

For a very small value of a only the most
significant state will be considered, while the rest of
them will be merged into a single state. This situa-
tion is reflected for a=1 where the state 0 (the most
significant one) is selected. Let 1’ denote the new
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Model Delay
100%(0-50) | 14.655
Bernoulli 4.174
Markov 13.427
85%(0-5) | 13.720
90%(0-6) | 13.959
95%(0-8) | 14.295
97%(0-9) | 14.388
99%(0-12) | 14.515

Table 1.

Model Delay Model Delay
100%(0-50) | 12.884 100%(0-50) | 11.404
Bernoulli 4.060 Bernoulli 4.060
Markov 10.604 Markov 9.140
1%(0-0) | 10.604 1%(0-0) 9.140
50%(0-1) | 10.171 50%(0-1) 8.689
80%(0-4) | 11.595 80%(0-4) | 10.113
90%(0-6) | 12.387 90%(0-6) | 10.905
95%(0-8) | 12.705 95%(0-8) | 11.224
(

97%(0-9) | 12.793 97%(0-9) | 11.311
98%(0-10) | 12.850 98%(0-10) | 11.368

Table IT Table ITI

state generated by merging all other states 1-50.
Since, for this particular component, state 0 results in
no packet generation and state 1'(or states 1-50)
always resultsin one packet generation, the 1%-exact
model coincides with the first order Markov approxi-
mation! Thus, the delay results for both models are
the same (10.604). Although one would expect mono-
tone improvement of the accuracy of the obtained
delay results as the number of states merged into a
single state decreases, this turns out not to be the
case. Although the approximation on the output pro-
cess itself is refined, the effect of it on the improve-
ment of the accuracy of the delay result is not well
predicted due to the complexity of the queueing pro-
cess and the significance of the probability mass which
is concentrated in the new compound state. As this
probability mass decreases, the delay results improve
in a monotone fashion. In the example considered
here, the a%-exact model gives monotonically
improving delay results (which are better than those
under the Markov model) when the compound state

concentrates less than 20% of the probability mass.
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