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ABSTRACT

In this paper, a certain class of multiuser communi-
cation networks interconnected according to a star topol-
ogy is analyzed. A type of a Markov modulated Ber-
noulli model is developed for the exact characterization of
their output processes and the mean packet delay
induced by the interconnecting scheme is calculated. The
latter is obtained through an approximate analysis of the
queueing system which is formulated in the central node
of the star topology.

It is shown that ALOHA multi user communication
networks belong in the investigated class of networks.
Delay analysis of ALOHA networks interconnected
according to a star topology is carried out and some
numerical results are obtained. These results, and those
obtained under Bernoulli approximation on the network
output processes, are compared with simulations.

L _Introduction

Although the significance of the interconnection of
multi-user communication networks (MUCNs) has been
well realized and many (usually ad-hoc) interconnecting
schemes have been proposed, [1] - [8], no substantial
effort has been directed towards the development of
analytical techniques for the performance evaluation of
such systems. So far, performance evaluation of network
interconnecting schemes has been heavily based on simu-
lation results. The few attempts to analytically evaluate
the performance of these systems deal with simple ad-hoc
interconnecting schemes and they are usually based on
crude model assumptions. These assumptions are usually
incorporated in the description of the output process of a
multi user communication network. The characterization
of this process is of fundamental importance to the
analysis of interconnecting schemes. It is the input pro-
cess to the interconnecting system and affects consider-
ably its operation. In [9], the Bernoulli model for the
output process of a CSMA/CD network is implied. In
[10] the authors consider the output process of ALOHA
and CSMA networks by making the assumptions of the
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heavy traffic conditions and the memoryless property.
Memoryless output processes are also implied in [11] and
[12] in the analysis of two-hop ALOHA and CSMA
packet radio networks and in [13] in the case of the
multi-hop extension. The output process of MUCNs is a
highly dependent process and memoryless models are
meaningless. The packet interdeparture process of
ALOHA and CSMA networks is derived in [14].

In previous work, [15], [16], we derived Markovian
approximations on the output process of a certain class of
multi user random access communication networks
(MURACNS). This class contains all MURACNs whose
analysis utilizes the process of the renewal points
induced by the operation of the deployed protocol. Most
continuous and limited sensing algorithms fall into this
category. Then, the performance of such interconnected
MUCNSs was evaluated by incorporating the Markovian
approximations in the output processes of the involved
networks.

In this paper we develop a method for the evaluation
of the mean delay of a system of networks interconnected
according to a star topology. The star topology may be
the supporting scheme of an interconnecting facility or it
may be an interconnecting node in a Metropolitan Area
Network (MAN), supporting not only the interconnection
of MUCNs but a number of other information transfer
facilities, [17], [18].

The analysis approach presented in this paper intro-
duces a simple new way of describing the output process
of a communication network. The communication net-
works whose output process can be described by incor-
porating the proposed model, define the class of star
interconnected communication networks whose perfor-
mance analysis can be carried out as outlined in this
paper. The finite user population ALOHA network is a
MUCN from this class. The performance evaluation of N
ALOHA networks interconnected according to a star
topology will be carried out as an example of the applica-
tion of the general procedure.

In the rest of the paper, discussion will be focused on
multi user communication networks (MUCN). The out-
put process of such networks is difficult to completely
describe, so we have decided to illustrate the developed



model by incorporating such networks. It should be clear
though that the described class of networks is much
wider. As it is emphasized in the conclusions of this
work, the analyzed star topology could be an exact or a
satisfactory approximate model of other practical sys-
tems.

II. The Qutput Process

Consider a slotted MUCN; it is assumed that the
length of a slot is equal to the time required for a packet
transmission and that packet transmissions can be
attempted only at the beginning of the slots. The Ber-
noulli packet generation model is adopted for each user,
with probability of packet arrival A packets/slot, in the
case of finite user population; the Poisson packet genera-
tion model is adopted for the cumulative packet arrival
process, with intensity A packets over a slot, in the case
of the infinite user population. In both cases, the packet
arrival process is memoryless.

The above commonly adopted model assumptions
usually result in a system whose operation can be
described by a Markov chain embedded at the beginning
or the end of the slots. The MUCNs for which such a
Markov chain (with finite state space) can be found,
determine the class of MUCNs which are considered in
this paper. More precisely consider the following
definitions.

Definition 1:

The output process of a slotted MUCN is defined to
be the binary discrete time process {aj}jzo of the depart-
ing packets; a;=1 if a packet leaves the MUCN at the jth
slot and a;=0 otherwise.

Note that in the case of a contention-free MUCN,
{aj};=0, is the process of the channel status (or activity).
In the case of MURACNS, {a;};=q, is the process of the
successfully transmitted packets.

Definition 2
Define C to be the class of slotted MUCNs which

satisfy the following:

(2) There exists a finite state Markov chain {3;}j=0,
embedded at the beginning or the end of the slots,
which describes the evolution of the system. Let
S={xq,x;, * * * ,x)} be the state space of {z;}j=0-

For any state transition (say from x; to x;), there
exists a  stationary probabilistic = mapping
a(x,xy) : SxS-{0,1}, which describes the channel
activity in the slot over which such a state transition
took place. Let a(xj,xy)=1 with probability &(x;,x,)
and a(x,x;)=0 with probability 1—d(x;,x;).

(b)
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Definition 3
Following definitions 1 and 2 we define the output
process of a MUCN from class C to be the process

{a'j}jzn = {aj(xirxk)}]zo'

That is, the output process is described in terms of a type
of a Markov modulated Bernoulli process; the output pro-
cess is a Bernoulli process whose intensity depends on the
state transition of an underlying Markov chain. To the
best of our knowledge, this is the first time that such a
process is incorporated in the description of the output
process of a multi user communication network.

1. The Qutput Process of ALOHA MUCNs,

In this section we describe the output process of a
slotted single buffer finite user population ALOHA
MUCN, [11], [14], [19], [20], [21], [22]. As it will become
clear shortly, this MUCN belongs to class C. The perfor-
mance of this MUCN has been analyzed through the for-
mulation of an appropriate Markov chain.

Let M be the number of users of the MUCN. A user
can be either active (if its buffer is non-empty) or inactive
(if its buffer is empty). An active user can be either a
backlogged one (if its buffer was non-empty at the begin-
ning of the current slot) or a new one (if its buffer was
empty at the beginning of the current slot). The per user
packet generation process is assumed to be Bernoulli with
per slot probability of packet arrival A. The single buffer
assumption implies that new packets which find the
corresponding buffer full are discarded.

Two policies may be considered, the Delayed First
Transmission (DFT) and the Immediate First Transmis-
sion (IFT). Under the DFT policy, new and backlogged
users (at the end of the last slot) transmit at the begin-
ning of the current slot with probability p. Under the
IFT policy, the backlogged users transmit at the begin-
ning of a slot with probability p and the new ‘users
transmit with probability 1.

Let us assume that the length of a slot equals one.
We define the j*® slot to be the time interval (3, i+1).
Let z; be the number of active users (under the DFT pol-
icy) or the number of backlogged users (under the IFT
policy) at the end of the j*® slot. Under the IFT policy
we assume that the new arrivals over a siot appear at the
beginning of this slot, [14], [22]. It is easy to see that
{%j}j=0 is a Markov chain under both policies with state
space S={0,1,2, - - - ,M}. The transition probabilities of
this Markov chain have been derived for the analysis at
these ALOHA protocols, [13], [21], [22], and are given by

(a) Under DFT policy:

0
p(k,j) = {.,

kj T Okj

j<k—1

k—1=<j=M (1a)



where
-k
g = [1-by(1) [ ]M-"u—x)M—

M—k-+1
iy = Bel1) ;g1

(b) Under IFT policy:

]Xj—k'i-l(l_)‘)M—j

0 if j<k—1
bk(l)(l“)‘)M-k j=k-1
plk,j) = |y + oy i =k .
(M=iNI-A M1y (0) § =kt D)
M-k j =k+2
where

7y = [1-by(D)1-NM*

= (M—k]\(1-\)"7"'b,(0)

b(0)=(1-p)" , by(1)=kp(1-p)* ", [:]=0 , k<0.

Given the no buffering assumption and the finiteness
of the user population, the system has a well defined
steady state behavior for all arrival rates [22]. Let P
denote the state transition probability matrix. The sta-
tionary distribution II = (w(0), w(1), - - ,w(M)) where
w(k) = gif.gPr(zJ=k) is simply obtained by solving the

system
O=a°p (1c)

Since p(k,j)=0 for j<k—1 the system can be solved
recursively, [21].

Suppose that the Markov chain {zj}j=o moves from
state k at time j-1 to state i at time j. Let a(k,i) be a
binary random variable that describes the channel
activity over the ]u' slot; a(k,i) equals 1 if a successful
packet transmission took place in the it h slot and it is 0
otherwise; a(k,i) is 2 Bernoulli random variable which is
completely described by states k and i and the policy
under consideration. More specifically, the expressions
for the transition probabilities lead to the following:

1 with probability &(k,i
alk i)_{ P y &(ksi)

2
0 with probability 1—d(k,i) @)

where
(a) Under DFT policy
if i<k—-1

*e)=1 0w (38)

— if k—-1=i=M
Oy + T
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(b) Under IFT policy

1
g i i=k-l
oK) = {—=— if i=k (3b)
9+ T otherwise
0

Using definitions 1 - 3 and the above system descrip-
tion, we can easily conclude that the ALOHA MUCNs
considered above belong to class C and their output pro-
cess is .completely described by the process

{a(zj—lﬂ‘j)}jzo-
ysis ingle

In this section we study a general queueing system to
be used in the analysis of MUCNs interconnected accord-
ing to a star topology. The asymmetry of the system is
due to the fact that although all arrival processes are
described by the same model, at least one of their param-
eters is considered to be different for at least two such
processes.

Consider a queueing system with N independent
input streams which feed a single server. The server has
an infinite capacity buffer. The arrival processes {aj} 200
i=1, 2, -, N, are assumed to be synchronized
discrete time processes, and at most one arrival can occur
in each input line per unit time. The time separation
between successive possible arrival points is constant and
equal to one. The first in - first out (FIFO) policy is
adopted and the service time is assumed to be constant
and equal to the distance separation between successive
time instants. More than one arrivals (from different
input streams) that occur at the same time instant are
served in a randomly chosen order.

Let {ZJ}Jao denote a dlscrete time ergodic Markov
process a.ssocla.ted with the i*® input stream, with finite
state space S' = {x, + - xig}. Let also al be a station-
ary probabilistic mapping from the set SixS! into the set
{0, 1}, where 1 corresponds to an arrival and 0 to the
absence of such an event. Then we define the arrival
process of the i*" input stream to be

{ajl}jzo = {a'i(zjl—lxzjl)}jzo

From the description of the arrival process it is implied
that successive arrivals from the same input stream are
not independent, but they are governed by an underlying
finite state Markov chain, {z;}lao The arrival process
can also be seen as the random reward associated with a
state transition of a Markov chain, [23]. Given a transi-
tion from state k to state j, the arrival process is
described by the probabilistic mapping al(k,j), where

( ,j)=1 with probability $'(k,j) and a i(k,;)=0 with pro-
bability 1—&'(k,j). It is assumed that the underlying



processes {z}}jzo, i=1, 2 , N, are mutually
mdependent and thus the arrival processes {a; },zo: i=
1,2, , N, are also independent.

The analysis of the queueing system described above
can be carried out by following an approach similar to
that used in the analysis of the statistical multiplexer
described in [30]). Let w'(k) and pik, j), k
the steady state and the transition probabllmes of the
ergodic Markov chain, {zj}jam i=1,2 , N. Let
also p(j ; y) denote the joint probability that there are j
packets in the system at the n'® time instant (arrivals at
that point are included) and the states of the Markov
chains are i ey, v, where
y= (yl,yz, . yN) The vector y descnbes the state
of a new ergodlc Markov chain that is generated by the
N independent Markov chains described _before, with
steady state and transition probabilities n(yz a.nd p(x, ');)
respectively, and with state space § = SxS%x © xST.
The operation of the system can be described by an N +
1 dimensional Markov chain imbedded at the time
instants, with state space T = (0, 1,2, --- )x§ and
state probabilities given by the following recursive equa-
tions

P(j »Y)—E 2 pn-l(l+1 v!x)p(x’Y)gxy(v) ’ ]>N+1(4a)

xe§v=0

P(iy)=3 Ep" (k ,x)p(x,Y)g—(Hl —k)+

xeS k=1

+3p"(0) p(x, Yeg(i) , 0<j=<N (4b)
xeS

where x is the state of the N-dimensional Markov chain

at time instant n-1 and

gg(v)=P(§ ax y)=v) )

g—(v) is the probability that v out of the N state transi-
tlons determined by X ,y, result in an arrival. There are
totally M!xM2x xMN equations given by (4) for a
fixed j and all y € S where M! is the cardinality of S, i
=1,2, <, N.

Ergodicity of the Markov chains associated with the
input streams implies the ergodicity of the arrival
processes {a,}Jzo, i=1,2, *, N. The latter together
with the ergodicity condition for the total average input
traffic A

p(x7)= 1 ()

i=1

A=3 SpgpE y)w) <1 (6)
xS yeS
where
b = E{ za’(x‘ )} = zE{a‘(x‘ V) = _1’¢‘(x‘,y‘)
and

j €S, denote
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A=)
j=1

imply that the Markov chain described in (4) is ergodic
and there exist steady state (equilibrium) probabilities.
Thus, we can consider the limit of the equations in (4) as
n approaches infinity and obtain similar equations for the
steady state probabilities. By considering the generating
function of these probabilities, manipulating the resulting
equations, differentiating with respect to z and setting
z=1, we obtain the following system of linear equations.
P'(Ly)=3P'(1;%) p(xy)+ 3 (ng—1p(x.y)m(x)+

xe§ xeS

+Z_p(0;;)p(;v;) ) ;Eg (7)
xeS

The_exact calculation of the boundary joint probability

p(0;x) is not possible; we use the following expression to

estimate its value

E p(z,x)m(2)ao(z,)

P(0x)=y zw(z)zp( D(e7)

28 yﬁS
where pg=1—\ is the probability that there is no custo-
mer in the system and qo(z,x) is the probability that the
state transition from z to x results in no customer arrival;
the latter probability is easily obtained from the proba-
bilistic mappings in the independent streams and it is
given by
R N sor s

9(z,x) = lH (1-4'(z',x))
=1
Notice that the calculation of the above boundary proba-
bility is the only point of approximation in this work and
it is checked against simulations.

_ _The M MY linear equations with respect to
y € S that appear in (7) are linearly dependent. This is
the case when the equations have been derived from the
state transition description of a Markov chain. By mani-
pulating the original equations and using L’Hospital’s rule
we obtain_an additional linear equation with respect to
P (1 ; y), ye S which is linearly independent from those

in (7) and is given by
3 [2ns- 1P (1) +2(nz- 1007+
xe$

+lorod+ (u-3ugin(x) | =0 ®)
where
n;=Ejfp ] = j§m§1¢’(f,y1)p‘(f,¢)=§1¢‘(x1) 9)

$)= 3 )



ol = S -4t

By solving the Mlx -+ xMN dimensional linear
system of equations that consists of (8) and any
M!x -+ xMN — 1 equations taken from (7), we com-
pute P'(l ;x), x€S. Then, the average number of
packets in the system, Q, can be computed by summing
up all the solutions. The average time, D, that a packet
spends in the system can be obtained by using Little’s
formula as the ratio Q/\.

When the arrival processes, significant reduction of
the number of equations can be achieved (see [30]). The
special case in which the arrival processes are modeled as
Bernoulli can be easily derived from the above equations,
[30], and it is given by

N N
3 SN+ p(1-k)

i=1 j=1

(1-n)

Qp=

where Qp is the average number of packets in the system.
The mean packet delay, D is given by Qp/u, which is a
known result, [29].

alysi: i onnected HA Ns.
In this section we use the results of the previous
analysis to evaluate the performance of a system of N
networks interconnected according to a star topology.
More specifically, the C - ALOHA MUCNs whose output

process was described in section I will be considered to

illustrate the general procedure. At the same time exact
analysis of interconnected C - ALOHA MUCNs will be
performed. By C - ALOHA MUCNs we will refer to the
finite user, single buffer ALOHA MUCNSs under either the
immediate or the delayed first transmission policy, as
described in Section II. To simplify the discussion and
without loss of generality, we assume that each of the
interconnected C - ALOHA MUCNSs supports M users.
From the discussion in section III follows that the output
process of a C - ALOHA MUCN depends on an underly-
ing finite state Markov chain {2;};=0 ( 2; is the number of
either the active or the backlogged users at the end of
slot j, depending on the policy under consideration) with
state transition probabilities given by (1); the output
process is given by the probabilistic mappings aj(zj_l,zj)
described in (2) and (3).

Consider N C - ALOHA MUCNs interconnected
according to a star topology. The central node of this
topology is assumed to have the characteristics of the sin-
gle server described in section IV. All networks are syn-
chronized and have identical slot lengths. A packet
departure from a network occurs at the end of a slot
involved in a successful packet transmission and is
declared as an arrival to the central node at the begin-
ning of the next slot. Clearly, the output process of the
C - ALOHA MUCN, {aj}jzo = {aj(Zj_l,Zj)}jzo, is the
arrival process of the ith input stream, according to the
terminology of the previous section. The condition that
at most one arrival per stream can occur, is also satisfied.
The mean time that a packet spends in the central node
of the star interconnecting topology is given by the solu-
tion of the linear equations given by (7) and (8).

Numerical results for the mean delay in the central

M=2 users per network

)‘% _):nnt P Dmt. Dgo Doo g Dn.z_—_h Doa Qmﬂ:a Dgab
10 || .098 | .86 | 1.40 | 1.06 1.06 1.06 1.14 1.14 1.14
20 || .188 | .82 | 1.64 | 1.14 1.15 1.15 1.40 1.43 1.43
30 |j 266 | .78 | 1.85 | 1.25 1.27 1.28 2.16 2.20 2.31
35 .300 | .77 | 1.96 [ 1.32 1.35 1.37 3.56 3.62 3.96
40 || 330 | .75 | 2.06 | 1.41 1.44 1.49 28.78 | 29.39 | 34.00
.50 || .381 [ .73 | 2.25 | 1.66 1.70 1.80° Ak el ek
60 || 419 | .70 | 2.44 | 2.07 2.12 2.29 k¥ e e
70 || 447 | .68 | 2.61 | 2.80 2.77 3.11 il k¥ o
.80 || .480 | .64 | 2.79 | 3.98 4.00 4.45 *kk ok *kk

Table I

Results for the mean packet delay in the central

node of a star topology of N=2 and N=3

interconnected ALOHA networks under DFT policy; Ay, is the per network input rate, Aoy is
the per network output rate, p is the packet transmission probability, D is the network
induced delay, Dy is the queueing delay under the developed model, Dy n_, is the queueing
delay from the simulations and Dg,N_y, is the queueing delay under the Bernoulli model.
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node of N=2 and N=3 ALOHA networks interconnected
according to a star topology and operating under the
DFT policy have been obtained by solving the equations
in (7) and (8). In Table I, delay results are shown for the
simple case of M=2 users per network and for N=2 and
N=3 interconnected networks. Similar results are shown
for the case of M=10 users per network and for N=2 in
Table T and N=3 in Table IlI. Results are shown
under the Bernoulli approximation on the network out-
put processes as well. Both results are compared with
simulations. The results show that both the Bernoulli
approximation and the developed exact model on the net-
work output processes perform satisfactorily under light
traffic. When the traffic increases, the developed model
clearly outperforms the Bernoulli approximation.

Notice that as long as the per network packet gen-
eration rate is less than .4 (so that the packet rejection
probability be small), the induced queueing delay is less
than half a packet length in the case of N=2 networks.
This was expected since the total output rate from both
networks is less than .65, well below the capacity limit of
the server which is 1. In the case of N=3 networks, the
total packet departure rate from all networks can be as
high as the capacity limit of the server. Under such rates
the queueing delay introduced by the interconnecting
topology can be arbitrarily high as the capacity limit of
the server is reached.

M=10 users per network

L Mip | Aope | P Duet | Doy | Dopy | Doyy

T .099 | .51 2.40 | 1.07 1.06 1.06
.20 | .190 | .41 3.70 | 1.16 1.16 1.15 -
.30 I .265 | .33 5.41 | 1.27 1.28 1.28
40 || .320 | .29 7.51 | 1.40 1.42 1.43
.50 || .350 | .24 9.62 | 1.49 1.55 1.58
.60 || .366 | .21 | 11.63 | 1.61 |- 1.65 «1.69
70 || 375 | .18 | 13.36 | 1.65 1.70 1.75
.80 || .380 | .17 | 14.80 | 1.74 1.71 1.79

Table II.

Results for the mean packet delay in the central node of
a star topology of N=2 interconnected ALOHA networks
under DFT policy; Ay is the per network input rate, A,
is the per network output rate, p is the packet transmis-
sion probability, D, is the network induced delay, D,
is the queueing delay under the developed model, Dg,_,
is the queueing delay from the simulations and Dggy is
the queueing delay under the Bernoulli model.
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M=10 users per network
—A_!l& )\gnL P D Dy, Dgga Desp
10 || 099 [ .51 | 2.40 1.15 1.14 1.14
.20 1 190 | .41 | 3.70 1.48 1.45 1.44
.30 | .265 | .33 | 5.41 2.31 2.27 2.29
40 || .320 | .29 | 7.51 7.14 6.80 7.62
43 || 329 | 26 | 8.12 | 22.64 | 19.79 27.64
Table IIL

Results for the mean packet delay in the central node of
a star topology of N=3 interconnected ALOHA networks
under DFT policy; A, is the per network input rate, A,
is the per network output rate, p is the packet transmis-
sion probability, D,,, is the network induced delay, Dys
is the queueing delay under the developed model, Dy 3—s
is the queueing delay from the simulations and Dgs_p is
the queueing delay under the Bernoulli model.
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