Abstract

In this paper a Time Division Multiplexer (TDM) is
analyzed under a general model for the per station packet
arrival process. This model can be suitable for the description
of the packet generation process of a variety of packet sources.
The expected packet delay of each station is exactly derived.
The obtained results show that the mean packet delay may vary
significantly for different stations, as long as the statistical
characteristics of the packet traffics are different, even if the
intensity of the packet traffics and the assigned capacities are
the same. The latter implies that oversimplifications in the
description of the packet traffics may result in very inaccurate
results.

L_Introduction

We consider a multiple access communication channel
which is intended to serve a population of N (N=2) stations,
each wishing to transmit its messages across the channel. A
satellite community of earth stations, a terrestrial radio channel
providing the cc ation medium to a ber of data ter-
minals, a local area communications network, or a multiplexed
link in a computer network may serve as examples, [1].

The sharing of the channel by the network users (stations)
is supervised and controlled by the underlying access control
discipline. A multitude of access-control schemes have been
devised and studied. For instance, one can distinguish among
procedures involving fixed assignment schemes, reservation
schemes, polling schemes, random access schemes, or pro-
cedures which integrate several of the above mentioned
schemes.

In this paper, a TDMA (time division multiple access) fixed
channel assignment policy will be considered. Under a TDMA
scheme each station is assigned, on a fixed basis, channel
transmission time. Time is divided into successive periods of
constant duration called (time) frames. Each frame is
subdivided into M (MzN) successive slots. More than one slots
over the same frame may be assigned to a station.

The difference between the TDMA systems lmlyzed in
the past, [2]-{4], and the system considered here is in the
adopted models for the message arrival traffic. The vast major-
ity of the TDMA systems analyzed in the past assumes a Pois-
son (or a batch Poisson) per station message arrival process.
Thelackofmemorymtlusproceuﬁdhtamﬂwamlynsoﬁhe
formulated The Poisson model is inaccurate
for the descnptxon of pad:et as generated and/or pro-
cessed by elements of today’s complex packet communication
networking structures, due to the dependencies introduced by
those elements. For instance, ammage(commed of K pack-
ets) transmitted over the network lines will arrive at a TDMA
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station over K consecutive slots (packet transmission time over
fixed speed transmission lines) rather than as a batch process.
If&xemessageunffechedbynemkmhngdeummand
multiplexing procedures, then it is most probable that the K
particular packets will arrive at the TDMA station neither over
the same slot (a batch) nor over K consecutive slots.

The paper is organized as follows. In the next section,
some packet p ppearing in packet communication net-
works are presented and a common model for their unified
description is developed. In section IIl, the TDMA system to be
studied is described under per station packet azrival processes
given by the general model! for the dependent packet processes
presented in 1. This sy is analyzed by invoking the
results from [5]. Finally, some numerical results are presented
in the last section.

The description of the dependent packet process generated
by network elements is essential to the analysis of the formu-
lated queueing systems. In this work, dependent packet
processes will be described by the following Markov Modulated
Generalized Bernoulli (MMGB) model.

Definiti
Assume that a network el t which g tes packet

traffic satisfies the following:

(a) There exists an ergodic Markov chain {z},,, associated
with the description of the state of the element; let
S={x; Xy,... X}, M<®, be the state space of {z}o and
P0O4%), (%), Xy, X€S, be the corresponding state transition
and steady state probabilities.

(b) There exists a stationary probabilistic mapping a(z):
S~Zgy (where Z, is the set of nonnegative finite integers),
whld\duaibesﬂwnumbuofpnckzbdepamngntthe
end of the j* time interval (slot). Let a(z)=p, Osp=,
S, with probability ¢ (z).

Then, the packet p generated by the k el t is

given by
{8mo={8(z)hao ®

i.e, it is described as a Markov modulated generalized Bernoulli
process. A 2-state Markov modulated Poisson process has been
adopted in {6] for the approximate characterization of the super-
position of voice and data traffic.

Notice that the process {a}.o as given by (1), describes
exactly the output process of a network element, provided that
the conditions in the Definition are satisfied. Some examples of
network elements generating dependent packet processes are
the following:
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Example 1: Bursty traffic network links.

Consider a link which carries traffic modulated by various
other components of a large network and by routing decisions.
The network component in this case is the link and its input
and output processes are identical. In [7] it has been found that
network packet traffic is bursty. As a result, a first order Mar-
kov model has been adopted for the description of this packet
process. If p(0,1) and p(1,1) are the conditional probabilities of
a packet arrival (departure) given that 0 or 1 arrivals (depar-
tures) occurred in the previous slot, respectively, then the
burstiness coefficient is defined, (7], as

¥= p(l,l)—P(O,l)

This traffic model can be easily described in terms of the pro-
posed model on the packet process generated by the link (net-
work component). Let z; be the number of packets in the link
at the beginning of the j* slot. Clearly, {z};zo is a Markov
chain with 5={0,1}. The transition probabilities are identical to
those of the first order Markov model that describes the bursty
traffic. The mapping a(z)) is, in this case, deterministic and it is
given by
$1(0)=0 , &1(1)=1 , ¢p(0)=1 , do(1) =0

The packet (output) process of the link just described, can be
the model for an on/off switch with Bernoulli packet arrivals.
In this case, when the switch is on the output process is the
same Bernoulli process and it is zero otherwise. Markov
modeis can usually be incorporated in the description of the
on-off activity of a switch. A switch in the off position could
correspond to a failure or to a situation in which it serves other
links.

The parameters of the packet output process of a network
component which generates bursty traffic are determined from
the packet rate w(1) and the burstiness coefficient y. Given
these quantities, the rest of the parameters of the Markov
model are calculated from the equations

m(0) = 1-m(1) , p(©,0) = 1-p(0,1) , p(1,0) = 1-p(1,1)
P@.1) = =(1)(1-v) , p(L1) = v+p(O.1).

Example 2: The single message node

Consider now a network node which is capable of storing
and forwarding a single message at a time. It is assumed that
the input process to this component is Bernoulli with intensity
u messages per slot. Each message is assumed to consist of a
variable number of packets; let o(i) = Pr{message consists of i
packets}, 1=i<K. The single message buffering assumption
implies that messages which find the component non-empty are
either discarded or served by a (buffered) low priority link. In
the second scenario, the link served by the node under con-
sideration is reserved for new messages. These messages are
given a chance to be transmitted right away (if the line is not
busy), before they enter a (probably) first in first out queue for-
mulated in the input of another link. Without loss of general-
ity, it is assumed that a new message is also accepted if there is
only one packet (the last of the previous message) in the node.
It is assumed that arrivals occur at the beginning of a slot. Asa
result, a new message may start being served right after the
end of the previous message transmission. The packet output
process of this component is definitely a non-Bernoulli process.
It can be easily described in terms of the processes {2}, and
{aj}jzo defined in the previous section. If z is the number of
packets in the node at the end of the j slot, then it can be
easily shown that {z},. is a Markov chain with state space
$={0,1,2, - - - ,K}. The transition probabilities are given by

\ 4

p0,i) = p(L,i) =po(), 1=isK
p0,0) = p(L,0) = 1-p
pkk-1) = 1, 2<ksK
pk,i) = 0, 2<k=K, 1si=<K , i=k—1
Given p and (i), 1<isK, the steady state probabilities (i),

0=i=K can be easily computed. The mapping given by (1) is
deterministic in this case and has the following parameters

$M =1, 1sksK , &0 =0

bok) = 1-dy(k) , 0sksK,

A Bernoulli approximate model on the output process of
the node would have intensity

A= f;-n(i) = 1-m(0)
i=1

A better approximate model on the true packet output pro-
cess could be a first order Markov model. If 1 and 0 denote one
or zero packet outputs, respectively, then the parameters of this
Markov model are given by

%5(0) = 7(0) , wH(1) = 1—7,(0)
Pm(0,0) = 1-pn(0,1) , prm(1,0) = 1-pm(1,1)

Tm(0)

Pm(orl) =M, Pa(l]) = I_Pm(oll)ﬂ @

and the corresponding burstiness coefficient v is given by
Y = Pm(1,1)—pn(0.1)

Example 3: A node with arbitrarily large buffer.

In this case it is assumed that all messages which would fit
into the buffer of size M<w are received; no message is par-
tially received. Let g(k), 0sksK, be the probability that a mes-
sage with k packets arrives over a slot; k=0 corresponds to no
message arrival.

Similarly to the previous example, the output process of
the finite buffer node can be easily described in terms of the
processes {z}2o and {a}jzo. If 2; is the number of packets in the
node at the end of the j* slot, then {2}, is a Markov chain
with state space S = {0,1,2,...,M}. The transition probabilities
are given by (assume g(k)=0 for k>K)

pOj) = g() , 0=j=M

pk,j) = g(i—k+1) , 1sk=M, k—1=j=M
and the probabilistic mapping is determined by
$i(k) =1, 1sksM , ¢,(0)=0
bo(k) = 1-dy(k) , 0sksM
The Bernoulli and the Markov approximations on the
resulting packet output traffic can be determined as in the pre-
vious example.

I Time divisi Jtinlexi

Consider the time division multiplexing system shown in
Fig. 1. Each of the N buffered users is assigned one slot per
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frame; the frame is supposed to be consisted of N slots. The
per station packet arrival processes are assumed to be modeled
as MMGB processes. Although the queues of the stations do
not interfere directly with each other, the service policy intro-
duces a (deterministic) coupling to each of the queues, in the
sense that the presence of the other N-1 queues (users) results
in a service policy which removes one packet from the queue
under study (if nonempty) every N slots. It is the number of
queues (users) in the system and not their status that, in con-
junction with the service policy, introduces the coupling.

frame

A TDMA communication system with N staﬁons.

To study the queueing system associated with, for exam-
ple, user 1, a second packet arrival process (input line) to its
buffer is considered to represent the coupling (Fig. 2). This
process, denoted by {al}jzo can be modeled as a MMGB pro-
cess. The corresponding underlying Markov chain has M
states, denoted by 1, 2, .., M, and transition probabilities given
by

1 j=k+1, 1sk<M
pkij)=11 j=1,k=M
0 otherwise

The corresponding probabilistic mapping is given by: a(1)=0
and a(k)=1 for 1<k=M, with probability one.

From the above construction of the arrival process {a;'};zo it
turns out that one packet arrives through the second line in
every slot except from the first of a sequence of N consecutive
slots. By assuming preemptive priority for these packets the
decoupling of the queue under study is achieved. Whenever
the server of the TDMA system serves the other users the
server of the decoupled queueing system serves the preemptive
priority packets arriving through line {a'}io- Thus, the time
division multiplexing policy of the original _system is
represented by the second packet arrival process {ail}i,o to the
queue under study.

The mean packet delay, Dy, induced by the decoupled
queue with arrival processes {a}zo and {a}.o can be com-
puted by considering the equivalent FCFS (First-Come First-
Served) system (Fig. 2), which has been analyzed in [5]. The
description of this multiplexer and the analysis results are
briefly presented in a companion paper. Then, the mean packet
delay, D,, in the buffer of user 1 can be computed from the
expression:

_MDy+AD,
L VW

4

D, is the mean delay of the packets generated by {a'};z9 and it
is equal to 1; \; is the packet arrival rate of the process {ail}izo
and it is equal to (N-1¥N; A, is the packet arrival rate of the
process {a'}=.

IV. Numerical results

In this section some numerical results for the mean packet
delay induced by the TDMA system described in the previous
section, are derived. The per station packet arrival processes are
assumed to be described by a MMGB model which is based on
a two state underlying Markov chain with state space $'={0,1}.
State 0 is the no-packet generating state (i.e. a'(0)=0); state 1
generates at least one packet, up to a maximum of IC, with pro-
babilities ¢i(j), 1sj=K (superscript i refers to the ith arrival
process).

{aY=0

il

—_—

{@'}j=0

Eigure 2
The decoupled buffer of the station under study.

As the delay results illustrate, an input traffic process
which generates packets clustered around consecutive slots and
followed by a period of inactivity, causes significant queueing
problems and the induced packet delay is greater that the one
induced under better randomized packet arrivals. Since state 1
generates packets and state 0 does not, it makes sense to use
the quantity v' , where,

v=pi(1,1)~p'(0,1)

as a measure of the clusterness of the packet arrival traffic; v'
could also be seen as a measure of the intensity of the coupling
in time; pi(k,j) is the probability that the Markov chain associ-
ated with line i moves from state k to state j. The value of y'=0
corresponds to a per slot independent packet generation pro-
cess (generalized Bernoulli process). The clusterness coefficient
v and the packet arrival rate A' are two important quantities
which dramatically affect the delay induced by the queueing
system. For this reason, each traffic will be characterized by the
pair (ALy) and the distribution &{(j), 1<jsK. The rest of the
parameters of the MMGB processes associated with each input
line are computed from the following equations:

. Al
ml)= =
-21 j®i6)
ju=

w(0) = 1 - wi(1)

PO = A-y¥@) . P =v+ p0D
PO.0) = 1-p0,1) , PLO) = 1-pi(L1)
When N=10 and the packet arrival process to the station
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under study is given by a 2-state MMGB (as described
before) with parameters b{(1)=1, b}(1)=.5, 6Z(2)=3, 6}(3)=.2,
the mean packet delay results are given in Table I, for various
values of A and y. These results indicate that the presence of
memory in the packet arrival process (as captured by vy) has a
tremendous effect on the resulting induced packet delay. For
instance, if a packet arrival process with parameters
A=.06 and y=.3 is approximated by an independent process
(y=.0) with the same arrival rate, the obtained delay result is
equal to 12.250 slots as opposed to the accurate 21.893 slots.

A ¥=.0 y=.3 y=.5
.04 | 8.500 | 14.928 | 23.500
.06 | 12.250 | 21.893 | 34.750
.08 | 23.500 | 42.785 | 68.500

Table ]
Mean packet delay results.

References

1. D. Bertsekas, R. Gallager, "Data Networks", Prentice Hall,
1987.

2. L Rubin, "Access-Control Disciplines for Multi-Access
Commummtmn G'nannels Reservation and TDMA
Sch ", IEEE T ons on Information Theory, Vol.
IT-25, No 5, Sept. 1979.

3. L Rubin, "Message Delays in FDMA and TDMA Commun-
ication Channels”, IEEE Transactions on Communications,
Vol. COM-27, No. 5, May 1979.

4. F. Hillier, B. Jabbari, "Analysis of the Fixed-Assigned
TDMA Technique with Finite Buffer Capacity”, [EEE Tran-
sactions on Communications, Vol. COM-35, No. 7, July

1987.
5. L Stavrakakis, "A Statistical Multxplexer for Packet Net-
works", IEEE Transactions on C ted

6. H. Heffes, D. Lucantoni, "A Markov Modulated Character-
ization of Packetized Voice and Data Traffic and Related
Statistical Multiplexer Analysis”, IEEE Journal on Selected
Areas in Communications, Vol. SAC-4, No. 6, Sept. 1986.

7. A. Viterbi, "Approximate Analysis of TIme Synchronous
Packet Networks™, IEEE Journal on Selected Areas in Com-
munications, Vol. SAC4, No. 6, Sept. 1986.

IOANNIS STAVRAKAKIS

He received his Diploma in electrical
engineering from the Aristotelian University of
Thessaloniki, Thessaloniki, Greece, in 1983 and
his Ph.D. degree in electrical engineering from
the University of Virginia, Charlottesville, in
1988.

In 1988 he joined the Department of Electri-
cal Engineering and Computer Science, Univer-
sity of Vermont, Burlington, where he is
presently an Assistant Professor. His research
interests include multi-user communication
theory, stochastic processes, queueing theory and
system performance evaluation.

0
Q E Proceedings - 1990 Southeastcon
E

368




