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On the Approximation of the Output Process of
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Abstract—In this paper, Bernoulli and first-order Markov processes
are used to approximate the output process of a class of slotted multiuser
rand cess comm networks. The output process is defined
to be the process of the successfully transmitted packets within the
network.

The parameters of the approximating processes are analytically calcu-
lated for a network operating under a specific random access algorithm.
The applied methods are general and can be used to calculate these
parameters in the case of any random access algorithm within a class.

To evaluate the accuracy of the approximations, we consider a star
topology of interconnected multiuser rand com ication
networks. The mean time that a packet spends in the central node of the
star topology is calculated under the proposed approximations of the
output processes of the interconnected networks. The results are com-
pared to simulation results of the actual system. It turns out that the
memoryless approximation gives satisfactory results up to a certain per
network traffic load. Beyond that per network traffic load, the first-order
Markov process performs better since it captures some of the strong
dependencies, which are introduced by the collision resolution algorithm.

I. INTRODUCTION

ONSIDERABLE work has been done towards the direction of

developing communication protocols which determine how a
single common resource can be efficiently shared by a large
population of users. By now, it is well known that fixed assignment
techniques are not appropriate for a system with a large population of
bursty users. In this case, random access protocols are more efficient
and many such protocols have been proposed, [1], [2]. Usually, the
amount of information (in bits) transmitted per time is of fixed length,
called a packet. In most of the systems, time is divided into slots of
length equal to the time needed for a packet transmission (slotted
systems).

The deployment of an ever increasing number of multiuser random
access communication networks brings up the question of how
packets, whose destination is in another network, should be handled.
The issue of network interconnection or multihop packet transmission
has been treated in [3], [6], [7]. The basic problem in analyzing
interconnected systems is that of characterizing the output process of
a multiuser random access communication system, i.e., the departure
process of the successfully transmitted packets. Another problem is
that of determining how a random access protocol operates in the
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presence of a node that forwards exogenous traffic coming from other
networks. The latter problem can be avoided by assigning a separate
channel to the exogenous traffic. In this case, the operation of the
system is not affected by the exogenous traffic but the problem of
optimum allocation of the available resources (channels), arises. The
latter issue has been discussed in [3] where the objective is to
maximize the throughput of the interconnected networks. In [3],
delay analysis was not performed and only simulation results were
obtained.

The output process of a multiuser random-access communication
system depends on the protocol that has been deployed. The
description of that process is a difficult task and only approximations
based on special assumptions have been attempted, [4]-{7].

In this paper, we model the output process as a Bernoulli and as a
discrete-time first-order Markov process. The detailed description
and the motivation behind these approximations are given in the next
section.

In Section IIT we introduce the class of random access algorithms
whose output processes are approximated. An algorithm from that
class is discussed in detail and the parameters of the approximating
processes are analytically calculated for the specific algorithm.

In Sections IV and V we describe the experiment to determine the
accuracy of the two approximations. Finally, a summary of the work
is provided in the last section.

II. THE APPROXIMATION OF THE OUTPUT PROCESS

A slotted multiuser random access communication network is
considered. It is assumed that the packet input rate to the system is A
packets per slot and that A is in the stability region of the system. For
such values of A, all the processes associated with the description of
the system are stationary.

In any such system, the communication channel can be in one of
the following states: I (idle) if no user is using the channel at that
time; S (success) if only one user is transmitting; C (collision) if more
than one users are transmitting at that time. In the above channel
description, we have made the assumption that if only one user
transmits, then his packet is considered as a successful one.
Successfully transmitted packets appear in the output process of the
network, while I and C states of the channel do not result in an output
from the network. It is assumed that capture events are not present,
[18], and that channel errors cannot occur.

We define the output process, {a” } ;= 0, to be a discrete-time binary
process associated with the end of the slots of a slotted multiuser
random-access communication system. The random variable a” takes
the value 1 if a successful packet transmission takes place in the jth
slot, and takes the value O otherwise. It is clear that the output process
can be interpreted as a two-state channel-status process {x};-0
where x/ € {S, NS}; by NS we denote the union of the states 7 and
C. The purpose of this interpretation of the output process is to relate
it to the channel-status, which is used by the random-access protocol.
The latter is true since the evolution of the channel-status process
(which determines completely the output process) depends on the
current (and possibly the past) channel state and the employed
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protocol. This occurs because the state of the channel is fed back to
the users, who determine their action based on this feedback and the
protocol. A type of feedback information is needed by almost any
random-access algorithm.

As a consequence of the above discussion the output process,
{a’};s0, and the two-state channel-status process, {x/}j=0, are
identical. The problem of characterizing the output process of a
multiuser random-access communication network is identical to that
of characterizing the channel-status process, {x/} j=0. From now on,
we will be referring to the process {x/} ;= rather than to the process
{a’};s0, to emphasize the dependence of the output process on the
employed random access algorithm and to understand qualitatively
the implications of the proposed approximations.

Let {y/};=0 be a Bernoulli-type process with probability of
success A; S is the successful event and NS is its complement. By
approximating {x} ;o by the process { y/};5¢, we actually assume
that the state of the channel at the current slot is independent from the
channel state in the previous slot. In a random-access algorithm
operating under light traffic, the collision resolution algorithm is
*‘idle’” most of the time, since packet collisions are extremely rare.
Since it is the collision resolution algorithm that introduces the
dependencies among channel states in successive slots, it is implied
that the Bernoulli process is a reasonable approximation of the
channel-status (output) process. Under moderate or heavy traffic
load, the collision-resolution algorithm is in effect. In this case, at
least intuitively, the Bernoulli-type approximation is not pleasing.

Under moderate and, especially, under heavy-traffic load, the
dependencies introduced by the collision resolution algorithm are
strong and extend beyond successive slots. We will try to capture
some of these dependencies by proposing a discrete-time first-order
Markov process, {z/};s0 to approximate the channel-status (output)
process {x/};-0; the state space of the proposed Markov process is
{S, NS}. We expect that the Markov approximation will perform
better than the Bernoulli-type one, under heavy-traffic load.

So far we have not made any assumptions on the type of random-
access algorithm which is used in the network. Thus, the previous
discussion concerning the characterization of the output process
makes sense for any multiuser random-access communication net-
work. The single parameter of the Bernoulli-type process, i.e., the
probability of having a successful packet transmission, is trivially
calculated for any random-access algorithm; its value equals the value
of the packet input traffic rate (over one slot) A under stable operation
of the network. The steady-state probabilities of the discrete-time
Markov process {z/};. are also trivially calculated. If m(S) is the
steady-state probability of the channel process being in state S, and
w(NS) is the corresponding steady-state probability for the state NS,
then it is obvious that 7#(S) = Aand #(NS) = 1 — A.

The method to analytically calculate the transition probabilities of
the discrete-time Markov process {z/};»( depends on the random-
access algorithm being employed. In the next section, a specific
random-access algorithm is considered and the transition probabili-
ties are calculated. The same method for calculating the transition
probabilities can be applied to most of the limited-sensing random
access algorithms. We speculate that the method can be applied to any
algorithm whose analysis is based on the concept of the session
(explained in the next section) and which operates in statistically
identical cycles of finite length. The class of such algorithms is large
and includes many well-known random-access algorithms, [12], [14],
[19], [20].

III. TRANSITION PROBABILITIES FOR A LIMITED-SENSING
RANDOM-ACCESS ALGORITHM

We consider multiuser random-access slotted communication
networks in which a binary-feedback, (collision/noncollision, C/
NC), limited-sensing collision-resolution algorithm is deployed. The
input traffic to the network is assumed to be Poisson with intensity N
packets per slot. This algorithm has been developed and analyzed in
{11] and [10]. There, the analysis was limited to the derivation of the
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maximum stable throughput and the average packet delay. In [21],
the analysis was extended to the calculation of other quantities of
interest as well. The characterization of the process of the success-
fully transmitted packets, i.c., the output process of the network, is
still an open problem.

A brief description of the collision-resolution algorithm is provided
at this point. Each user is assigned a counter whose initial value is
zero (no packet to be transmitted). This counter is updated according
to the steps of the algorithm and the feedback from the channel. Upon
packet arrival, the counter content increases to one. Users whose
counter content is equal to one at the beginning of a slot, transmit in
that slot. If the channel feedback is collision (C), the counters whose
content is greater than one increase it by one; the counters whose
content is one maintain this value with probability p (splitting
probability) or increase it to two with probability 1-p. If the channel
feedback is noncollision (NC), all nonzero counters decrease their
content by one. A detailed description of the algorithm can be found
in [10], [11].

At this point we calculate the transition probabilities of the
discrete-time Markov process {z/};>0, which approximates the two-
state channel-status process of the previously described random-
access algorithm. The procedure to be followed can be applied to any
limited-sensing stack-type random-access algorithm, [12], [13]. The
authors believe that the method can also be applied in the case of
other limited-sensing or continuous-sensing random-access al-
gorithms, [14], [19], [20], which operate in statistically identical
cycles of finite length (under stability).

Most of this section is devoted to the calculation of the transition
probability p(S/NS). The other transition probabilities are, then,
trivially calculated at the end of this section. The calculation of the
transition probability p(S/NS) is simplified by computing the joint
probability p(NS, §) first, i.e., the probability of having an NS slot
followed by an § slot in the approximating process {z/};»¢. The
transition probability p(S/NS) is then calculated from the joint
probability p(NS, S) and the steady-state probability 7(NS). The
joint probability is calculated as the probability that a pair (NS, S) of
consecutive slots occurs in the channel-status process, {x/};»0,
under stable operation of the network.

An important concept used in the analysis of most of the limited
and continuous-sensing random-access algorithms is the session. A
session is defined as the time interval between two renewal points of
the operation of the system. For the particular algorithm under
consideration, the renewal points of interest are determined by an
imaginary marker. This marker is essentially an imaginary counter
whose content b varies according to the channel feedback. Its value is
originally zero (b = 0). If b = 0 and the feedback is C, then b = 2;
if b = 0 and the feedback is NC, then b = 0. If b > 0 and the
feedback is C, then b = b + 1;if b > 0 and the feedback is NC then
b = b — 1. The slots in which & = 0 are renewal points of the
system. Due to the statistical splitting among collided users, the
system might be empty and the marker still be positive. This implies
that the marker determines only a subsequence of renewal points. The
session is determined as the time interval between successive renewal
points, as determined by the marker. The length of such a session is
easy to describe via recursive equations. The multiplicity of a session
is defined as the number of packet transmission attempts in the first
slot of the session. The following quantities are useful in the analysis
that is presented in this section.

(NS, §) Pair: A pair of consecutive slots with the first slot being in
state NS and the second in state S.

Internal (NS, S) Pair: An (NS, S) pair is internal if both slots
belong to the same session.

Ix: Length of a session of multiplicity X (in slots).

Lg: Expected value of k.

L: Expected value of Lx with respect to XK.

785S: Number of internal (NS, S) pairs in a session of
multiplicity K.

TH5S: Expected value of 7855,

TNS.S: Expected value of 7855 with respect to K.

ix: A random variable associated with the last slot of a session of
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multiplicity K; ix = 1 if that slot is idle; ix = 0 if that slot is involved
in a successful transmission.

Ix: Expected value of iy.

I: Expected value of Ix with respect to K.

As will become clear later, an important quantity for the
calculation of the joint probability p(NS, S) is the mean session
length L. This quantity can be calculated by following procedures
similar to those that appear in [11], [12], [13], [14]. In fact, for the
specific algorithm under consideration, L has been calculated in [10]
and [11]. We believe that the recursive equations with respect to /x
which describe the operation of the system will be very helpful for the
better understanding of the procedure for the calculation of p(NS,
S§). For this reason we start by calculating L.

From the description of the algorithm the following equations can
be written with respect to /x (i.e., the length of a session of
multiplicity K = k), k = 1,2, +--.

h=1,

11:1 (la)

1k=1+1<b1+F1+1k—(>1+F29 k=2. (1b)
F) and F; are two independent Poisson distributed random variables
over T = 1 (length of a slot) with probability function P,( ) and
intensity A\; ®; is a random variable following the binomial dis-
tribution with parameters k and p (p = 0.5) and probability function
By ,( ). Equation (1b) can be explained as follows. The length of a
session of multiplicity & = 2 consists of the slot wasted in the
collision, plus the length of the subsession of multiplicity ®; + F,
(which will be initiated in the next slot), plus the length of the
subsession of multiplicity & — ®; + F, (which will be initiated after
the end of the subsession of multiplicity ®, + F}). Subsessions are
statistically identical to the sessions of the same multiplicity. &,
denotes the number of users whose counter content remained one
after the splitting; F|, F, denote the number of new users which will
be activated (have a packet for transmission) and enter the system in
the first slot of the corresponding subsession.
By considering the expected values in (1) with respect to all
random variables involved, we obtain
Ly=1,

L=1 (2a)

o k
Li=1+ 3 3 Pa(f1)Bi,(@1)Loy+ s,

J1=0 ¢;=0

o k
+E 2 Py(f2)Br, p(d1) Lk 4141y, k=2. (2b)
F2=0 ¢;=0

The infinite dimensional lincar system of equations in (2) can be
written in the general form

Le=he+ Y ayL;, k=0. 3)

Jj=0

The most widely used definition of stability is the one which relates
it with the finiteness of Ly, for k < oo. In [10], [11] it has been found
that the system is stable for Poisson input rates N < Spay = 0.36
(packets/packet length). The authors in [10], {11] were actually able
to find a (linear) upper bound on L, which is finite for k < . Shmax 18
then defined as the supremum over all rates \ for which such a bound
L was possible to obtain.

The existence of LY < oo, for k_< oo, implies that (3) has a non-
negative solution L, ; the solution L of the finite dimensional system
of equations

Li=he+ Y ayL;, 0<k=<J, @

VR

0

I

J

is a lower bound on L and £, = L, as J - oo, [11], [14], [15].
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For sufficiently large J (e.g., 15), L, is extremely close to L, and
thus, for practical purposes, Ly is considered to be equal to Ly,
especially for N outside the neighborhood of Sy, . (The latter can be
shown by calculating a tight upper bound on L, and observing that it
almost coincides with Iy, see [11], [13], [14] for the procedure.)

By solving (4) with a;; and A, given by

aoJ-:a],»:O, O<j=<J (5a)
min { /,k}
= 2 Py(j— 1) By, p(d1)
¢1=0
I's
+ Y PU-k+61)Bi (1), 0=j<J (S5b)
¢ =max {k—j,0}
and
=1, 0<k<J, (6)

we calculate the mean session length of multiplicity k. Since the
multiplicities of successive sessions are independent and identically
distributed random variables, the mean session length L is calculated
by averaging L, over all k; k is the number of arrivals in a slot from a
Poisson process with intensity A. In fact, the average for k < J is
sufficient.

From the description of the algorithm it can be concluded that the
last slot of a session can be either idle or involved in a successful
transmission. We proceed by calculating the probability that the last
slot of a session be idle, since this probability is used in the
calculation of p(NS, S).

The argument used to derive the recursive equations for /;, can be
used to derive the following equations for i,

=1, =0, ik=i 4,45, k=2. )

By considering the expected values in (7), we obtain the following
infinite dimensional system of linear equations:

IO =1 ’

11=0 (8'(1)

®  k
L= E E P\(f2)Br,p (@) k4,41,

f2=0 ¢1=0

(8b)

Notice that I; is the probability that the last slot of a session of
multiplicity K is idle; Iy < 1 < o, for k < oo. The system in (8) is of
the form of that in (3). By using the same arguments as those used in
the calculation of L, we can solve a truncated, up to J = 15, version
of (8) and obtain a very good approximation of I,. By averaging the
latter over all k =< J, we can approximate I; I is actually the
probability that the last slot of a session is idle.

Up to this point, the average session length L and the probability
that the last slot of a session is idle 7 have been calculated. The
objective is to calculate the joint probability p(NS, S). As a last step
before the calculation of this probability, we calculate the average
number of internal (NS, S) pairs in a session. The following
recursive equations are obtained with respect to 7855; 7855 denotes
the number of internal (NS, S) pairs in a session of multiplicity k.

T)5S=0, MS=0

(%a)

NS,S_ _NS,S NS,S _
TS Te v TTh-e4F, t ]{1¢1+Fl=l,k—<}1+l’2:l}

+1lg irary, kz=2. (9b)

Observe that the idle slots which are the last of a session and are
followed by a session of mulitiplicity 1 (that would give an (NS, S)
pair), are not considered by the expressions in (9).

By considering the expected values in (9), we obtain an infinite
dimensional system of linear equations with respect to 7755, Since
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THSS < Ly < o for k < =, the comments that were made in the
calculation of L; apply also to this case. Thus, THSS can be
calculated by solving a truncated version of the system in (9). The
resulting finite dimensional system is of the form in (4) with
coefficients ax;, 0 < j < J, 0 < k < J, given by (5) and constants
given by

h{SS=0, hY¥SS=0 (10a)
J-k

hYS:S=Py(DBy,(k) S Pa(fi) ks,
f1=0

J+1-k
+PyO)By ,(k—1) > P i-1ap
f1=0

+P\(0) By, , (1) + Py(1) By, ,(0), k=2. (10b)

The average number of internal (NS, S) pairs in a session, TVS5, is
then approximated by averaging T4>S over all k < J.

By invoking the strong law of large numbers and the ergodic
theorem for stationary processes, we prove in the Appendix that the
joint probability p(NS, S) is given by the following expression:

NS, S

I
P(NS, §)= Fhe o

11
The transition probability p(S/NS) is then calculated from the

expression:

_P(NS, S) _p(NS, S)
PS/NSY==" N8y = 1=

The rest of the transition probabilities are computed from the
following expressions:

P(NS/NS)=1-p(S/NS)

w(NS)
(S)

p(S/8)=1-p(S/NS)

P(NS/S)=1-p(8/8S).

The approximating Markov process {z/};»¢ is now completely
determined since the steady-state and the transition probabilities have
been calculated.

IV. PERFORMANCE OF THE APPROXIMATIONS ON THE OUTPUT
PROCESS

In the previous sections the Bernoulli-type process { 3/} ;- and the
discrete-time Markov process {z/},»0, which approximate the two-
state channel-status process {x/ } ;s (or the output process {@’};>0),
were described and their parameters were analytically calculated. In
this section, we evaluate the performance of the proposed approxima-
tions.

The most interesting, probably, application for which the charac-
terization of the output process of a multiuser random-access
communication network is of great importance, is that of analyzing
the performance of systems of interconnected multiuser random
access communication networks. One such system is a star topology
of interconnected networks. In such a topology, the mean time that a
packet spends in the central node is an important measure of the
performance of the interconnection. Thus, we will compare the
accuracy of the two approximations in estimating this quantity.

A star topology of interconnected networks is shown in Fig. 1.
Each input stream represents the output process from a multiuser
random-access slotted communication system. Let A\, be the output
rate (in packets per slot) of the nth network. A packet arrival in the
central node is declared at the end of the slot in which the packet was
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Fig. 1. A star topology of interconnected networks.
successfully transmitted. Thus, the arrival process of each input line
is a discrete process. The arrival points in all streams coincide; that
is, the networks are assumed to be synchronized and all slots are of
the same length.

The service time in the central node is constant and equal to one,
which is assumed to be the length of a slot. This implies that arriving
and departing packets have the same length. The first in-first out
(FIFO) service policy is adopted. More than one arrivals (from
different input streams) that occur at the same arrival point are served
in a randomly chosen order. The buffer capacity of the central node is
assumed to be infinite.

If the output process of a network is approximated by the
Bernoulli-type process { y/};=0, then the resulting queueing system
in the central node has been studied and the mean time that a packet
spends in the central node Dy is given by [8]

N N
PR
DB= 1+ n=1 m>n

<I§3)§M

If the output process of a network is approximated by the Markov
process {z/};>0, then the resulting queueing system in the central
node has been studied in [9] and the mean time that a packet spends in
the central node D)y is given by

N N
2 E MeAm 1+L+7—’”
1_771 ]_'Ym

n=1m>n

N
RS
where v, = P(S/S) — P(S/NS).

1+

V. RESULTS AND CONCLUSIONS

We consider systems of N = 2 and N = 3 multiuser random-
access communication networks interconnected by the star topology
described in the previous section. It is assumed that the limited-
sensing collision resolution algorithm, described in Section II, is
deployed in each of the networks. The output process of each of the
networks is approximated by a Bernoulli-type and a discrete-time
Markov process. The parameters of the approximating processes are
calculated according to the procedures developed before.

In Table I, the values of the transition probabilities p(S/NS),
calculated for various per network input rates X and according to the
procedures developed in Section III, are compared to the correspond-
ing values obtained from the simulation of the actual system. The
closeness (up to the third decimal point) between the analytical and
the simulation results, shows that the estimation of this probability by
solving truncated systems of J = 15 linear equations, is extremely
good.

The mean time that a packet spends in the central node of the star
topology was calculated from the expressions given in the previous
section. The results (in slots) are shown in Tables I and III, together
with the results obtained from the simulation of the actual system Ds.
The simulation results were obtained after the system had operated
for 500 000 slots. The criterion was to let the program run for N slots
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TABLE I
ANALYTICAL AND SIMULATION RESULTS FOR THE TRANSITION
PROBABILITY p(S/NS)

A Anal. | Simul.

.01 || 0.009 { 0.009
.10 || 0.095 | 0.095
.20 || 0.186 | 0.186
30 || 0.274 0.274
.33 | 0.300 | 0.300

TABLE 1I

RESULTS FOR THE MEAN PACKET DELAY IN THE CENTRAL NODE OF A
STAR TOPOLOGY OF TWO INTERCONNECTED NETWORKS

A | Dg | Dy

Dg Dy

10 | 1.06 | 1.06 | 1.00 1.97

22 || 1.20 | 1.21

1.02 3.85

25 || 1.25 | 1.29 | 1.05 5.30

30 || 1.37 | 1.44

1.13 | 11.38

33 || 1.48 | 1.57

1.21 | 30.00

35 || 1.58 | 1.70 | 1.30 | 87.70

TABLE III
RESULTS FOR THE MEAN PACKET DELAY IN THE CENTRAL NODE OF A
STAR TOPOLOGY OF THREE INTERCONNECTED NETWORKS

A | Dp | Dy

.10 1.14 1.15

.20 1.50 1.56

.25 2.00 2.16

.30 4.00 4.54

31 5.42 6.23

.32 9.00 | 10.47

.33 || 34.00 | 40.14

Dg Dy
1.01 1.97
1.21 3.33
1.70 5.30
4.28 | 11.38
6.25 | 15.00
11.37 | 20.00
48.89 | 30.00

where N was such that N/2 runs gave the same results. We
considered that as an indication that the quantities of interest had
converged to the steady-state values. The network induced mean
packet delay Dy is also shown in the last column of these tables; it is
the average time between the packet generation instant and the time
when this packet is successfully transmitted (and appears in the output
process). The results were taken from [10] and are provided to
indicate the average total delay (in the network and in the node) that a
packet undergoes. The maximum per network output rate under
stable operation of the particular algorithm is 0.36 packets per slot.
On the other hand, the queueing system of the star topology is stable
for total input rates less than 0.99 packets per slot [22].

In the case of N = 2, interconnected networks, the maximum total
input rate to the central node is 0.72 packets per slot, far from the
stability limit of the queueing system. The latter implies that the
queueing delay will be low for this system. Indeed, it turns out that
the queueing delay is less than 0.5 slots. Both approximations
perform satisfactorily in this case in which the queueing problem is
not significant.

In the case of N = 3, the total input traffic to the central node can
be as high as the stability limit of the queueing system (in fact beyond
that). Under such conditions the performance of the two approxima-

tions begin to differentiate. As the results in Table III indicate, when
the per network traffic is large (A > 0.3) and the queueing problem
in the central node significant (total input traffic >0.9), then the
Markov approximation performs better than the Bernoulli-type one.
This is due to the fact that the Markov model captures some of the
strong dependencies introduced by the collision-resolution algorithm.
These dependencies affect considerably the mean time that a packet
spends in the central node only when there is a significant queueing
problem.

As a last comment on the performance of the Bernoulli-type
approximation, we note that the good performance of this model
under moderate per network traffic (e.g., N = 3and A = 0.2) is due
to the fact that, although dependencies are introduced by the
collision-resolution algorithm, some independence is introduced to
the cumulative input traffic to the central node from the mutually
independent input streams. We expect that as the number of
interconnected networks increases (and the per network output rate
decreases, for the stability of the queue) the Bernoulli-type model will
perform satisfactorily, with respect to the performance measure
under consideration, for increasingly larger cumulative input rates to
the central node.

More than three interconnected networks can also be considered.
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In such a system, one should make the assumption that only a portion
of each network traffic is destined outside the particular network and
thus needs to be forwarded to the central node. This assumption is
clearly necessary for the stability of the queue. The output process of
a network in such a system is not determined by the two-state
channel-status process, {x/};»¢. It is a combination of the channel-
status process and a binomial process, if there is a probability that the
destination of a successful packet is outside the particular network. In
the latter case, an S-state will result in an output with some
probability.

VI. SUMMARY

In this paper, the relation of the output process of multiuser
random-access communication networks with the two-state (S-NS)
channel-status process was pointed out in an effort to indicate the
dependence of the output process on the employed random-access
algorithm and the history of the channel-status process. The latter is
true because some type of feedback information concerning the state
of the channel is provided to the users of any multiuser random-
access communication network; thus the evolution of the system (and
the output process) depends on the status of the channel. In view of
the above, the implications of the Bernoulli-type and the discrete-time
first-order Markov approximations on the output process were better
understood.

We developed a procedure to calculate the transition probabilities
of the Markov model based on the average such transitions of the
actual channel-status process, as they are determined by the operation
of a specific random-access algorithm. The suggested method can
also be applied to any random-access algorithm from that class. The
authors believe that the same procedure can also be applied in the case
of almost any random-access algorithm whose analysis is based on
the concept of the session. The method can also be used for the
calculation of the steady-state and the transition probabilities of the
three-state (/, S, C) channel-status process, if such quantities are of
interest.

Finally, the accuracy of the two approximations was evaluated by
applying them to random-access networks interconnected according
to a star topology. The results and the conclusions about the accuracy
of the proposed approximations are given in the previous section.

APPENDIX

In this Appendix, we prove (11). Let us define the following
random variables.

External (NS, §) Pair: It is a pair whose slots belong to different
sessions; it is assumed that the first slot determines the session which
this pair is assumed to belong to the following.

1,: Length of the nth session from the time origin (in slots).

7N¥5:Sn: Number of internal (NS, S) pairs of the nth session.

1 if the vth slot of a session is the first slot
of an (NS, §) pair
0 otherwise;

NS,S—
JIS=

III
WS S= E J5:5: Number of (NS, S) pairs in the nth session;

v=1

ENS.SZ 1 if the nth session has an external (NS, S) pair
n 0 otherwise.

Notice that £7V5:5 is associated with the last slot of the nth session.
The joint probability p(/NS, S) can be calculated, by using the law
of large numbers, from the following expression:

N
E WSS
n

P(NS, S)=lim =L —
N—roo N

n=1
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The above expression can be written as

N N
2 (wNS,S_SNS,S) E ENS’S
n n n
— 13 n=1 : =1
PUNS, )= fim Syt i 2l
S, S,
n=1 n=1
— 7NS‘S — ENSS
N " N "
= lim —2=! + lim —#=1
N-o 1 N N-o 1 N
N E ln ]T[ E ln
n=1 n=1

Clearly, the random variables /,, 755, n = 1, are independent and

identically distributed with mean value L < oo and TS5 < oo (since
TNSS < L), respectively. Thus, the strong law of large numbers,
[16], asserts that

1 N
s Am 5 65
PNS, §)=A =1 (Al

The random variables £S5, n = 1, are not independent but
{£N5:51,,, | is a stationary process and £ 'S has expected value given
by

E{£NS:S}=P{(I—slot, k' = 1)/last slot of the nth session}

where k£’ denotes the multiplicity of the next session. Since the two
events, “‘last slot of a session is idle’’ and ‘‘multiplicity of next
session is 1,”” are independent, we can write that

E{ENSSY =T - Ne < o0, (A2)

The term e ~» of the above product is the probability of having a
session of multiplicity 1. By applying the erogodic theorem for
stationary processes to (Al), [17], and by considering (A2), we
obtain the expression in (11).
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