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Abstract—In this paper, the idea of approximating the output process
of slotted multiuser rand access ¢ ion networks (i.e., the
process of the successfully transmitted packets within the networks) bya
2nd-order Markov process is introduced. A method is developed to
analytically calculate the parameters of the approximating process for a
class of random access algorithms. The method is illustrated by consid-
ering a specific random access algorithm from that class. The mean time
that a packet spends in the central node of a star topology of intercon-
nected networks (a quantity of practical interest) is incorporated in the
evaluation of the accuracy of the proposed approximation. This quan-
tity is calculated under the proposed approximation on the output
processes of the interconnected networks, and it is compared to simula-
tion results from the actual system. The previous ideas are applied to
networks operating under a specific random access algorithm, and
results are obtained for that particular case.

I. INTRODUCTION

ONSIDERABLE work has been done toward the direction of

developing communication protocols which determine how a
single common resource can be efficiently shared by a large popula-
tion of users. By now, it is well known that fixed assignment
techniques are not appropriate for a system with a large population
of bursty users. In this case, random access protocols are more
efficient, and many such protocols have been suggested [1], [2].
Usually, the amount of information (in bits) transmitted per time is
of fixed length, called a packet. In most of the systems, time is
divided into slots of length equal to the time needed for a packet
transmission (slotted systems).

The deployment of an ever-increasing number of multiuser ran-
dom access communication networks brings up the question of how
packets, whose destination is in another network, should be han-
dled. Thus, the issue of network interconnection or multihop packet
transmission arises [3], [6], [7]. The basic problem in analyzing
interconnected systems is that of characterizing the output process of
a multiuser random access communication system, i.e., the depar-
ture process of the successfully transmitted packets. The output
process of a multiuser random access communication system de-
pends on the protocol that has been deployed. Description of that
process is a difficult task, and only approximations based on special
assumptions have been attempted [4]-[7].
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In a previous work [8], the problem of the characterization of the
output process is addressed. There, a Bernoulli and a 1st-order
Markov approximation are proposed. It turns out that the 1st-order
approximation performs better for moderate and heavy traffic load,
with respect to a certain measure of performance which is of
practical interest. In this paper, a 2nd-order Markov approximation
on the output process of multiuser random access communication
networks is proposed. The 2nd-order Markov approximation is
intuitively more pleasing than those suggested in [8], since it
captures better the dependencies in the output process. These depen-
dencies are introduced by the collision resolution algorithm of the
random access protocol.

In the next section, the Markov approximation on the output
process is introduced. In Section III, a method to analytically
calculate the parameters of the Markov model (steady state and
transition probabilities) for a class of random access algorithms is
developed. True probabilities, as induced by the actual system, are
incorporated for this purpose. The class of random access algo-
rithms for which the method is applicable includes all random
access algorithms whose analysis is based on the concept of the
session (regenerative cycles). The developed method is illustrated in
Section IV by considering a specific random access algorithm from
that class. In Section V, the mean time that a packet spends in the
central node of a star topology of interconnected networks (which is
a quantity of practical interest) is incorporated in the evaluation of
the accuracy of the proposed approximation. Finally, some results
on the accuracy of the proposed approximation, in the case of the
specific random access algorithm considered as an example in this
paper, are presented in the last section together with a summary of
this work.

II. THE APPROXIMATION OF THE QUTPUT PROCESS

In this section, the proposed approximation on the output process
is described. A slotted multiuser random access communication
network is considered. It is assumed that the packet input rate to the
system is N\ packets per slot, and that X is in the stability region of
the system. For such values of A, all the processes associated with
the description of the system are stationary. The communication
channel can be in one of the following states: 7 (idle), if no user is
using the channel at that time; S (success), if only one user is
transmitting; and C (collision), if more than one user is transmitting
at that time. In the previous channel description, we made the
assumption that if only one user transmits, then his packet is
successfully transmitted. Successfully transmitted packets appear in
the output process of the network; 7 and C states of the channel do
not result in a packet output from the network. It is assumed that
capture events are not present [18], and that channel errors cannot
occur.

We define the output process of a slotted multiuser random-access
communication system, {a’} i»0- 10 be a discrete-time binary pro-
cess associated with the end of the slots. The random variable a’
takes the value 1 if a successful packet transmission occurs in the
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jth slot, and O otherwise. It is clear that the output process can be
interpreted as the two-state channel-status process {x’};50, where
x/e{s, u}; by s (success) we denote state S, and by u (‘“‘un-
success”’) we denote the union of the states 7 and C. The purpose of
this interpretation of the output process is to relate it to the channel
status, which is in interaction with the random access protocol. The
latter is true since the evolution of the channel-status process (which
determines completely the output process) depends on the current
(and possibly the past) channel state and the deployed protocol. This
oceurs because the state of the channel is fed back to the users, who
determine their action based on this feedback and the protocol. A
type of feedback information is required by any stable random
access algorithm.

As a consequence of the above discussion, the output process,
{a’};»¢, and the two-state channel-status process, {x/};.,, are
identical. The problem of characterizing the output process of a
multiuser random-access communication network is identical to that
of characterizing the two-state channel-status process, {x’};20- The
channel-status process {x’};. ¢ is controlled by the deployed ran-
dom-access algorithm. In this paper, we approximate this process by
a 2nd-order Markov process, {¥,};= 0, Which has the same state
space as {x’};., and is ergodic within the stability region of the
random access algorithm. To study the process {%’};. o, we can
equivalently study the underlying 1st-order Markov process {¥}i=0
defined as follows: {y’}; is a discrete time 1st-order Markov
process associated with the end of the slots. The state space of this
process is Z = {(s,8) = a, (s, u) = b, (u,s) =c, (u,u) =dy};
the first part of each pair corresponds to the state of the approximat-
ing process { ¥/}, ¢ at the end of the (j — D)st slot; the second part
corresponds to the state of the same process {%'};. ¢ at the end of
the jth slot. Having defined the underlying 1st-order Markov chain
{»7};s o> We can obtain the binary process {@’};, o with state space
{0, 1} from the stationary function & § — {0, 1} with

ﬁ(yj)={1 if y=aorc

M

The process {@’};., approximates the output process of the ran-
dom access communication network. It depends on the 1st-order
Markov process {¥’};.o, which describes the 2nd-order process
{%/};.0; the latter approximates the channel-status process. To
completely determine the underlying 1st-order Markov process
{»7};20, we need to estimate its steady-state and transition proba-
bilities. Then the approximating process {@’};., is completely
determined by (1).

0 ify=bord.

III. PARAMETERS OF THE MARKOV PROCESS

Since the 1st-order Markov process, { ¥/}, is only an approxi-
mation, it seems appropriate to estimate its steady state and transi-
tion probabilities, by calculating the steady state probabilities that a
particular state or state transition occurs in the true process, under
stable network operation. The possible state transitions of the 1st-
order Markov chain {y”};. , are shown in Fig. 1. Notice that not
all state transitions are possible. Since {y’};5 ¢ is a Markov chain,
the following equation must hold:

TP=m (2)
where © = (w(a), m(b), w(c), w(d)) is the vector of the steady-state
probabilities and

p(a,a) p(a,b) p(a,c) p(a d)
p_ | P00 p(b.5) p(b.c) p(b.d)
p(c,a) ple,b) p(c,c) p(c, d)
p(d,a) p(d.b) p(d.c) p(d.d)

is the matrix with the transition probabilities of the Markov chain
{»’}j=0. From Fig. 1, it is easily concluded that the following
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Fig. 1. State transition diagram of the Markov chain { »}izo

equations hold:
pla,a) +p(a,b) =1 p(b,c) +p(b,d)=1 (3a)
p(e.a) +p(e.b) =1 p(d,d)+p(d,c) =1 (30)
p(a,c) = p(a,d) = p(b,a) = p(b, b) = p(c,¢)
= p(c,d) = p(d,a) = p(d, b) =0. (4)

By assuming that the steady-state probabilities and the transition
probabilities p(b, ¢) and p(a, @) are all known, the remaining
transition probabilities can be calculated from (2)-(4). If one of the
steady state probabilities, e.g., 7(c), is known, then the rest of
them can be calculated from the following equations which relate
marginal with joint probabilities:

P(u,u) = P(u) — P(u,s) > x(d) =1-x-m(c)
P(s,s) = P(s) - P(u,s) = x(a) =N - w(c)
P(s,u) = P(s) — P(s,s) = x(b) = n(c).

()

P(s) denotes the probability that a slot is successful, and P(u) is its
complement. Under stability, P(s) = A. To summarize, all parame-
ters of the Markov process {)’};., can be calculated from the
probabilities w(c), p(b, ), and p(a, a). Notice that =(c) =
P(u, s) and that

P(s,u,s) P(s,u,s)

P(6:9) = 35wy T (b (62)
P(s,s,s) P(s,s,s)

pla,a) = P(s,s) = T x(a) ©)

where P(s, u, s) and P(s, s, s) are the joint probabilities of having
an (s, u, s) and an (s, s, 5) triplet in the output process, respec-
tively. As a consequence, to completely determine the approximat-
ing process, it suffices to calculate the probabilities P(u, ),
P(s, u, s), and P(s, s, s). All the quantities and the definitions that
are used in the rest of the paper appear in Appendix A.

At this point, we concentrate on the class of the random access
algorithms whose stability analysis is based on the concept of the
session, i.e., the time interval between two consecutive renewal
points of the algorithm. This class is quite broad and contains most
of the limited and continuous sensing random access algorithms
[111-[17]. For this class of algorithms, the next theorem provides
for a method to calculate the desired joint probabilities.

Theorem: Consider a slotted random access algorithm whose
operation induces renewal points. Let a session be defined as the
time interval between two consecutive renewal points of the algo-
rithm. The joint probabilities P(u, s), P(s,u, s), and P(s, s, $)
are given by the following expressions:

Tu.S Lu
n(c) = P(s,s) = 7t )\e”‘T (7a)
Ts‘u,s s, u s Lll
P(s,u, — + by -\ s oM

(s,u,5) = — TNk I+ e e

(7b)
5, 8,8 LSS L’

P(s,s,s) = Tt T + e+ —L—)\e"‘)\e‘* (7¢c)
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where all the quantities in the above equations are defined in
Appendix A.

Proof: We provide a proof of (7b) only. Equations (7a) and
(7c) can be proved by following a similar procedure. Let us give the
following definitions.

Type 1 (s, u, s) Triplet: It is an (s, u, s) triplet whose three parts
belong to the same session.

Type 2 (s, u, s) Triplet: It is an (s, u, s) triplet whose first two
parts belong to one session and the third to another. This triplet is
assumed to belong to the first of these sessions.

Type 3 (s, u, s) Triplet: 1t is an (s, u, s) triplet whose first part
belongs to one session and the other two to another. This triplet is
assumed to belong to the first of these sessions.

Type 4 (s, u, s) Triplet: It is an (s, u, s) triplet whose three parts
belong to different sessions. This triplet is assumed to belong to the
first of these sessions.

Let us also define the following quantities:

1,: the length of the nth session from the time origin (in slots),

w3 #5: the number of (s, u, s) triplets of the nth session,

77" . the number of type i (s, u, s) triplets of the nth session.
Clearly,

The joint probability P(s, u, s) is calculated as the limit of the
ratio of the total number of (s, u, ) triplets by the end of the Nth
session divided by the length of all N sessions, as N — oo.

N
Z wS U
n

P(s,u,s) = A}lj{;%
)
P

The above expression can be written as follows:

P(s,u,s) =

Clearly, {7{' ;" *},»0 and {/,},., are i.i.d. Since E{/,} = L < o
and E{ry";'°} = T>“* < L < o within the stability region of the
system, the strong law of large numbers asserts that [19]

s, u,s 1 4 1

L j=2 N—o

P(s,u,s) =

For each /, i = 2,3, 4, the processes {7}, ., are not generally
independent, but they are strictly stationary. The expected values of
the corresponding random variables are the following (5%, i =
2,3,4, are actually indicator functions; their expectationsyrepresent
probabilities):

E{73: %} = P{last two slots of a session are (s, u),
multiplicity of next session is one}

= L""\e™?
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E{15:4%*} = P{last slot of a session is S, first two slots of next
session are (u, s)} = L5[%S
E{75:#*} = P{last slot of a session is s,

multiplicity of next session is zero,multiplicity

of second next session is one} = L%e Me

S, u, s

It is easy to observe that the processes {7, },. 4, I = 2,3, 4, are
metrically transitive [20], [21]. From the previous expressions and
(8), we obtain (7b) by invoking the ergodic theorem for stationary
processes [20], [21]. O

Notice that the previous theorem holds for any random access
algorithm that induces renewal points. For such algorithms, the
quantities involved in (7) are meaningful. Equation (7) is useful only
if the involved quantities can be computed. A method to compute
these quantities is developed for random access algorithms whose
stability analysis utilizes the concept of the session. As it is illus-
trated in the next section, through an example, the quantities of
interest can be computed by writing equations similar to those
developed for the stability analysis of the algorithm. To write these
equations, one should incorporate the steps of the particular algo-
rithm under consideration, and thus a more detailed discussion on
the procedure for a general algorithm from this class is not possible
beyond this point.

IV. CALCULATION OF THE PARAMETERS FOR A SPECIFIC
RANDOM ACCESS ALGORITHM

In this section, we illustrate the procedure that leads to the
calculation of the quantities that appear in (7), by applying it to a
particular random access algorithm. Although the average session
length calculations for the stability analysis have been carried out
elsewhere, we reproduce the procedure for two reasons. First, it
considerably simplifies the calculations of the quantities of interest.
Second, it gives the reader some idea as to how the stability
equations are related to those used for the calculations of the desired
quantities in this paper. The reader can see how the stability
equations are modified to give the desired ones. As a matter of fact,
the coefficients of the resulting linear systems of equations do not
change at all in the case of the algorithm under consideration. That
way, the reader can get better insight of the procedure presented
here and, as a consequence, be able to apply it in the case of other
algorithms with greater ease.

Consider a multiuser random access slotted communication net-
work in which a binary-feedback (collision/noncollision, C/NC),
limited-sensing collision-resolution algorithm is deployed. The net-
work input traffic is assumed to be Poisson with intensity A packets
per slot. This algorithm has been developed and analyzed in
[10]-[12]. The characterization of the process of the successfully
transmitted packets, i.e., the output process of the network, is an
open problem. A brief description of the collision-resolution algo-
rithm is provided at this point. Each user is assigned a counter
whose initial value is zero (no packet to be transmitted). This
counter is updated according to the steps of the algorithm and the
feedback from the channel. Upon packet arrival, the counter value
increases to one. Users whose values are equal to one at the
beginning of a slot, transmit in that slot. If the channel feedback is
collision (C), each counter whose value is greater than one in-
creases it by one; each counter whose value equals one, maintains
this value with probability p (splitting probability) or increases it to
two with probability 1 — p. If the channel feedback is noncollision
(NC), all nonzero counters decrease their values by one. A detailed
description of the algorithm can be found in [10] and [11].

An important quantity for the analysis of random access algo-
rithms, which induce regenerative points, is the session. A session
is defined as the time interval between two renewal points in the
operation of the system. For the particular algorithm under consid-
eration, the renewal points of interest are determined by an imagi-
nary marker. This marker is essentially an imaginary counter whose
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value varies according to the channel feedback. Its value is origi-
nally set zero (b = 0). If & = 0 and the feedback is C, then b = 2;
if b = 0 and the feedback is NC, then b = 0. If b > 0 and the
feedback is C, then b = b + 1; if & > 0 and the feedback is NC,
then b = b — 1. The slots in which b = 0 are renewal points of the
system. Due to the statistical splitting among collided users, the
system might be empty and the marker still be positive. This implies
that the marker determines only a subsequence of the instants when
the system is empty. The session is determined as the time interval
between successive renewal points, as determined by the marker.
The length of such sessions is easy to describe via recursive
equations. The multiplicity of a session is defined as the number of
packet transmission attempts in the first slot of the session.

An important quantity for the calculation of the quantities in (7) is
the mean session length, L. The latter can be calculated by follow-
ing procedures similar to those that appear in [11] and [13]-[15]. In
fact, for the specific algorithm under consideration, L has been
calculated in [10] and [11]. We believe that the recursive equations
with respect to /,, which describe the operation of the system, will
be very helpful for the better understanding of the procedure for the
calculation of the quantities in (7). For this reason, we start by
calculating L. From the description of the algorithm, the following
equations can be written, with respect to /;, k = 1,2, -

=1, =1

=141 n+ hoiira k=2,
f, and f, come from two independent Poisson random variables
over T = 1 (length of a slot) with probability function P,( ) and
intensity N; ¢, comes from a binomial with parameters k and p
(p = 0.5) and probability function b,( ). The second of the above
equations can be explained as follows. The length of a session of
multiplicity k& = 2 consists of the slot wasted in the collision, plus
the length of the subsession of multiplicity ¢, + f; (which will be
initiated in the next slot), plus the length of the subsession of
multiplicity k¥ — ¢, + f, (which will be initiated after the end of
the subsession of multiplicity ¢, + f,). Subsessions are statistically
identical to the sessions of the same multiplicity. ¢, is the number
of users whose counter content remained one after the splitting;
f1, f> is the number of new users which will be activated (have a
packet for transmission) and enter the system in the first slot of the
corresponding subsession.

By considering the expected values in the previous equations with
respect to all random variables involved, we obtain

L=1

(92)
>

f1=0

K
L= ¢Zopf(Fl =f1)bi(®1 = ¢1)Lyyuy,
=

k=2.

(90)

The infinite dimensional linear system of equations in (9) can be
written in the general form

© k
+ 3 Y PR =1)b(® = 0) Li_gy410>
f2=0 ¢1=0

(10)

oo
Ly=he+ Y ag L, k=0
j=0

The most widely used definition of stability is the one which relates
it with the finiteness of L, for k¥ < oo. In [10] and [11], it has been
found that the system is stable for Poisson input rates A < S, =
0.36 (packets/packet length). The authors in [10] and [11] were
actually able to find a (linear) upper bound on L, which is finite for
k < 0. S .. is then defined as the supremum over all rates A for
which such a bound, L%, was possible to obtain.

The existence of L% < oo, for k < oo, implies that (10) has a
nonnegative solution, L,; the solution L, of the finite dimensional
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system of equations

(11)

J
Li=he+ Y ayl, 0<kslJ,
j=0

is a lower bound on L, and L, — L, as J— oo [11], [14], [15].

It turns out that for sufficiently large J (e.g., 15), L, is ex-
tremely close to L,; thus, for all practical purposes, L, is consid-
ered to be equal to L, especially for A outside the neighborhood of
S,ax- The latter can be shown by calculating a tight upper bound on
L, and observing that it almost coincides with L, (see [11], [14],
and [15] for the procedure).

By solving (11) with a;; and A, given by,

a,=a,;=0, 0sj=<J (122)
min {j, k}
a;= .;,Zo Pf(FI =J- 4’1)bk(‘1’1 = ¢\)
1=

k

+ )

¢1=max {k—j,0}
0<k=<lJ

P(F =j-k+ $.)bi(®, = ¢,),

0<j=/J, (12b)

and
hy=1, O0=<ks=slJ, (13)

we calculate the mean session length of multiplicity k. Since the
multiplicities of successive sessions are independent and identically
distributed random variables, the mean session length L is calcu-
lated by averaging L, over all k; k is the number of arrivals in a
slot from a Poisson process with intensity A. In fact, the average for
k =< J is sufficient for all practical purposes.

To calculate the quantities in (7), we follow a procedure similar
to that developed for the calculation of the mean session length L.
The recursive equations with respect to the appropriate random
variables and the resulting systems of linear equations are shown in
Appendix B. By solving truncated versions of these systems of
linear equations, we compute the desired quantities. Actually, as it
is the case with the calculation of L, what is calculated is a lower
bound on the corresponding quantities. As the number of equations
considered increases, the bound converges to the true value.

V. PERFORMANCE OF THE APPROXIMATION

In the previous sections, the 2nd-order Markov process, { %/}, o,
which approximates the two-state channel-status process, {x’i =0
(or the output process, {@’};. o), was described, and the parameters
of the 1st-order equivalent Markov process, { y’};. o, were analyti-
cally calculated. In this section, we present a metl;od to evaluate the
accuracy of the proposed approximation.

The characterization of the output process of a multiuser random
access communication network is extremely useful in analyzing the
performance of systems of interconnected multiuser random access
communication networks. The delay induced by the interconnecting
links/nodes is a good measure of the performance of the intercon-
nection. In a star topology of interconnected networks, the mean
time that a packet spends in the central node is an important
performance measure of the interconnection; it is thus desired that
this quantity be calculated. This is the reason for the incorporation
of the previous mean time in the evaluation of the accuracy of the
proposed approximation. By comparing this quantity, calculated
under the proposed approximation, to the one from the simulation of
the actual system, we can estimate the accuracy of the approxima-
tion.

A star topology of N interconnected networks is shown in Fig. 2.
Each input stream represents the output process from a multiuser
random-access slotted communication system. Let A; be the output
rate (in packets per slot) of the ith network. A packet arrival in the
central node is declared at the end of the slot in which the packet
was successfully transmitted. Thus, the arrival process associated
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central
node

N——]

Fig. 2. A star topology of interconnected networks.

with each input line is a discrete process. The arrival points in all
streams coincide; that is, the networks are assumed to be synchro-
nized and all slots are of the same length. The service time in the
central node is constant and equal to one, which is assumed to be the
length of a slot. This implies that arriving and departing packets
have the same length. The first in-first out (FIFO) service policy is
adopted. More than one arrival (from different input streams) that
occurs at the same arrival point is served in a randomly chosen
order. The buffer capacity of the central node is assumed to be
infinite.

A discrete time, single server queueing system, with a finite
number of independent input streams and per stream arrivals gov-
erned by an underlying finite-state Markov chain, has been analyzed
in [9]. The queueing system that is considered in this section is a
special case of the general system in [9]. If N, is within the stability
region of the corresponding network and if [18]

N
S <,

i=1

then the queueing system is stable. The average number of packets
Q in the central node can be calculated as the sum of the solutions
of 4" linear equations [9]. Then, the mean time that a packet spends
in the central node D is given in conjunction with Little’s formula
by the following expression:

B

D=

(14)
by

i

™z

=1

I

Note that under stable operation of the networks, the adopted
mapping rule in (1) implies that the input rate of the ith stream to
the central node is equal to the input rate to the corresponding
network.

Let us denote by X and y the N-dimensional vectors that
describe the states of the N Markov chains in two consecutive time
slots, ¥, yeZ = Z' x Z* x -+ x ZV; p(%, y) denotes the tran-
sition probability from state X to state y. Let p(j; ¥) denote the
probability that there are j packets in the central node, and that the
N-dimensional Markov chain is in state ¥, and let P(z; ¥) be the
corresponding generating function. Then, the average number of
packets in the system Q is given by the sum of the solutions of 4N
linear equations [9]. These equations are given by

EO);Z;' 20 - )P (LX) + (v - 1)(» - 2)P(1; %)

+2(v - 1)p(0; ¥)] =0 (15a)

and any 4" — 1 from the following:
N

P(55) = 3 X ()P %) + P(1; %) + p(0; 7))
v=0 XeF,

-p(%,7), yeS. (15b)

The unknown quantities in (15) are P’(1;y), ye S, PQ; )
denotes the value of the derivative of P(z; y) at z = 1. The set F,
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is given by
N
F= (%= (x;, - xy)€Z: 3 a(x,) =v,

i=1

where a,( ) is the mapping associated with the ith network. Since
the input streams to the central node are independent, we have that

N N
p(%,7) = Hlpi(xnyi)’ P(1;x) = n(X) = _Hl”i(xi)
i= i=
and p(0; X) is estimated from
> p(3/%)7(3)
yeFo
> 7()
yeFo
where 7,(x;) and p{x;, y;) are the steady state and state transition
probabilities of the Markov chain associated with the ith input

stream; p, is the probability that the central node is empty. The
latter is given by [9]

p(0; %) =

N
po=1- 3\

i=1

By solving the 4 linear equations that are given by (15), and
summing up the solutions, the average number of packets in the
central node Q is obtained. Then, the mean time that a packet
spends in the system is calculated from (14).

VI. SUMMARY AND RESULTS

In this paper, we introduced the idea of approximating the output
process of multiuser random access communication networks by a
2nd-order Markov process. The motivation behind the proposed
approximation is to capture the dependencies in the true output
process which are introduced by the random access algorithm. In
Section III, a method to analytically calculate the parameters of the
approximating process is developed for networks operating under a
random access algorithm from a general class. Equation (7) of the
theorem that is proved in that section is applicable to any random
access algorithm that induces renewal points. The quantities which
are involved in (7) can be calculated in the case of random access
algorithms whose stability analysis is based on the concept of the
session. The procedure to be followed in that case is illustrated
through an example in Section IV. In Section V, we present a
method to evaluate the accuracy of the proposed approximation. For
that purpose, we chose a star topology of interconnected networks,
and we incorporated the mean time that a packet spends in the
central node in the evaluation of the accuracy of the approximation.
By comparing the latter quantity (which is of practical interest),
calculated under the proposed approximation on the output process
of the interconnected networks, to that from the simulation of the
actual system, we estimate the accuracy of the approximation.

As N (the number of the interconnected networks) increases, the
dimensionality of the system of linear equations which need to be
solved (15) increases rapidly. For large N, simulation results have
shown that the Bernoulli approximation on the output process
performs well; its performance improves as NV increases. The latter
can be explained by the fact that the increased number of indepen-
dent input streams reduces the dependencies in the total input traffic
to the central node. The per-network output traffic must also de-
crease for the queueing system to be stable. The latter implies that
either each network operates away from its stability region, and thus
the dependencies in its output process are not strong, or that not all
of the successful packets are forwarded to the central node; the
packet selection introduced in the latter case results in increased
independence in the output process.

As an example, the mean time that a packet spends in the central
node of the star topology was calculated in the case of the random
access algorithm presented in Section IV. The results (in slots) are
shown in Table I, together with the results obtained from the
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TABLE I
RESULTS FOR THE MEAN PAckeT DELAY IN THE CENTRAL NODE OF A STAR
ToPoLOGY OF 3 INTERCONNECTED NETWORKS; N IS THE PER-NETWORK INPUT
(OutpuT) RATE. THE RESULTS ARE OBTAINED UNDER THE MARKOV APPROX-
IMATION AND FROM THE SIMULATION OF THE ACTUAL SYSTEM

A w(c) | P(a,a) | P(bc) | Markov Sim.
.01 || .0098 .0136 .0100 1.01 1.00
.10 || .0862 1271 .0999 1.15 1.01
.20 || .1488 .2381 .2006 1.58 1.21
25 || 1728 .2896 .2520 2.19 1.70
.30 ) .1922 .3403 .3050 4.69 4.28
.31 || 1955 .3506 .3160 6.49 6.25
.32 | 1985 .3609 3271 10.99 11.37
.33 || 2014 3714 .3385 42.55 48.89

simulation of the actual system. The maximum per-network output
rate under stable operation of the particular algorithm is 0.36
packets per slot. On the other hand, the queueing system of the star
topology is stable for total input rates less than 1 packet per slot
[18]. By comparing the analytical results, obtained under the ap-
proximation of the output process by a 2nd-order Markov chain, to
the simulations of the actual system, we conclude that the approxi-
mation performs well for the whole range of per-network input
rates. The proposed approximation seems to perform better than the
Bernoulli or the 1st-order Markov approximations discussed in 181,
under heavy traffic. Under heavy traffic, the dependencies intro-
duced by the random access algorithms are strong, and it seems that
they are best captured by the proposed approximation. Of course,
the performance of the proposed approximation depends on the
random access algorithm deployed within the network. In this pa-
per, we developed the approximating model and the methods to
compute its parameters for a class of random access algorithms, and
this is the main contribution of this paper. Results are presented
only for a special case, and the conclusions can be extended to other
cases only intuitively.

APPENDIX A

In this appendix, we define the quantities and the variables that
are used in this paper.
(u, s) pair: a pair of consecutive slots with
the first slot being in state # and
the second in state s.
an (u, s) pair is internal if both
slots belong to the same session.
a triplet of consecutive slots that
are in states s, u, S.
a triplet of consecutive slots that
are in states s, S, S.
An (x, y, z) triplet whose three
slots belong to the same session.
I length of a session of multiplic-
ity k (in slots).

Internal (u, s) pair:
(s, u, s) triplet:
(s, s, §) triplet:

Internal (x, y, z) triplet:

L,: expected value of /.

L expected value of L, with re-
spect to k.

s number of internal (u,s) pairs
in a session of multiplicity k.

TS expected value of 77 °.

TS expected value of T;"° with re-
spect to k.

13 a random variable associated
with the last slot of a session of
multiplicity k; /; = 1 if that slot
is idle; /} = O if that slot is in-
volved in a successful transmis-
sion.

& expected value of /.

L*: expected value of L% with re-

spect to k.
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s, u, 8

Th number of internal (s, u, s)
triplets (internal (s, s, §) triplets)
in a session of multiplicity k.
expected value of 7% ° (7% °).
expected value of T *°
T3*9).

a random variable associated with
the last two slots of a session of
multiplicity k; /¥ =1 if the
1ast pair of slots of that session is
(s, w); Iy¥ =0 otherwise (/i°
= 1 if the last pair of slots of
that session is (s,8); Ip°=0
otherwise).

I3 a random variable associated
with the last slot of a session;
I =1 if the last slot of that
session is §; /§ = O otherwise.

a random variable associated
with the first two slots of a ses-
sion of multiplicity k; ‘=1
if the first pair of slots of that
session is (u, 5); i*” = O other-
wise.

expected value of /¥

A%, 1% 5 159).

expected value of Ly *(L5,
I8, L.

(g =)

Ti‘s‘, u,s (T’:‘, s, S):
TS u.s (Ts, 5, S):

I3 (13 %):

Ly (L, I°, Lyo):

Ls‘u(Ls Iu,s Ls,.\'):

APPENDIX B

In this appendix, we present the recursive equations and the
resulting infinite-dimensional linear systems of equations with re-
spect to the quantities of interest, defined over a session of given
multiplicity. By solving a truncated version of these infinite-dimen-
sional systems, we calculate the desired quantities. Then the corre-
sponding mean value over any session is computed in a similar way
to L.

A.1) Calculation of L,
I5=0, =1

s _ JS

le=l—o1+52 k=2.

The resulting system of linear equations is the following:

L = P.(F, = b (®, = L, s
[3 fzz——:0¢1z=0 f( 5 = f2) bi(®, ¢1) k—¢1+/2

k=2.

A.2) Caiculation of LY

L% is the expected number of last slots of a session of multiplicity
k which are in state u. L} can also be described as the probability
that the last slot of a session is in state u. As a result, we have the
following equation for L¥%.

Y=1-L k=0.
A.3) Calculation of Ly
3“=0, 5¥=0
L = e p g1+ Lug wn1=1, k- 1472201
k=2
The resulting system of linear equations is the following:
Ly“=0, Ly*=0
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o k
Ly" = Z Z Pf(FZ =fz)bk(q’1 = d’l)Li’folﬁ;
f2=0¢;=0
+f20bk(‘i>| = k)Pi(F, = 0)Py(F, = f\) Liyyy, k22
1=
A.4) Calculation of Ly *
I3*=0, $5=0
= li‘f¢,+leik—¢1+fz=2} + 1(’51+f1=l‘k—¢1+f2=l}’
k=2

The resulting system of linear equations is the following:

L5s=0, L$°=0

k =)
Ly* = Z Z Pf(Fz =f2)bk(d’1 = ¢1)Lsk’—s¢1+f2
=0/f2-0

+ b (8, = k)P(F, = 1)fz=:0Pf(F1 =f1)
+ b (®, =

A.5) Calculation of Ii"*
ig*=0, =0
e’ =Ypea=0
The resulting system of linear equations is the following:
=0, I =
15 = Pi(F, = 0)by(®, = 1) + Pr(F, = 1)b,(®, = 0),

k=2.
A.6) Calculation of T**
85 =0, 1°=0
TS = g in T e T W g =1 k— e+ 52= 1)
+ loyen=y k=2

The truncated version of the resulting system of linear equations is
of the form of (8) with the coefficients @, ; as in (9) and constants
hy given by

hg.s=0Y h?.s=0
J-k
Ry = P\(F, = )b (2, = k)fZOPf(ﬂ =fl)L‘1‘(+f1
=
+ P;(F, = 0)b,(®, =k - 1)
J+1-k
Z Pf(Fl fl)Ll;—l+f1
+ Pf(Fl =0)b, (¥, = 1) + P(f, = 1)b, (2, = 0),
2=<k=<lJ.
A.7) Calculation of T***
PSS =0, P =0
T = TRYS T T e T it =1 ke sien= )

+ 1,58 —1 jU4,S =13
7 o =L ik g 1=

The resulting system of linear equations is of the form of (7) with
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coefficients a,; and constants h, given by
hy“ =0, hy % =0
oo
ki = b(®, = k) P(F, = l)fZ Pr(F, = 1) Lk
1=0
+ b (@, = k- 1) P;(F, = 0)
oo
: Z Pf<Fl fl)Lf1"+k-l
S1=0

+ 55 S P(F = 1))

2=0 f1=0¢;=0

b (@, = )P (F, = f2)
L o IS gy 25ks
A.8) Calculation of T**°
755 =0, 58S =0
e = Tfsl'igl + T;"séf*rfz + 1(’5"1%5 =1, k-0 +f2=1}"

k—1)P,(F, =0) Z PI(F =f1)L5_14y,- The resulting system of linear equatlons is of the form of (7) with

coefficients a,; and constants h, given by

hy®* =0, hy > =0
b= bk(q>l = k)Pf(FZ = 1)fZ_OPf(F1 =f1)Lj"1S+k
+b(®, =k - 1)P(F,=0)

F, =f1)L5fv]5+,(_l, 2<k<J.
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