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SUMMARY

In this paper, the behaviour of two interconnected nodes of a packet communication network is
analysed. The packet arrival process to the first node is described by an i.i.d. discrete time process:
The packet arrival process to the second node consists of two mutually independent streams; one
stream carries the packet output process from node 1; the other stream carries a packet traffic
described by a dependent discrete time process. For this system, the following quantities are derived:
(a) the first two moments of the buffer occupancy and the mean packet delay in the first node; (b)
a description of the packet output process of the first node; (c) the first two moments of the buffer
occupancy and the mean packet delay in the second node.

In the sequel, the behaviour of the buffers'is investigated under some simple routeing policies in
node 1. The objective at this point is to evaluate the queueing behaviour of both buffers under some
routeing policies and it is not to seek for the optimal packet routeing policy in the first node. It is
shown how the routeing policy in node 1 can be incorporated in the description of the packet output
process of node 1 and, then, the behaviour of buffer 2 be accurately evaluated.

The numerical results show that the queueing behaviour of buffer 2 cannot be accurately evaluated
by incorporating a Bernoulli approximation on the output process of node 1. Furthermore, it is shown
that different routeing policies in the first node result in different intensities of the queueing problems
in the second node, although the packet output rate from the first node is constant for all routeing
policies considered. It turns out that a routeing policy which best randomizes the packet output process
results in the least significant queueing problems in the second node. The latter implies that routeing
decisions should be based not only on the desired packet traffic rates (which achieve optimality in the
load distribution among the nodes), but also on the packet randomization affect of the routeing policy
considered.
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1. INTRODUCTION

Packet communication networks have been widely
adopted as an efficient means of transferring infor-
mation. The information sources are assumed to
generate a common quantity, the (fixed length)
packet and they are (statistically) described by their
packet generation process. Any component of a
large packet communication network which outputs
packets may be seen as a packet generating source.
The description of the packet generation processes
of the various components of a large packet
communication network is essential to the accurate
evaluation of the network performance.!

The discussion in this paper is confined to
synchronous packetized communication networks.
Discrete-time queueing models are incorporated in
the analysis of such networks, where packet pro-
cesses are described by discrete time point pro-
cesses.?? The performance of a large network of
nodes (see, for instance, Figure 1) depends on a
number of factors such as the packet traffics entering
the system, and the routeing and service policies at
the various nodes. For given packet input processes
to a large network, different routeing procedures
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(which affect the intranetwork packet traffics) and
service policies (for example priorities), result in
different network performances.

In this paper, the queueing behaviour of-the
interconnected buffers shown in Figure 2 is investi-
gated; R{; denotes the packet traffic which enters
node k and is to be forwarded to node j, through
possibly more than one path, RZ; denotes the packet
traffic departing from node k and forwarded directly
to node j. This system of interconnected buffers
may be found in the simple topology shown in
Figure 3. At first, the behaviours of both buffers of
the system shown in Figure 4 are studied, under a
general independent discrete time packet arrival
process Rj, and a dependent discrete time packet
arrival process Ri;. Notice that no routeing is
incorporated in node 1 and thus A\{, = \$,, where
N and A; denote packet rates associated with the
packet processes Ri; and RY;, respectively. Three
steps are followed in the analysis of this queueing
system. At first, the queueing behaviour of buffer
1 is analysed. Then, the (dependent) packet output
process R$; is described. Finally, buffer 2 is analysed
by incorporating the (dependent) packet processes
RS, and Ri.
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Figre 2. A system of two interconnected buffers with packet routeing

In the sequel, the behaviours of both buffers of
the system in Figure 3 are studied under some
simple routeing policies applied to node 1, by
following the three steps described before. By
maintaining a fixed packet output rate, A\$, (assuming
that NJ; is constant), it is observed that the routeing
policies in node 1 result in different queueing
behaviours of buffer 2. This is due to the fact that,
despite the equality of the intensity of the resultlng
packet rate, different routeing policies in node 1
generate statistically different packet output pro-
cesses RY,. Although the objective of this paper is
not the development of efficient routeing strategies,
a unified description of the packet output process,
which incorporates the routeing strategies, is
developed and some interesting conclusions on the
effect of the routeing policies on the queueing
behaviour of the nodes are drawn. These conclusions
suggest that a new performance measure could be
incorporated in the evaluation of a packet routeing
policy, which takes into consideration the queueing
problems in the subsequent nodes of the network
caused by the packet process generated by the
routeing policy. This approach to routeing is quite

different from the traditional ones which are either
based only on desired packet rates to be generated
by the routeing policy,*> or try to minimize the
queueing problems in the node where the routeing
decision is taken.%?

2. ANALYSIS OF TWO BUFFERS WITHOUT
ROUTEING DECISIONS

In this section, the system shown in Figure 4 is
analysed. The packet input process to the first node,
Ri,, is assumed to be a generalized Bernoulli process
(GBP). That is, the number of packets arnvmg at
node 1 at the potential arrival instants is an
independent process and it follows a general distri-
bution. This process is determined by a message
(or multi-packet) arrival rate, r, and a general
distribution, g(j), 1 <j < Ng, of the message (or
multi—packet) size in packets; Ng is the maximum
message length or number of packets which may
arrive during a single slot. The packet input process
to node 2 is assumed to be a compound process
consisted of two independent packet streams. Input

2 represents. the packet output process from the
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Figure 3. A three-node element of a topology of a packet
communication network

to be the time distance between two consecutive
potential packet arrival instants. The analysis of the
system in Figure 4 requires the study of the queueing
behaviour of buffer 1, the description of the packet
output process R}, generated by buffer 1 and the
study of the queueing behaviour of buffer 2.

Consider the FIFO (first-in-first-out) statistical
multiplexer shown in Figure 5. The service rate is
constant and equal to 1 time unit (slot). The buffer
capacity is assumed to be infinite. Packets arrive at
the multiplexer through N independent input streams
(lines). The per stream packet arrival process is
assumed to be the MMGBP described before.
Packet arrivals are declared at the ends of the slots
(potential packet arrival points).
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Figure 4. A system of two interconnected buffers without packet routeing

first node. Input Rj; is assumed to be described by
a Markov modulated generalized Bernoulli process
(MMGBP) which is, in general, a dependent process.
That is, R}, is described by a discrete time process
{a;};=0 which depends on an underlying Markov
chain {z;};-. The detailed description of {g;};-¢ is
given below.

Let {z;};=0, be a finite state Markov chain
imbedded at the potential packet arrival points;
let § = {xo, x1, ---» xM,l}, M < =, be the state
space of {z;};=0. It is assumed that the state of
the underlying Markov chain determines
(probabilistically) the packet arrival process of the
corresponding line. That is, if a(z;): $—Z,, is a
probabilistic mapping from § into the non-negative
finite integers, Z;, then the probability that k
packets arrive at the buffer at the end of the jth
potential packet arrival instant is given by ¢(z;,k)
= Pr{a(z;) = k}. Furthermore, it is assumed that
there is at most one state, xp, such that ¢(x,0) >'0,
and ‘that the rest of the states of the underlying
Markov chain result in at least one (but a finite
number of) packet arrivals, i.e. ¢(x;,0) = 0, for
1 = k = M. To avoid instability of the buffer queue
it is assumed that there is always one state x,, such
as described above.

The packet service rates at both nodes are constant
and equal to one packet per slot; the slot is defined

The expected number of packets in the system is
given by®

Qo= 2 W, (y) (1)

yes

where § = §' X §2 X ... XSN and W,(7), yES, are
the solutions of any M* X M? x ... X MV~1 linear
equations (M’ is the cardinality of the state space
of the Markov chain associated with the ith input
line, §%) given by

Wi(9) = X Wi(B)p(£,9) + > (l-l-r"l)P(x,Y)"T(x)

XES ) . IES»
+ EQo(x)p(xJ)JES (2a)

and the linearly independent equation
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Figure 5. A FIFO statistical multiplexer with N inputs
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3 20— DWAD)+ 2~ 1)g0(%)
4o, 3pm(®)] = 0 "(2b)

whejre
w(x) = LII'""(X"),P(JEJ) = gpi(xi,yi),
go(%) = (1=N)p(%o,%)

e = z vge(v),0; = Z g:(v),

v=1 v=1

i=1

g:(v) = Pr { S, ai(e) = }

and

A= pam() <1

XES

is the total input traffic which is less than 1 for
stability. R is the maximum number of packets
which may arrive at the same slot from all N lines;
wi(x’) and pi(x’,y’) are the steady state and the
transition probabilities of the Markov chain associ-
ated with the ith input line. The mean packet delay
is given by using Little’s formula, i.e.

7D = (3)

>

The variance of the number of packets in the
system, V, is obtained from the expression

V=0,- ()% Q=2 W@+ 01 (4)
xes
where (. is the second moment of the buffer

occupancy and W,(x), XES, are the solutions of the
following system of linear equations:®

Wad) = TpENWD) + 3 [b¥n()

xS €S

+2M}rj[W1(f) ‘*"Io(x-)]]P(fJ), yes (Sa)
and the linearly independent equation

> 3~ 1Wa(E) +

z€s
> [B¥m(E)+ 3 [Wi() +qo(B)]] =0  (5b)
xes

where

w = X (v )ge(v)

v=0

p = > (v=1)(v—2)g:(v) (5¢)

v=0

“and

w¥ = 3 (v=1)(v-2)(v—3)g(v)

v=0

~ 2.1. Queueing behaviour of buffer 1

The queueing behaviour of the buffer in node 1
is studied for the cases of finite (K<) and infinite
capacity. The outcome of this study is the derivation
of the expressions for the calculation of the first
two moments, @, and (,, respectively, and the
variance, V, of the buffer occupancy and the mean
packet delay, D, induced by buffer 1. We will refer
to these queueing quantities by A, A€{Q,,0,,V,D}.
Closed form expressions for the exact calculation of
these quantities are derived in the case of infinite
buffer capacity. The quantities of interest are exactly
computed in the case of small or moderate values
of K. Finally, almost arbitrarily tight upper and
lower bounds on the quantities of interest are
derived in the case of arbitrarily large but finite
buffer capacity K.

2.1.1. Infinite buffer capacity. The queueing
quantities of interest, A, are computed from equa-
tions (1)—(5) by considering a single input line with
packet arrivals described by a generalized Bernoulli
process (GBP). The GBP is a special case of the
MMGBP under which the analysis in Reference 8
is valid. Since the GBP is an independent process,
the state space, S, of the corresponding underlying
Markov chain of the equivalent MMGBP consists
of a single state, x’. By setting ¥ = x" and since
w(x') = p(x',x') =1 and p, = A, where \ is the
packet input rate, the following equations are
obtained directly from (1)-(3):

Qi =Wi(x")
Go(x') =1-A
2N-DWi(x')+2(A—1)go(x")+2+0.-3A =0

By manipulating the above equations, the following

closed form expression for the mean buffer occu-
pancy, O}, is obtained:

Al v . O=A -
Oi=\+ 20N (6a)

“where o is the second moment of the packet arrival

process. Equation (6a) is valid for any number of
independent input streams, each of which is mod-
elled by a GBP. In the case of N such streams,

N

A= Z}lw‘, o= (" ~(\))+\2  (6b)

i=1

‘where M and ¢’ are the first and second moments

of the packet arrival process associated with the ith
input line. By applying Little’s theorem to (6a), the
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following closed form expression for the mean
packet delay D!, is obtained:

D=1+ (N

In the case of Bernoulli per stream packet arrivals
(i.e. at most one packet arrival per slot per line)
(7) becomes

which is a known result.2

The variance of the buffer occupancy is obtained
by modifying equations (4) and (5) appropriately,
and it is given by

V= 0L - (L) (8a)

‘where Q} is given by (6a), Q! is the second moment
of the buffer occupancy given by

QL= Wy(x') + O} (8b)
“where

Wals') = o A1V (89

Equations (8) are valid for any number of indepen-
dent input streams, each of which is modelled as a
GBP. In this case, A is given by (6b) and p2f and
u2f can be computed from (Sc) by setting ¥ = x'.

Notice that (6a), (7) and (8) imply that, under
packet arrival processes described by a GBP, the
queueing behaviour of the buffer depends on the
moments of the packet input process and not on
the detailed process, as described by the message
rate, r, and the message length probability distri-
bution g(k), where k is the length of a message in
packets. In particular, the first moment of the buffer
occupancy (and, consequently, the mean packet
delay, as well) depends on the first two moments
of the packet arrival process; the second moment
of the buffer occupancy depends on the first three
moments of the packet arrival process. It can be
shown that, in general, the kth moment of the buffer
occupancy depends on the first (k+1) moments of
the packet arrival process. The previous claim is
easy to establish by considering the general approach
for the derivation of the equations (2) and (5),
presented in Reference 8, and finally reducing the
resulting equations to a single one with respect to
Wi(x"), where W,(x') is the kth factorial moment
of the buffer occupancy, as it is done for the
derivation of W, and W, in this paper.

2.1.2. Finite (moderate size) buffer capacity.
When the capacity K of the buffer in node 1 is
finite and of small or moderate size, then the
queueing quantities A induced by node 1 can be
calculated from the following equations:

01 = 2, m(i 9
Vi= 01— (017, 03 = 2 m()?

O
1 X1
b A

‘where (i), 0<i<K, are the steady-state probabilities

of the Markov chain {d;};-,, where d; denotes the
number of packets in the buffer of node 1 at the
jth slot. Since

dj+1 = (d]—1)+ + aj

“where (x)* = x if x=0 and is zero otherwise, and

a; denotes the packet arrivals during the jth slot, it
is clear that {d;},=¢ is a Markov chain with transition
probabilities given by
[ 1-r, j=0, 0=<k=1

rg(y), 1=j<K, k=0

rg(j—k+1), 1=j<K, k=1

i Ng
P(kj)=1 r> g(), j=K, k=0
i=K
Ng
ro > gl), j=K, k=0
i=K—k+1

0, otherwise

“The steady state probabilities (i), 0=<i<K, used in

(9) are obtained from the equations

> m(i) =1

i=1

Mnp =11 (11b)

“ where II is the vector of the steady states probabili-

ties and P is the matrix of the transition probabilities.

2.1.3. Finite (arbitrarily large) buffer capacity.
When the buffer capacity K is finite but large, the
accurate values of the quantities of interest are, as
in case (b), obtained from equations (9). The steady-
state probabilities (i), 0<i<K, are obtained from
the solution of a large number of equations given
by (11). When the system operates outside its
instability region (i.e. A<1—e¢, €>0), the expected
solutions (i), 0=<i<K, given by (9) become van-
ishingly small as i increases. These solutions may
also be inaccurate particularly for i>k,, for some
ko<K. To overcome this computational difficulty,
bounds on the queueing quantities of interest are
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derived, by introducing the concept of the dominant
systems.

Consider the two nodes C* and C* which are
identical to node 1, except for the capacities of the
corresponding buffers. Node C* has an infinite
capacity buffer; node C- has a buffer capacity of
size L<K, where K is the capacity of node 1. Let
A/, denote the queueing quantity A associated with
node ¢/, j=L,~. Then,

QF=0,=07 (12a)
0t =0,=05 (12b)
Dt=D=<D~ (12¢)

08— (@7 =V=0.-(Q)

= Q5 - (Qfy? (12d)

where Q,, @,, V and D are the queueing quantities,
A, associated with node 1. The first two inequalities
are justified by the fact that (assuming ergodicity)

dF=d;=dy (13)

where d! denotes the number of packets at the jth
slot in node C¢, i=L, . The previous inequality is
implied by the fact that, at any time instant, the
occupancy of a buffer of capacity K; cannot be
larger than that of a buffer of capacity K,, where
1=K,=<K,<w, assuming that the two buffers operate
under identical conditions. The right part of
inequality (12c) becomes obvious in view of the fact
that packets in C* which find more than K packets
in the system are rejected by node 1 and, thus,
these packets (of delay greater than K) do not
contribute to the mean packet delay of node 1; their
portion is substituted by packets of delay less than
K in the calculation of the mean packet delay D.
A similar argument justifies the left part of inequality
(12¢). Finally, (12d) becomes obvious in view of
the inequalities (12a) and (12b).

Equations (12) establish upper and lower bounds
on Q;, @,, V and D. In most practical applications
where buffer overflow is not desired, K should be
sufficiently large so that w(K) be extremely small.
Under such condition A=A*, A€{Q;, O», D, V}.
The smaller the value of w(K) the larger the
expected accuracy of the approximation of A by
A=. On the other hand, if w(L), i.e. the steady
state probability that node C” is in state L, is very
small then A = AL, AE{Q,, Q,, D, V}. Again, the
smaller the value of w(L) the larger the expected
accuracy of the approximation. If (L) is sufficiently
small then w(K), w(K) < w(L), is even smaller, and
thus A = A=, as well. That is, if AL is a good
approximation of A and thus we can write A =~ A%,
then A~ is probably a good approximation of A as
well, and we can write A =~ A*. Under such
conditions, the upper and the lower bounds in (12)
are expected to almost coincide.

To analyse the queueing behaviour of buffer 2 an
accurate description of the packet (output) process
generated by node 1 is required.

'2.2. The packet output process of node 1, R%,

Although the packet input process to node 1,
described by a GBP, is an independent one, the
process of the packets departing from this node is
not, owing to the dependencies introduced by the
operation of the node. This process is shown to be
accurately described by an MMGBP.

Let {d;};~0 be the Markov chain defined in Section
2.1.2 which describes the number of packets in node
1 at the end of the jth slot. Let S = {0, 1, 2, ...,
K} be its state space, where K, K = =, is the buffer
capacity of node 1. If X is finite and of small or
moderate value, then {d;};~; will serve as the
underlying Markov chain of the MMGBP to be
used for the description of R$,. If K is very large
or infinite, then a new Markov chain, {d5};=0, with
a state space of reduced cardinality L, L<K, will
be incorporated in the description of R$,, to lead
to tractable computations of the queueing quantities
in node 2. Although the description of R$, based
on {d}};=0 is an approximate one, it turns out that
it results in very accurate calculation of the queueing
quantities of interest in node 2. The parameters of
{d;};=0, 4;€{d;, d5}, are given by (10) and (11) if
d; = d;, and they are obtained from (11) if 4; = d%,
where the following probabilities of the reduced
state space Markov chain d’ are used:

w'(L) = 2 (i)

7' (j) = w(j), 0=j<L
p'G,L)= ZL p(i.j), O=i<L
w(L)
= (L)
p'(L,L) =1-p'(L,L-1)

p'(k.j) = p(k.j), otherwise

p'(L.L-1)= (L,L-1)

"The MMGBP which describes the packet output

process RS, is completely defined by determining
the probability distribution ¢(d;,k). Clearly,

$(0,0) =1, d(d;,1) = 1ford>0,
d,e{d,,d"} (14)

since node 1 outputs one packet when d;>0 and

zero packets otherwise.

Let {a;};=0 and {a%};=0 be the packet output
processes determined by the probability distribution
given by (14) and the underlying Markov chains
{d;}j=0 and {d%};=o, respectively. As mentioned
before, the queueing quantities A associated with
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node 2 are accurately calculated under the approxi-
mation of the true packet output process (a;};=0 by
the process {a%};=0, as long as node 1 operates
outside its instability region. Under the latter
conditions, states i, i>k,, for some ko<L, are almost
never visited by the true Markov chain (d;};=0.
Thus, the Markov chain {d%};=o, for some L>k,,
is a good approximation of {d;};=¢. In addition to
that, the number of packets, a;, generated by node
1 in the jth slot, is the same and independent of
the state of the underlying Markov chain, as long
as it is a non-zero state (see (14)). Owing to the
latter observation, an additional refinement of the
approximation of {d;};=0 by {d%};=0, as seen from
the output process {a%};=0, is introduced, as long
as L>0. Finally, the queueing process in node 2 is
a complex one and it may also introduce some
smoothing on the differences between the processes
{a;};=0 and {a}};=0, and consequently de-emphasize
the difference between {d;};=0 and {d%};=0, as
inferred from the values of the queueing quantities
A evaluated at node 2. The previous arguments
offer some non-rigorous explanations of the expected
(and observed) accuracy of the approximation of
{d};=0 by {d5};=0 (and, consequently, of the
approximation of {g;};=0 by {a%};=0), as measured
by the accuracy of the calculation of the queueing
quantities A at node 2.

2.3. Queueing behaviour of buffer 2

At this point, the queueing behaviour of node 2
is studied under the packet arrival processes R%,
and Ri;, each of which is modelled as an MMGBP;

9, is the packet output process from node 1 and
is described in Section 2.2; Ri; is an arbitrary
MMGBP as defined at the beginning of Section 2.
The queueing quantities A associated with node 2
are calculated when the cardinalities of the Markov
chains associated with RS, and Ri; are of small or
moderate value.

When the capacity of buffer 2 is infinite, then the
equivalent FIFO system, shown in Figure 5, with
N=2 is considered. The queueing quantities of
interest A, A€{Q,, Q,, V, D} are computed from
equations (1)~(5). The obtained results are exact if
the underlying Markov chain associated with R, is
the true one (i.e. if the capacity of buffer 1 is of
small or of moderate size), and they are approximate
otherwise.

When the capacity of buffer 2 is of small or
moderate size or large but finite and the operation
of node 2 is away from its instability region, then
the queueing quantities of interest can be computed
as described in Sections 2.1.2 and 2.1.3, where the
Markov chain {d;};=o is replaced by the three-
dimensional Markov chain {x9, x}, d;};=0; x5 denotes
the underlying Markov chain of the packet arrival
process R$,; xi denotes the underlying Markov chain
of the packet arrival process Rjs; d; denotes the
buffer occupancy of node 2.

3. ANALYSIS OF TWO BUFFERS UNDER
SOME ROUTEING POLICIES

In this section, the queueing system shown in Figure
2 is studied. The only difference between this system
and the one shown in Figure 4 (studied in section
2) is that routeing decisions divert some of the
packet input traffic to node 1, Ri;. The system
shown in Figure 2 appears in network topologies
such as the one shown in Figure 3, where the packet
traffic which enters node 1 and is to be forwarded
to node 3 has two alternate routes; a direct one
from node 1 to node 3 and an indirect one through
node 2. The routeing policies at node 1 may be
adopted for the regulation of the rate of the
traffic which is forwarded to node 2. As a result,
overloading of the links between nodes 2 and 3,
and between nodes 1 and 3, may be avoided. In
this paper, four different routeing policies, P,—Pa,
are considered at node 1. The arrival process R}, is
assumed to be the same, in probabilistic structure,
under all routeing policies. Its intensity is modified
accordingly to generate a fixed packet output rate
under any of the routeing policies considered. Then,
comparison of the queueing results at node 2 under
the various routeing policies at node 1 is meaningful.
The packet input process Ri; determined by the
parameters r;; and g(k), 1<k=Ng, where r,; is the
message (or multi packet) arrival rate and g(k) is
the probability distribution of the message length
(in packets). g(k) is assumed to be the same
under all policies considered, to maintain the same
probabilistic structure of the packet arrival process
in node 1; r3 is properly determined for each
routeing policy, to generate the desired (fixed)
packet output traffic to be forwarded to node 2.
The following policies are considered; all packets
to be forwarded to node 2 are stored in a single
buffer, called buffer 12:

P,. Buffer 12 stores a new message (i.e. all
packets arriving over a single slot) only if it
is empty.

P,. Buffer 12 stores a new message (i.e. all
packets arriving over a single slot) only if it
has at most one packet stored.

P;. Buffer 12 stores all packets up to a maximum
number ©<».

P,. Buffer 12 stores half (or a portion) of the
packets arriving over a slot (or half of them
plus one in case of an odd number of
packet arrivals), according to a deterministic
splitting, up to a maximum O,; ©, can be
infinite.

Clearly, the above routeing policies prevent all
traffic Ri; from being forwarded to node 2. It is
assumed that the status of the buffer in node 2 is
not available to node 1. Only the independent input
traffic Ri; is assumed to be known. The rate of this
traffic determines the desired output traffic from
node 1 (to be forwarded to node 2). Given the
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distribution of the packets arriving over a single slot
at node 1 and a desired output rate from node 1,
as determined by the desired total load in node 2,
the best performing policy P;, P,EP = {P,, P,, P,
P,}, may be identified. The queueing quantities A
as induced by node 2 may serve as a measure of
the performance of the routeing policies and the
optimal such policy may be defined with respect to
A. Clearly, the best policy found, P,, is optimal in
the class P considered and it should not be
considered as such over all possible routeing policies.

Modification of the distribution of the number of
packets arriving at node 1 over a slot, might also
result in a different optimal policy from class P.
Although this paper does not provide for the optimal
routeing policy at node 1 (and this is not the
objective here), it does provide some insight on the
effect of various routeing policies on the intensity
of the queueing problems, caused by the packet
processes generated by these routeing policies. As
a result, some conclusions on the characteristics of
the optimal routeing policy are drawn and a direction
for the search of such a routeing scheme is identified.

The buffer capacity of node 1 is assumed to be
such that all packets to be forwarded to node 2 be
accommodated. This is guaranteed as long as the
capacity of buffer 1, K, is such that K=Ng under
policies P, and P, and K=© under policy P;.
Although no finite value of K can guarantee the
accommodation of all packets destined to node 2
under P, (if ©, = ), a sufficiently large value
of K almost eliminates the probability of buffer
overflow. The appropriate value of X is not expected
to be large, as long as the traffic load r{,, offered
to the server connected to buffer 12, is not heavy.
The latter assumption is realistic if monopolization
of the facilities of node 2 by the traffic R{, is to be
avoided.

3.1. Queueing behaviour of node 1

The queueing quantities of interest A, AE{Q,,
Q,, V, D}, are computed by applying the analysis
presented in Section 2.1.2, where the buffer capacity
K is set to be equal to Ny under policies P, and P,
and equal to © under policy P;. The transition
probabilities p(k,j) of the Markov chain {d;};, are
given by

1 ,1=<k=Npy,j=k-1
rd(j) , 1<j<Ng, k=0
1-r ,k=j=0

0 ,otherwise

Pkj) = J (15)

under routeing policy P;, by

1 2=<k=Npg,j=k-1
rd(j) 1=j=Npg, 0=k=1
1-r k=j=00r k=1, j=0
0 otherwise

P(k,j) = (16)

“under routeing policy P, and by (10) under policy

P; by setting K = ©O. Finally, the analysis presented
in Sections 2.1.2, 2.1.3 or 2.1.1 is applied for the
calculation of A, A€{Q,, Q,, V, D}, under policy
P,, depending on whether the buffer capacity ©, is
small, large or infinite, respectively. Notice that the
splitting of the packets which arrive over the same
slot modifies the message length distribution g()),
as seen from buffer 12, resulting in a better
randomized packet output process under this route-
ing policy.

'3.2. The packet output process from node 1, RS>

The packet output process R%, is modelled as a
MMGBBP, as described in Section 2.2. The (exact)
underlying Markov chain {d;};=o is incorporated in
the description of the packet output process {a;};=0
under policies P;, P,, P; and P,, (if O, is small).
The (approximate) underlying Markov chain {d’};=0
is incorporated in the description of the
(approximate) packet output process {a%};, under
policy P,, when O, is very large or infinite.

'3.3. Queueing behaviour of node 2

The queueing quantities of interest A, AE{Q;,
Q,, V, D} are computed by applying the analysis
approach presented in Section 2.3.

4. NUMERICAL RESULTS

The analysis approach developed in the previous
two sections is applied to systems such as the ones
shown in Figures 2 and 4, operating under specific
traffic conditions. Numerical results are obtained
and some interesting conclusions are drawn. The
input traffic to node 1, which is to be forwarded to
node 2, is modelled as a GBP with parameters r
and g(j), 1=g(j)=Ng. In this section, the following -
parameters of this process are considered: Ng=3,
g(1)=0-2, g(2)=0-3, g(3)=0-3, g(4)=0-1, g(5)=0-1
and various values of the message arrival rate r.
Let r;, and r,,, be the packet input and the packet
output rates associated with node 1.

First, the system shown in Figure 4 is considered.
For various values of r and K (the capacity of buffer
1), 1sK=<x, the queueing quantities A, AE{Q1,
Q,, V, D}, associated with node 1, are exactly
computed. The results are shown in Table I. The
queueing quantities are computed from equations
(6)-(8) when K= and from equations (9) when
K<, From these results, the monotonicity of the
quantities Q;, O, and D with respect to the buffer
capacity K, as stated in equations (12), is clearly -
observed. Notice also that the values of A, AE{(Q1,
Q,, V, D}, computed for the case of the largest
finite value of K, k', shown in Table I, practically
coincide with those obtained under infinite buffer
capacity. This result illustrates that the closed form
expressions (6)—(8) may be used for the computation
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Table I. Queueing behaviour of buffer 1 without routeing policies

i o K Qi ()3 14 D
005 013 00500 & 0-050  0-050 00475 :1-000°
0-05 013 01285 .5 0280; 0781 .0703 2176
005 013 01297 "7 0289 , 0841 0757 2:223
005  0-13 0-1300 33 0291 0859 0774 2237
005 013 01300 ‘s’ 0.291 0860 0775 2237
010 026 0100 1 0100 0-100 0-090 1-000
010 026 0253 "5 0579 1693 '1.358" 2.288
010 026 0:258° 7 0-62P 1980 1-594  2-404
0100 026 02600 10 0636 2116 ' 1.710 | 2-450
0-10. 026, 0260 . 0638 @ 2:141 1733 - 2:455
015 039 ‘0150 1 0-150 0:150  0-127° 1-:000
015 039 0372 5 0897 2751..1:946  2-412
015 039 038 7 1008 3519 2,504  2:620
015 039 038 10 1063 4041 2910 2:733
015 039 0390 & 1078 4240 3076 2765
020 052 0200 -1, 0200 0200 0160 1.000
020 052 0484 5 1234 3963 2-440 2:550
0200 052 '0-506 7 1457 7''5.565 3.444' 2877
020 052 0517 100 16100 7066 ' 4473 3:117’
020 052 0520 15 1-676.117-951, 5:143 3225
020 052 0:520. 20 1685 .8125 . 5286 3241
020 052 0520 <« 1687 8159 5314 3243
030 078 0300 .1 0300 0300 - 0-210, 1-000
030 078 0680 .5 1-949 6-843 . 3.044 2-868
030 078 0752 10 3228 18-804 8381 4-293
030 078 0777 20 4293 39892 18462 5527
030 078 0780 30 4-540 43-737° 23-118 5825
030 078 0780 o  4.598 46028 24-885  5-895

of A, AE{Q,, Q,, V, D}, for any buffer capacity
which is larger than k'. For the values of r considered
in Table I, the corresponding probability w(d; = k')
is less than 1077.

When the buffer capacity of buffer 1 is finite and
equal to 20 and the capacity of buffer 2 is infinitely
large, the queueing quantities of interest, A, associ-
ated with node 2 are calculated by using equations
(1)~(5), and they are shown in Table II; vy is the
clusterness coefficient associated with the packet
output process from node 1, RY,, defined as

y = P(0,0) =~ P(0,0):

where 0 is the zero packet generating state of the
underlying Markov chain of the MMGBP which
models the process R, (as described in Section 2.2)

and 0 is the union of all the packet-generating states
of this Markov chain. As is observed below, the
parameter vy affects the values of the queueing
quantities of interest associated with node 2. The
(independent from R%,) packet arrival process
Rl; is assumed to be a two-state MMGBP with
clusterness coefficient y' = 0-2 and packet arrival
rate equal to 0-9—r,,,, where r,,, is the packet rate
of R, and 0-9 is the total packet traffic load offered
to node 2. A two-state MMGBP is completely
determined by r and . Notice that for r < 0-20 the
behaviour of buffer 1 is identical to that of a buffer
with infinite capacity (123, = ra., where r¥,, is the
packet output rate of a buffer of capacity K) and
that the clusterness coefficient v is identical to that
corresponding to the packet output process of an
infinite capacity buffer. The latter is true since no

Table II. Queueing behaviour of buffer 2 without routeing policies at node 1 and
buffer 1 capacity K = 20

r Fout %  Bernoulli (o} Qy v D

0:05 0-130 0-615 2:112 3-390 22-963 13-859 3-767
0-10 0:260 0-615 2-849 5-402 59:330 35-554 6-000
015 0-390 0-615 3-210 6-897 99-634 58-960 7-664
0-20 0520 0615 3-195 7-796 131000, 78-026 8-662
0:30 0777 0613 2:060 6-257 87-895 55-000 6-953
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packet rejection, which would modify the clusterness
of the packet output process, takes place and, thus,
v is completely determined by the message size
distribution g(j), and not by the message input rate
to node 1, r. For r = 0-3, some packet rejection
takes place (r%, = 0-777 < 0-78 = r3,,) which leads
to a reduced clusterness coefficient y. Notice that
the values of the quantities of interest associated
with node 2 change as r increases despite the fact
that r,+ris, v and vy’ remain constant. The queueing
results in node 2 depend on (a) the probabilistic
structure of the processes R$, and Ri,, (b) the total
offered packet load r$,+ri; and (c) the ratio r$,/ri;.
Clearly, the process Ri; and the total offered load
r¢,+ri; remain unchanged. However, despite the
invariance of vy, the probabilistic structure of R,
changes, since this process depends on a different
underlying Markov chain. The change in the struc-
ture of R$, (which is limited to a small variation in
the steady state probabilities of the underlying
Markov chain) is one factor affecting the value of
A as r increases, probably the least significant. The
variations in the values A are believed to be mostly
due to the change in the ratio r$,/ri;. When
r$,<<ris;, R, acts as a disturbance on a queueing
process determined basically by Ri;. This disturb-
ance, which causes additional queueing problems
since more packets may arrive over a single slot,
increases as rg, increases up to a point (or a region)
where a maximum is achieved. Beyond that point,
a decrease in the intensity of the queueing problems
is observed as Rj; acts as a disturbance (of decreasing
intensity, as r$, increases) to a queueing process
now dominated by RS,

When the capacity of the buffer 1 is infinite, then
the queueing results in node 2 are obtained from
equations (1)—(5), where the MMGBP describing
the packet output process R$, is approximately
described based on a truncated Markov chain with
state space of cardinality L, as described in Section
2.2. The results for the queueing quantities of
interest associated with node 2 are shown in Table
II1, for various message input rates to the first node,
r, and different values of L. The steady-state
probabilities m(j), 0<j<wo, are computed by
assuming a large but finite value of K instead of an
infinite one, and applying equations (11). For the
parameters considered in Table III, w(j) remains
unchanged for any K>80 used in (11). Thus, these
values of m(j), 0<j<K are considered to practically
coincide with those under infinite buffer capacity.
For message input rates r less than 0-20, a truncation
of the true underlying Markov chain associated with
R, at L = 20 gives results which remain, in essence,
unchanged for any L > 20; the latter is observed
at L = 50 when r = 0-3. For all values of r, the
corresponding value of mw(L—1) is less than 107°
and, thus, states larger than the (L—1)th are visited
not often enough to significantly affect the accuracy
of the approximation of the process RY,, as seen
from the induced queueing quantities at node 2.

If processes RS, and Ri; are approximated by a
Bernoulli process, then the mean packet delay
induced by node 2 is given in Table III, for the
various input rates r and total traffic load offered
to node 2 equal to 0-9. By comparing the mean
delay results in node 2, shown in Table III, under
the MMGBP and the Bernoulli process modelling

"Table III. Queueing behaviour of buffer 2 without routeing policies at node 1 and infinite
capacity of buffer 1

r “Fin T Tout Ty L (o} 0, | % D Bernoulli
0-05 0-13 0-13 0-615 1 3-753  29-378 18-947 4-170 2-112
0-05 0-13 0-13 0-615 5 3365  21-343 13-382 3740 2-112
0-05 0-13 0-13 0-615 10 3390 21963 13-859 3-767 2-112
0-05 0-13 0-13 0-615 20 3390  21-977 13-872 3767 2-112
0-10 0-26 0-26 0-615 1 5-642 64928 38-734 6:269  2-849
0-10 0-26 0-26 0-615 5 5292  55-643 32.932 5-880 2.849
0-10 0-26 0-26 0-615 10 5-401  59-283 35-516 6-000 2-849
0-10 0-26 0-26 0-615 20 5-402  59:344 35-565 6-002 2-849
0-15 0-39 0-39 0-615 1 6-532  83-163 47-032 7-257 3:210
0-15 0-39 0-39 0-615 5 7-716 104-446 60-124 7974 3-210
0-15 0-39 0-39 0-615 10 7-753 128-475 76-121 8-614 3-210
0-15 0-39 0-39 0-615 20 7-803 131-403 78-317 8670 3-210
0-20 0-52 0-52 0-615 1 6-532  83-163 47-032 7257 3-195
0-20 0-52 0-52 0-615 5 7-176  104-446 60-124 7-974  3-195
0-20 0-52 0-52 0-615 10 7-753 128475 76-121 8-614  3:-195
0-20 0-52 0-52 0-615 20 7-803 131-403 78-317 8670 3-195
0-30 0-78 0-78 0-615 1 3-568 21707 12-547 3-964 2-040
0-30 0-78 0-78 0-615 5 4-800 44-093 25-854 5333 2040
0-30 0-78 0-78 0-615 10 6-014  78-058 47-201 6-682  2-040
030 0-78 0-78 0-615 20 6-569 102-015 65-422 7-300 2-040
0-30 0-78 0-78 0-615 30 6-641 106-611 69-145 7-379  2-040
0-30 0-78 0-78 0-615 50 6-651 107-516 69-922 7-391  2-040
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RS$,, it is easily established that the Bernoulli
approximation leads to significant underestimation
of the queueing problems induced by node 2.
Finally, when the packet routeing policies P,—P,4
are considered in buffer 1, the queueing quantities
of interest associated with nodes 1 and 2 are shown
in Tables IV and V, respectively. The message size
probability distribution g(j), 1<j<5, remains the
same as before. The message arrival rate is different
in each case and is such that the output rate r%, is
0-45; #; =0-45 and v = 0-3. Notice that the
queueing quantities associated with node 1 are the
same under policies P, and P,, because of the nature
of these policies. On the other hand, policy P,
results in larger values of A, AE{Q,, Q,, V, D} at
node 2, as a result of the increased clusterness of
R$, under policy P,. Note that messages arriving at
node 2 under policy P, are separated by at least
one slot and, as a result, the intensity of the
queueing problems in node 2 is reduced. Various
values of the buffer limit © have been considered
under policy P;. Notice that the values of A,
A€{Q,, Q,, V, D}, increases at both nodes as ©
increases, although r$, remains constant, due to the
increased clusterness vy (affecting the value of A
associated with node 2) and the increased buffer
size O (affecting the value of A associated with
node 1), under the same probability distribution

8()), 1=<5j=<5. Finally, the results under policy P, and
for various values of the buffer constraint O,
(denoted by ©) are given in the same table. The
new probability distributiong!(j), 1=<j<3, is given by
g'(1) = g(1)+g(2) = 0-5, g'(2) = g(3)+g(4) = 0-4
and g'(3) = g(5) = 0:1. Notice that as the buffer
constraint O increases the values of A, A€{0,, O,
V, D}, also increase for the reasons stated before.
Notice that the values of A under policy P, are
smaller than those under policy P; corresponding
to the same value of O, the reason being that the
probability distribution g'(j), 1<j<3, has been
changed under policy P, and less clustered packets
are generated by g'(j). The values of A obtained
for © = 10 under policy P, remain unchanged if a
larger value of O is considered. Thus, these values
of A are considered to be equal to the ones obtained
for © = .

5. CONCLUSIONS

As was mentioned in the summary, the objective
of this paper is not the development of an optimal
routeing policy from node 1 to node 3 (Figure 3),
given, for example, the packet input rates M; and
M. The latter has been the focal point of significant
research, where the optimal routeing policies are
usually based on the assumption of memoryless

Table IV. Queueing behaviour of buffer 1 under some routeing policies with
Tow = 045

Pol?c_y r Tin 3

@

Oy Q. 1% D:

P, 0-3147 0-8182 0-301
P, 02394 0-6224 0-468

P 0-2794 . 0-7264 0-379
Ps 0-1845 0-4797 0-590
P, 0-1738 :0-4519 0-614
Ps 0-1731 0-4501 0-615

P, 0-3210 0-5136 0-288
P, 0-2822 0-4515 0-373
P, 0-2813 - 0-4508 0-375

—
EUIN 8OUIM W L

0935 2492 1-619, 2:077
0935 2:492 1619 2077
0687 1-160° 0-689 1-526
1-128  3-571  2:297. 2:506
1-306. 5311 3-605 2901
1331 5718 3945 2958
0642 1024 0612 1424
0796 1784, 1-150 (1-769
0-808 1-882 1229 1.795

Table V. Queueing behaviour of buffer 2 under some routeing policies with
Four = 0-45. The mean delay under the Bernoulli model is 3-25

Policy i Tin ;y._

o)

i Q2 14 D

P, 0-3147 0-8182 0-301
P, 0-2394 0-6224 0-468

P, 0-2794 0-7264 0-379
P; 0-1845 0-4797 0-590
P 0-1738 0-4519 0-614
P 0-1731 0-4501 0-615

P, 0-3210 0-5136 0-288
P, 0-2822 0-4515 0-373
P, 0-2813 0-4508 0-375

850\!\) v Lh

=
=RV § =]

4-081 27-751 15-178 4-539
4-992  45-031 25-102 5-547

4247  30-810 17-039 4716
6-161  73-569 41-771 6-846
7-223 108-527 63-581 8-025
7-395 116005 68:715 8-216
4126 28924 16-028 4-584
4959 45720 27-081 5-511
5:041 47912 27.535 5-602
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packet traffics characterized by their rates. The
objectives of this paper have been the following:

1. To develop an exact (or, if not exact, a
very accurate) analysis of two interconnected
buffers, where the detailed description of the
buffer packet output process, rather than
simply the buffer packet output rate, is incor-
porated. Results show that a performance
evaluation based on the packet rates and not
on the detailed description of the packet
process, may result in very inaccurate calcu-
lations of the queueing quantities of interest.

2. To investigate the accurate performance of the
second node under some routeing decisions at
the first node which result in a constant packet
output rate from node 1. By describing the
packet output process, generated under a
certain routeing policy, as an MMGBP, the
operation of the routeing policy can be incor-
porated in the detailed description of the
resulting packet output process and, thus, the
performance of the system can be accurately
evaluated

Since dlfferent routeing policies generate probabil-
istically different packet output processes, and since
the queueing behaviour at node 2 is affected not
only by the intensity of the packet arrival process,
but also by the probabilistic behaviour of that
process, it is concluded (and it is observed in the
numerical results) that different routeing policies
result in different queueing behaviours of node 2,
under fixed packet traffics. The latter important
conclusion implies that the probabilistic behaviour
of the packet (output) process generated by a
routeing policy should also be considered in the
quest for the optimal routeing policies and not only
the intensity of that pocess. Numerical results show
that the best packet routeing policy (resulting in the
minimum intensity of the queueing problems at
node 2, as reflected by the queueing quantities A),
from those which generate a fixed packet output
rate from node 1, should be among the policies
which best randomize the resulting packet output
process. The clusterness coefficient y has been
introduced in this paper, as a measure of the
randomization in the packet arrival process. The
randomization in the packet arrival process to node
2 reduces the possibility of momentarily overloading
of node 2 and, thus, improves the queueing behav-
iour of this node. The latter observation explains

why, for instance, a routeing policy which would
continuously forward packets to node 2 over a
period T, and would divert them over the following
T, time units, and then repeat the process, would
be inefficient with respect to the induced queueing
quantities of interest at node 2.
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