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Efficient Modeling of Merging and Splitting Processes
in Large Networking Structures

Toannis Stavrakakis, Member, IEEE

Abstract—The packet traffic generated by a source of infor-
mation undergoes transformation at both the access points and
within a large networking structure, due to merging and split-
ting operations. Such points of traffic transformation are pres-
ent in almost all networking systems, such as high-speed
switching systems, and systems of interconnected LAN’s and
B-ISDN’s. In this paper, simple models are developed for the
description of a first-order Markovian (bursty) process modu-
lated by merging and/or (independent or correlated) splitting
operations. The developed models can be adopted for the packet
traffic description in large networking structures, supporting
multimedia packet traffic. This is due to the fact that the com-
plexity of these models does not change as the number of points
of transformation increases. On the other hand, the bursty
traffic model is capable of describing a variety of packet sources.
The induced packet delay at the merging points is evaluated. A
queueing system is studied for this purpose under a general
class of arrival processes, which include the adopted packet
traffic models. Numerical results are obtained which are com-
pared with simulations whenever approximations are involved.

I. INTRODUCTION

ACKET networks have been evolved as the most ef-

ficient supporting structure for the communication
among geographically separated information systems. Ef-
ficient utilization of the network resources requires that
they be shared by a number of potential users. Accessing
to the common resources (links) is regulated by efficient
protocols. The performance of these protocols is usually
evaluated in terms of the maximum amount of informa-
tion that can be delivered (with finite delay) and the in-
duced packet delay [1].

In today’s complex networking structures, the pack-
etized information may be generated by sources with quite
different characteristics. In addition, the process of the
packets generated by a particular source may be modu-
lated by a number of network resource access mechanisms
before it reaches its destination. The diversity of the
packet generation mechanism of the sources, and the var-
ious multiplexing phases the packets have to go through,
result in complex packet processes. The lack of an accu-
rate description of the packet processes arriving at a net-
work resource presents the major difficulty in evaluating
its performance. The fundamental problem in this case is
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that of the characterization of the packet output processes
generated by the network elements (nodes) supported by
the networking structure. The latter is a major issue in
most of today’s networking structures such as those in a
multihop environment, systems of interconnected net-
works, metropolitan area networks (MAN’s), and switch-
ing networks [2]-[7], [14].

The analytical tractability inherent to the memoryless
models has tempted many researchers to adopt such
models for the description of complex network traffic pro-
cesses. Such processes are, for instance, the internetwork
traffic in systems of interconnected networks [2]-[4], [8],
[9] and the internode traffic in interconnection networks
[14]. The adoption of such models, however, may lead to
erroneous identification of the bottlenecks of the system
and to erroneous packet delay calculations [5). Accurate
models for the description of the dependent packet pro-
cesses in systems of interconnected networks are usually
either difficult to develop or lead to system models which
are not analytically tractable [6], [10].

The discussion of this paper is confined to packetized
slotted communication networks. Discrete time queueing
models are developed for the analysis of large systems of
interconnected nodes, where packet processes are de-
scribed by discrete time point processes. In this paper, the
exogenous packet traffic is assumed to be generated by
bursty sources and it is modeled as a first-order discrete-
time Markov process. This traffic is served by the net-
working structure through sequential transmission over
fixed-speed lines. Unlike a memoryless model, the first-
order Markov model captures some of the dependencies
introducted by the source packet generating mechanism.
At the same time, this model is simple enough to lead to
a tractable analysis of the system performance. It has been
shown in [13] that the first-order Markov model is a well-
performing one for the description of the packet traffic
modulated by mixing and splitting operations in a large
network. This model has been shown to outperform the
Bernoulli one in describing the output process generated
by a random-access multiuser communication network
[6]. A procedure for the calculation of the parameters of
the model has been developed based on the true statistics
of the relevant events in the output process. The results
in [5] show that the output process of a statistical multi-
plexer (buffer) can be modeled by a first-order Markov
process quite adequately. It has also been observed that
this model can capture, to some extent, the strong corre-
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lation between packets over consecutive cells of an ATM
network [11]. Finally, the first-order Markov model has
been adopted for the description of packetized voice and
video traffic.

The exogenous packet traffic undergoes transformation
as its travels through a large networking structure, due to
merging and splitting operations. Traffic merging is nec-
essary for the efficient utilization of common resources,
due to the probabilistic nature of the network packet
traffic. Traffic splitting is also unavoidable due to network
routing decisions. Appropriate models for the description
of the packet processes generated by traffic merging and
splitting operations (points of transformation) are devel-
oped in this paper. These models take into consideration
the structure and the values of the parameters of the packet
processes before the point of transformation. An impor-
tant characteristic of these models is that the complexity
in the calculation of their parameters does not change as
the number of points of transformation (stages) increases.
The developed models are exact in the case of a splitting
point and they are approximate in the case of a merging
point. Both independent and correlated splitting opera-
tions are considered. The queueing systems formulated at
the nodes of the networking structure are studied, and nu-
merical results are obtained. Simulation results are pro-
vided for the cases in which the packet traffic processes
are approximately described.

Approximate models for the traffic description in large
networks have been considered in [16]-[18]. These
models describe traffic as modulated by splitting and
merging operations, whose complexity does not increase
with the number of points of transformation. The systems
considered there are continuous time, and the traffic de-
scription is based on the rate and variance. No Markovian
structure is assumed, and only the case of independent
splitting is considered.

The rest of the paper is organized as follows. In Section
I1, the bursty traffic model is described and the models for
the characterization of the bursty traffic, as modulated by
splitting and/or merging operations, are presented. In
Section III, a relevant queueing system is studied under
arrival processes described according to the traffic mod-
eling introduced in Section II. In Section IV, the traffic
modeling and queueing results developed in Sections Il
and III are incorporated in the performance evaluation of
a simple interconnecting topology. Numerical results,
both analytical and from simulations, are presented, and
conclusions are drawn regarding the effects of splitting
and merging operations on the performance of networking
structures. Finally, the conclusions of this work are pre-
sented in the last section.

II. THE PACKET TRAFFIC MODELS

In this section, the various packet traffic models adopted
in this work are presented. For the reasons explained in
the introduction, the sources of packetized information are
considered to be bursty. These sources generate an ex-

ogenous packet traffic which is modeled as a first-order
Markov process with state space {0, 1} and parameters A
and v; A denotes the packet traffic rate and y denotes the
traffic burstiness coefficient defined by

vy =p, 1) —p0O, 1. 0]

p(i, j) denotes the transition probability from state i to
state j, i, j € {0, 1}. Throughout this paper, the packet
traffic generated by the exogenous sources is assumed to
be delivered to the networking structure through fixed-
speed slotted transmission lines. A time slot is assumed
to be equal to the packet transmission time. State 0 (idle
state) generates no packet with probability one (empty
slot); state 1 (active state) generates one packet with prob-
ability one (busy slot). The state transition diagram of the
bursty traffic model is shown in Fig. 1(a). A bursty traffic
source, which generates packets according to the Markov
model shown in Fig. 1(a) with parameters A and v, will
be denoted by B(\, v). This traffic process undergoes
transformation at the nodes of the network. Models for
the resulting process are developed in the sequel. The
complexity of these models is independent of the number
of transformations.

At certain points of the interconnecting structure, rout-
ing decisions need to be taken. A packet is assumed to be
routed along the tagged direction with probability p; it is
routed along any other direction with probability 1 — p.
This routing policy is defined as the independent splitting
operation and it is depicted in Fig. 2(a). Since the
independent splitting destroys some of the memory pres-
ent in the original bursty traffic B(X, y), a Bernoulli ap-
proximation B(\') of the resulting process would appear
to be meaningful. Although the independent splitting gen-
erates a memoryless process within the duration of a burst
(active period), it fails to completely destroy the memory
present in the original bursty traffic process. The indepen-
dent splitting of the original bursty traffic results in a pro-
cess which generates packets according to a Bernoulli
process over a geometrically distributed length, followed
by periods of inactivity of geometrically distributed
length. This process clearly has memory and it is not a
first-order Markov process. One way to capture this mem-
ory, to some extent, would be by approximating the re-
sulting process by a bursty model B(\', v'), whose pa-
rameter A’ and v’ are related to those of the original
process B(A, 7). A meaningful procedure for the calcu-
lation of the parameters of the approximate model would
be to equate its probabilities to the probabilities that cer-
tain corresponding events occur in the true resulting pro-
cess. This is done in the following proposition.

Proposition 1: Let B(\', ') be a bursty traffic (first-
order Markov) model approximating the packet traffic
process generated by applying independent splitting with
parameter p [Fig. 2(a)] on a bursty traffic process B(A,
7). The values of the parameters of B(N', v"), which de-
termine a process that generates the true probabilities of
occurrence of any specific slot or pair of consecutive slots,
are given by:



1338 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 9. NO. 8. OCTOBER 1991

p(0,1)
p(0,0) ‘o 0’ p(L1)
p(1,0)
(a)
p(0,1)
p(0,0) ‘o 0 p(1,1)
p(1,0) e
(b

Fig. 1. (a) The Markov model for the bursty traffic B(\. ). (b) The Mar-

kov model for the bursty traffic B(N'. ', p) after independent splitting.
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Fig. 2. (a) The independent splitting operation. (b) The correlated split-
ting operation. (c) The merging operation.
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The proof of this proposition is given in Appendix A.

Although the bursty traffic approximation B(\’, v') is
expected to outperform the Bernoulli one B(\') (with pa-
rameter A’ = pM), it is expected that this approximation
will be inadequate for the description of the resulting pro-
cess. Although the parameter calculation approach pre-
sented in Proposition 1 seems to be meaningful, it fails to
“‘look’” a the process beyond the previous slot and get

more information as to whether the original process is in
the active state or not. As a result, the equivalent bursti-
ness coefficient v' is expected to determine an approxi-
mating process B(\', '), which causes less severe
queueing problems than the true process. The latter is ex-
pected due to the inadequate amount of memory captured
by B(\', '), as reflected by the value of ' calculated by
).

The objective in the above discussion and the devel-
opment of the approximating models B(\") and BN, v
is to help get insight into the true process and illustrate its
considerably different structure from those of processes
B(N\') and B(N', ¥'). The performance of the approxi-
mations B(\') and B(\', ¥') will be evaluated in terms of
the accuracy of the packet delay results induced by a mul-
tiplexer fed by such approximating processes. These
queueing results, as well as those under exact modeling
of the resulting process, will be obtained in the next sec-
tion. An exact modeling of the process generated by ap-
plying independent splitting on bursty traffic is described
in the sequel.

The true packet traffic process generated by applying
independent splitting on the bursty process B(A, ) [Fig.
2(a)] is exactly described in terms of a Markov modulated
Bernoulli process (MMBP). Its state transition diagram is
shown in Fig. 1(b). The underlying first-order Markov
model is identical to that in the original traffic B(\, v). A
packet is assumed to be generated when the underlying
Markov chain is in state 1 (active) with probability p; no
packet is generated from state O (idle). This MMBP will
be denoted by B(\', v', p), where A’ = X\/p, v = 7' and
p is determined by the splitting probability.

The analysis of certain queueing systems is, in general,
less complex under packet arrival processes described by
B(\) (memoryless process) compared to that under pro-
cesses described by B(A, v) (process with memory). Since
process B(\', ¥') is a special case of the process B(A, v,
p), the analysis of certain queueing system is, in general,
less complex under packet arrival processes described by
B(N\', ¥') compared to that under processes described by
B(N\', v', p). For instance, important boundary probabil-
ities are trivially computed under B(\, v) arrival pro-
cesses (Section III). This is not the case under B(A, v, p)
arrival processes; in the latter case, the development of a
complicated approach is required. In the next section, a
simple queueing system is studied under the exact mod-
eling of split bursty traffic. Exact queueing results are de-
rived to be compared with those obtained under the simple
approximation models. Based on this comparison, con-
clusions regarding the performance of the approximate
models will be drawn and the expectations for good ac-
curacy of these models in more complex queueing situa-
tions will be better shaped.

In this sequel, the case of correlated splitting of the
bursty traffic B(\, ) is considered. The resulting (after
the splitting) traffic along the tagged direction is denoted
by B(X\, v, Po» P1» P2), Where pg, p;, and p, are the pa-
rameters of the splitting process [Fig. 2(b)]. According to
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the correlated splitting policy adopted in this paper, the
first packet of an active period in process B(\, v) appears
in process B(\, v, o, P1» P2) with probability p,. Given
that a packet appeared in B(X, v, po, p1.» p2) in the pre-
vious slot, a packet appears in B(\, 7, po, p1, p2) in the
current slot with probability p,, provided that process B(\,
) is still active. Given that a packet did not appear in
B(\, v, po, P1, P2) in the previous slot although process
B(\, v) was active, a packet appears in the current slot
with probability 1 — p,, provided that B(\, ) is still ac-
tive. The values of the parameter p, and p, determine the
degree of the correlation in the splitting process; the larger
the value of p, the larger the probability that consecutive
packets will be routed along the tagged direction. Unlike
the independent splitting policy, which generates a mem-
oryless process within an active period of B(A, ), the
correlated splitting policy results in a process which has
memory within an active period of B(\, ). This splitting
policy becomes an independent one if py = p, = 1 — p,.
The correlated splitting operation captures the realistic
situation in which consecutive packets delivered by a
source (or node) are highly likely to have the same des-
tination and, thus, follow the same network path. The lat-
ter might be the case when consecutive packets are orig-
inated from the same network user or when they are part
of a long message.

The correlated splitting policy applied on process B(\,
7v) is easily seen to generate a process B(\, v, po, P1, P2)
that is exactly described in terms of a three-state Markov
modulated Bernoulli model with the state transition dia-
gram shown in Fig. 3. State 0 corresponds to the idle state
of process B(\, v). State 1, describes the state in which
process B(\, v) is active and the packet is routed along
the tagged direction. State 1, describes the state in which
process B(\, ) is active and the packet is not routed along
the tagged direction. The transition probabilities are de-
scribed in terms of those of the original process B(\, 7y)
and the splitting probabilities pg, p,, and p,. State 1, gen-
erates a packet with probability 1. States 1, and O generate
no packets with probability 1.

In the case of the correlated splitting, it is important
that a measure of the correlation be defined. The corre-
lation coefficient, defined by:

c=p +p—1 (3)

possesses a number of useful properties. When py = p.q,
where pe, is equal to the portion of packets forwarded
along the tagged direction, then ¢ = 0 corresponds to the
case of independent splitting. In this case, py = p; = 1
— P2 = Peq» Which implies that a packet of the original
bursty process B(\, v) is forwarded along the tagged di-
rection with probability p.q independently of the decision
taken in the previous slot. The maximum value of ¢, ¢ =
1, is achieved when p; = p, = 1. In this case, states 1,
and 1, do not communicate directly and splitting is per-
formed on a burst-by-burst basis. That is, a (whole) burst
is forwarded along the tagged direction with probability
po (bursty splitting). If ¢ = 1 and py = 1, then no splitting

1339

p(O.1(1-p))

p(l.D{A-p )

'
1
;
Y
1
Fig. 3. The three-state Markov modulated Bernoulli model for the bursty
traffic B(X, v, po. pi» p2)-

is in effect and the resulting process is identical to the
original process B(A, v).

Unlike the case of independent splitting, which reduces
significantly the amount of memory in the resulting packet
process, it is expected that correlated splitting will pre-
serve (to a greater extent) the memory present in the orig-
inal process B(\, ). Thus, it appears to be meaningful
to construct an equivalent bursty traffic model B(\', v')
to approximately describe the resulting process B(A, 7,
Po» P1» P»). This is done by simply merging states O and
1, of the exact three-state Markov model B(A, v, po, p1»
p»). The parameters of B(\’, y') are given in the next
proposition. Its proof is similar to that of Proposition 1.

Proposition 2: Let B(\', ¥') be a bursty traffic model
approximating the packet traffic process generated by ap-
plying correlated splitting, with parameters po, p,, p,, on
a bursty traffic process B(\, v). The values of the param-
eters of B(\', v'), which determine a process that gen-
erates the true probabilities of occurrence of any specific
slot or pair of consecutive slots, are given by:

N o= (L),

, _pp, ) =y _pp(L D - 1
o1 -x1y) 1 -x1y

where 7(1;) is the steady-state probability that the three-
state Markov chain, shown in Fig. 3, is in state 1,. p(1,
1) is the transition probability from state 1 to state 1 in
the original bursty traffic B(\, 7). O

In the previous paragraphs, exact models were devel-
oped for the description of the packet traffic generated by
independent or correlated splitting, applied on a bursty
packet traffic process. When traffic is merged, the result-
ing packet process is more difficult to be exactly de-
scribed. This is due to the complexity of the merging
(queueing) process, due to the fact that packets may have
to be temporarily stored in a buffer before they are trans-
mitted [Fig. 2(c)]. Unlike the splitting process, which

Y +1 @)
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tends to destroy the original burstiness and make bursty
modeling less accurate, the merging process results in
more regular packet traffic. This traffic generates one
packet when the buffer is nonempty and zero packets when
the buffer is empty. In this paper, it is assumed that the
buffer output line has the same speed with the feeding
lines and, thus, the slots at the input and output have the
same length. The potential packet departure and arrival
points (slot boundaries at the input and the output) are
assumed to coincide.

The bursty traffic (first-order Markov) model is adopted
for the characterization of the output of a merging pro-
cess. State O corresponds to the empty buffer state; state
1 corresponds to the nonempty buffer state. It has been
observed in previous studies [5] that this model performs
quite satisfactorily. The parameters of the approximate
model B(\', v') for the buffer output process are com-
puted in terms of the true probabilities that any specific
slot (empty or busy) or pair of consecutive slots appear in
the buffer output process. These parameters are derived
in the next proposition.

Proposition 3: Let B(N', ') be a bursty traffic (first-
order Markov) model describing the packet output pro-
cess of a buffer fed by N bursty or split bursty traffic pro-
cesses B;, 1 < k < N, where B, € {B(\), B(\, ), B(\,
v, p), B(N, v, po. p1» P2)}. The values of the parameters
of B(N', ¥"), which determine a process that generates the
true probabilities of occurrence of any specific slot or pair
of consecutive slots, are given by:

1+
N=l-p v )
Po
where p, denotes the probability that the buffer is empty
and pgy denotes the joint probability of occurrence of a
pair of consecutive empty slots in the output process.
These probabilities are given by:

N
po=1-2 4w (6)
P = 22 7(0; $) o (%) @

where S* denotes the state space of the Markov chain
which describes the kth input process; $* = {0} if B, =
B(\), $* = {0, 1} if B, = B(\, v) or B, = B(\, v, p)
and §“ = {0, 1,, 1o} if B, = B(\, v, po. p1. p2); (%)
denotes the steady-state probability that the kth input pro-
cess is in state x, x € §¥; qf (x) denotes the probability that
state x of the kth input process generates j packets, j = 0,
1;8§=8"x 8§ x -+ x SV denotes the state space of
the N-dimensional Markov chain formed by the N input
Markov chains; g; (x) denotes the probability that state ¥
€ § generates j packets; 0 < j < N; 7(0; X) denotes the
(boundary) probability that the buffer is empty and the
input Markov chain is in state X (packets generated by x
are assumed to arrive at the end of the current slot). These
boundary probabilities are computed in the next section
for the case of arbitrary input processes B, | < k < N.

When the input processes B, are such that B, € {B(\),
B(\, vy)} forall k, | < k < N, then the boundary prob-
abilities are easily shown to be given by:

N
T(O, X) = Po Ag] pk(o, xk)9

x=@ o xMes ®)
where pX(0, x*) = 1if B, € {B(N)}; p*(x*, y*) denotes
the transition probability that the underlying Markov chain
associated with the kth input process moves from state x*
to state y*. The proof of this proposition is given in Ap-
pendix A. O
The computation of the boundary probabilities 7(0; X)
receives special attention in the next section. A method
for the derivation of these probabilities .is developed and
an important queueing system is studied.

III. THE QUEUEING SYSTEM

In this section, the queueing system depicted in Fig.
2(c) is considered. This system is adopted as a model for
the study of the traffic merging points (nodes) of the net-
working structure. The input lines are assumed to be slot-
ted and packet arrivals and service completions are as-
sumed to be synchronized with the end of the slots. A slot
is defined to be equal to the fixed service (transmission)
time required by a packet. At most, one packet may be
served over a slot. The first-in first-out (FIFO) service
discipline is adopted. Packets arriving at the same slot are
served in a randomly chosen order. The buffer capacity is
assumed to be infinite. Each of the N (discrete time) input
lines is assumed to deliver packetized information accord-
ing to one of the processes B(A), B(\, v), B(\, v, p) or
B(\. v, po, 1, P2). Let B denote the collection of these
processes.

The discrete-time queueing system described above has
been studied in [12], under packet arrival processes from
the class of the m /MM /r /B processes. Anm /MM /r/B
process is a discrete-time Markov modulated generalized
Bernoulli process, which may deliver up to r packets at a
time. This process is defined in terms of an underlying
Markov chain and a set of probabilities associated with
its states. The state space S of the Markov chain has car-
dinality M equal to m. Given the current state j of this
Markov chain, k packets are generated with probability
(), 0 = k = r, j e S. The moments of the buffer
occupancy process have been computed in terms of the
solutions of M' x M? x --- x MY linear equations,
where M* is the value of M associated with the kth input
process. The mean packet delay has been computed by
invoking Little’s theorem. These equations are given in
Appendix B.

Application of the queueing results derived in [12] re-
quire knowledge of the boundary probabilities that the
buffer is empty and the state of the N-dimensional under-
lying Markov chain is ¥, X € §. This Markov chain is
formulated by the underlying Markov chains associated
with the N inputs. Its state space is denoted by § = §'
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ST x -+ x SV where $* is the state of the kth input
Markov chain. As discussed in [12], when there exists
only one state Xy, Xo € S, such that gy (%) > 0 and g (¥)
=0 forxe S — {X,], then the boundary probabilities can
be computed from the following equation.

N

r(:%) = po 1T pHxt, x5 ©)

where superscript & indicates quantities associated with
the kth input process.

Clearly, B is a subclass of the class of the m /MM /r/B
processes. Process B(\, v, po, i, P2) is a 3/MM/1/B
process based on an underlying Markov chain with two
states (states 1o and 0) which generate no packets. Thus,
since go(0) = 1 # 0 and go(lp) =1 # 0, (9 is not
applicable. Similarly, process B(X, v, p)isa2/MM/1/B
process based on an underlying Markov chain with two
states (state O and 1) which generate no packets. Thus,
since go(0) = 1 # 0 and go(1) = p # 0, (9) is again not
applicable.

The above discussion implies that the analysis of the
queueing system under study, when input processes from
{B(\, v, p), BC\, v, po, P\, P»)} are present, requires the
development of an approach for the calculation of the
boundary probabilities 7(0; X), X € S. These probabilities
are also required for the evaluation of the parameters of a
bursty traffic approximation of the packet process gener-
ated by merging processes from {B(\, v, p), B\, v, Po,
P, P2)}, as described in Proposition 3. The boundary
probabilities 7(0; %), ¥ € § are derived in the next
theorem.

Theorem 1: The boundary probabilities 7(0; k) that the
buffer is empty and the state of the N-dimensional input
Markov chain is k, 1 < k < M (M is the cardinality of
the N-dimensional input Markov chain), is given by:

(0, k) = m.(K)py, 1=<k=M (10)

where pg is the probability that the buffer is empty and
7, (k), 1 < k < M, are the solutions of the matrix equa-
tion

(I,] = [IL,]{P,] (11a)
[II,]e =1 (11b)
where [II,,] = [, (1), * ++ , 7 (M)}, e =1, - -, 11"

iithe_ll—/!—dimensional unit column vector and [P,] is an
M X M matrix with elements p;;, 1 < i,j < M, computed
from the matrix equation
No

(P.] = 2 (O [P1[P.* (11¢)
where N, is the maximum number of packet arrivals in a
slot; [Qx] is an M X M diagonal matrix with elements
g:(k), 1 <k < M,0 < i = N, where g;(k) is defined in
Proposition 3; [P] is the transition matrix of the N-dimen-
sional input Markov chain; [P,.1¥ is the kth power of [P,,]
(P,1° = . 0

Proof of Theorem 1: LetJ = {0, 1,2, - - - } be the
index set of the instants (slot boundaries) when the buffer
is empty. Let w;, w; € S be the state of the N-dimensional
input Markov chain at instant j, j € J. Clearly, {w;};c, is
a Markov chain with state space S; let ,, () and p,. (i, ),
i,j €S, denote the steady-state and transition probabilities
of {w; },es, respectively. p,.(i, j) is the probability that the
input Markov chain moves from state i, at an instant when
the buffer is empty, to state j at the first instant in the
future when the buffer becomes empty again. The transi-
tion probabilities p,, (i, /) and i, j € S satisfy the following
equations:

No

putis ) = Pl Dao) + Z aii) 2 pli, mP{EL}.

i,jes (12)
where g (i), 0 < k < Ny, i € S, and p(i, j), i j € S, are
defined in Proposition 1. N is the maximum number of
packet arrivals in a single slot. E ',‘y- denotes the event that
the input Markov chain moves from state n, at an instant
when the buffer content is equal to &, to state j at the first
instant in the future when the buffer becomes empty. This
event is equivalent to event Rﬁj; Rf,j denotes the event that
the input Markov chain moves from state n, at the begin-
ning of a sequence of k consecutive R reductions, to state
j at the end of the last of these R reductions. An R reduc-
tion with respect to time instant i, occurs at the first in-
stant (following i), i,, at which the buffer content is re-
duced by one with respect to its content at instant i;;
instants i, and i, are defined as the beginning and the end
of the R reduction, respectively. In a sequence of consec-
utive R reductions, the end of the R reduction is assumed
to coincide with the beginning of the one that follows. A
realization of the buffer occupancy process V(k), in which
the event E,5,j occurs is shown in Fig. 4, where the begin-
ning and the end of the R reductions of interest are
marked; V(k) is assumed to be right-continuous. The state
of the input Markov chain at the time instants of interest
is shown in parentheses. The equivalence of the events
Ef,j and Rf,j is easily established in this realization.

Let (i, ), i, j € S denote the probability that the input
Markov chain moves from state i at the beginning of an
R reduction to state j at the end of this R reduction; let
[C] denote the stochastic matrix with elements ¢(i, j), i
je8S. Let ¢®(i, j) denote the probability that the input
Markov chain moves from state i, at an instant when the
buffer content is equal to k, to state j, at the first instant
in the future when the buffer becomes empty. ¢® (i, ) is
equal to the probability that the end of the last of a se-
quence of k consecutive R reductions finds the input Mar-
kov chain in state j, given that the input Markov chain is
in state i at the beginning of the first of those R reductions.
This probability is the (i, j)th element of the kth power of
[C]. The previous discussion establishes that:

P{ELY = P{Ry} = ¢ (n, )

and, thus, (12) becomes:
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Fig. 4. A realization of the buffer occupancy process V(k) where the events
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R,; and E;; are shown, as well as the five consecutive R reductions.
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puli ) = pli, Do) + 2 (@) 24 pli, me(n, ).

(13)

To derive (11) and complete the proof of the theorem, the
following lemma is invoked.
Lemma 1:

[P] = [C]. (14)

Proof of Lemma 1: It is easy to establish the follow-
ing equations for the transition probabilities c(i, j), i,
jeS:
No

i j) = pli. Do) + 2 qu) 2 pli, me®(n, ).

(15)

Equations (13) and (15) establish (14). The result in (14)
can be also shown by identifying that the event of the
transition of the buffer occupancy process from state 0
(empty buffer) to state O for the first time in the future,
corresponds to an R reduction. The easiest way to see the
previous is to consider a realization of an R reduction
starting with arbitrary nonzero buffer content and the cor-
responding realization (i.e., using the same realization of
the packet arrival process) of the buffer occupancy pro-
cess between two consecutive instants in which the buffer
is empty. It will be easily seen that both the R reduction
and the empty to first-time empty processes have the same
time duration; that is, the same number of transitions of
the input Markov chain. Thus, p,.(i, j) = c(i, j) = p"(,
j) if n such transitions are required. Notice that the evo-
lution of the R reduction process does not depend on the

initial value of the buffer content. d
The proof of Lemma 1 completes the proof of
theorem. O

As a final comment, it should be noted that the com-
plexity of the analysis of the queueing system considered
in this section increases as the number of input streams
and/or the cardinality of the underlying Markov chains

increase. This is due to the increased dimensionality of
the system of linear equations (Appendix B) and the con-
vergence time in (11c). The convergence issue of equa-
tions of the type of that in (11c) is briefly discussed in
[15] and the references cited there. These are not critical
issues for the system considered in this paper, due to the
very small cardinality (at most 3) of the state space of the
underlying Markov chains associated with the processes
in B.

IV. PERFORMANCE EVALUATION OF INTERCONNECTING
STRUCTURES

In this section, the packet traffic modeling and the
queueing results presented before are incorporated in the
performance evaluation of networking structures. The fo-
cus at this point is twofold. The first objective is to illus-
trate the relative performance of the various traffic models,
identify the regions and the reasons of the observed in-
accuracies and shape accordingly the expectations for the
relative performance under other queueing conditions.
The second objective is to propose a procedure for the
performance evaluation of large networking structures,
based on proper modeling of the packet traffic as modu-
lated by merging and splitting operations. As an example,
a fully connected topology of interconnected nodes (points
of transformation) is considered. This topology can pre-
sent most of the situations which may be encountered in
an arbitrary topology.

Consider four nodes interconnected according to a fully
connected topology. Let a, b, ¢, and d denote these nodes.
let ly, k, j € {a, b, c, d} denote the link that connects
node k with node j. Let Uy, k, j € {a, b, ¢, d} denote the
uplink buffer which feeds link /,;. This buffer is fed by the
packet traffic generated at node k and forwarded to node
j.-LetDy, ke{a, b, c,d},je(l,2, -, N} represent
the downlink buffer of node k which receives the inter-
node traffic that is destined to the jth local destination
within node k; N, denotes the maximum number of local
destinations supported by node k. The uplink buffer U,,
and the downlink buffer D, are shown in Fig. 5. Sij=
1, 2, 3 denotes the jth traffic source supported by node a.
The splitting arrows at the inputs of uplink buffer U, rep-
resent exogenous traffic generated at the corresponding
source which is not forwarded to link /. The splitting
arrows at the inputs .of downlink buffer D, represent
traffic arriving through the corresponding link, which is
forwarded to one of the other local destinations supported
by node b.

For the reasons outlined earlier in this paper, the ex-
ogenous packet traffic is assumed to be bursty and is de-
scribed by a first-order Markov model B(\, ). Thus, the
input traffic to uplink U, is a bursty traffic modulated by
the splitting operation. The situation is different at the in-
put of the downlink buffer D,,. The traffic delivered by
lines 1, ., and [l (before the splitting) is the output
from the uplink buffers at the other end of the links.
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Fig. 5. Detailed description of the uplink buffer Uy, and the downlink
buffer D,,.

To evaluate the performance of the interconnection, the
packet delay induced by both the uplink and downlink
buffers needs to be calculated. The models and the results
developed in the previous sections are used for this pur-
pose. Let B;(), i = 1,2, 3,4, 5 denote the packet traffic
at point i, as marked on Fig. 5. Without loss of generality,
it is assumed that the system is symmetric; each of the
exogenous traffic is modeled as B(A, 7).

Study of the Uplink Buffer U,,: First, consider the case
of independent traffic splitting at the input lines of the
uplink buffer. The mean packet delay D, induced by the
uplink buffer U,,, is shown in Fig. 6 as a function of the
splitting probability p. Results are presented under traffic
modeling B, (N\'), By(N', '), and B,((N', 7', p). The
total packet input rate to the buffer, Az = 3Ap, is equal
to 0.9 and the burstiness coefficient y of each input traffic
is equal to 0.9. The results indicate that the process B,
generated by applying independent splitting on a bursty
traffic Bi (\, ), cannot be adequately described by a Ber-
noulli or bursty model. That is, the independent splitting
process is not capable of significantly reducing the mem-
ory of the original process. On the other hand, it is ca-
pable of significantly hiding it from the mechanism (sce
Proposition 1) that constructs the equivalent bursty model.
When no splitting is in effect (p = 1), the two models
B,(N', v') and B,(\', ¥', p) coincide. When p = 0.3, in
order for Ay to be equal to 0.9 the packet rate of each input
line has to be equal to Ap/(3p) = I; that is, B, (A, v)
corresponds to a constant traffic stream process. By ap-
plying independent splitting on constant traffic, a Ber-
noulli traffic is generated. In this case, models By (\"),
B,(N', v'), and B,(N', ¥', p) coincide, as illustrated in
Fig. 6 for p = 0.3. In general, the smaller the value of p,
the smaller the correlation between successive arrivals at
the buffer. As p decreases, inactive intervals within a burst
of the original traffic look probabilistically like those
within an idle period of the original traffic. Thus, the gap
between the delay results is decreased as p decreases.
Similar delay results are shown in Fig. 7 as a function of
the burstiness coefficient v, for A\; = 0.9 and splitting
probability p = 0.75. As expected, the more bursty the
original traffic is, the larger the gap between the three
models. When v = 0, the original process is a Bernoulli
process and, thus, all three models coincide. It should be
noted that model B, (N, v, p) is exact.

Fig. 8 presents some intcresting results for the case of
correlated splitting. The burstiness of the original bursty
traffic B, (\, v) is equal to v = 0.7 and the total packet
arrival rate is equal to Ay = 0.75. The results are derived
under the exact and approximate (bursty) models. They

total rate - A =.9
burstiness : y=.9 i

50 4

Fig. 6. Mean packet delay induced at the uplink buffer.

total rate = A\ =9

p=.75

Delay D e slats)

Fig. 7. Mean packet delay induced at the uplink buffer.

. — B(x *,',:,;p‘p:;’ total rote : A,=.9

- - (o SV burstiness : y=.7
T T T T T T T T
B3 Q.4 0.5 0.6 0.7 0.8 0.9 1.0

Peq

Fig. 8. Mean packet delay induced at the uplink buffer.

are plotted as a function of p,,, which is the portion of the
original traffic B,(\, y) which is forwarded along the
tagged direction. Clearly, p,, is equal to the splitting
probability p when independent splitting is applied. Re-
sults are shown for ¢ = 0, ¢ = 0.5, and ¢ = 0.7, where
Ppo is set to be equal to p,,. For given values of Az, Pegs Vs
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¢, and p,, the values of p, and p, are determined. When
Po = Dy the case of ¢ = 0 corresponds to independent
splitting. Notice that the delay results under correlated
splitting vary significantly with respect to those under the
equivalent independent splitting. The larger the value of
c, the greater the difference is. This observation implies
that quite inaccurate results may be obtained under the
independent splitting assumption, when the actual split-
ting operation is correlated.

The same plots as in Fig. 8 are shown in Fig. 9, with
the addition of the case of ¢ = 1. For ¢ = 1 and p, = Peq
= 1, no splitting in the effect. In this case, B, (X, v, po,
P1,P2) = By (A, ). Under a fixed y = 0.7 for the original
bursty process By (X, ), and a fixed resulting packet rate
of Az = Apq and py = Peq> N\ increases as p,, decreases.
Given that v = p(1, 1) — p(0, 1) is fixed, increasing A
corresponds (under the above conditions) to increasing
both p(1, 1) and p(0, 1). The increased value of p(1, 1)
implies that longer bursts are generated by the resulting
original process B, (\, v). Since the whole burst is for-
warded along the tagged direction when ¢ = 1, the pre-
vious implies that increased queueing problems will ap-
pear as p., = po decreases. This trend is clearly shown in
Fig. 9. Notice also that the value of v’ in the approximate
process B, (\’, v') also increases as Peq decreases (or p(1,
1) increases) and the delay results obtained through this
model increase monotonically as p., decreases [see (4)].

Study of the Downlink Buffer D,,: Evaluation of the
packet delay induced by the downlink buffer D, requires
knowledge of the corresponding packet input processes.
These processes are generated by applying merging and
splitting operations on bursty traffic processes. Notice that
models B,(N\', v, p) and B,(\, v, po, P1» P2) exactly
described the input processes to the uplink buffer U,,. This
is not the case with the input processes to the downlink
buffer D,;. These processes are described in terms of the
process B;(\', ') which is only an approximation of the
true packet traffic at the output of the buffer. It is this
approximation whose accuracy is evaluated with simula-
tion results of the delay induced by the downlink buffer
Dbl .

The mean packet delay induced by buffer D, is shown
in Figs. 10-13. This buffer is fed by three symmetric in-
put lines, each of which carries traffic generated by the
corresponding uplink buffer. p, and p, are the parameters
of the independent splitting operation applied at the input
and output of each of the involved uplink buffers. v de-
notes the burstiness coefficient of the packet traffic gen-
crated by the sources feeding the uplink buffers. The
packet rate A of each source is selected to be such that the
total input traffic A; to the downlink buffer takes a certain
value from those considered in the plots (horizontal axis).
Curve (1) corresponds to the simulation results; curve (2)
corresponds to the results obtained if By = B(\3, v3, p2),
BB = B(>\3s 73)’ BZ = B()\” 7,7 pl) and B] = B()\’ ’Y)s
where process B; is approximate and, thus, process B, is
also approximate; curve (3) corresponds to the results
when a bursty model is adopted after every splitting and

70
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burstiness : y=.7
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Fig. 9. Mean packet delay induced at the uplink buffer.
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Fig. 10. Mean packet delay induced at the downlink buffer.
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Fig. 11. Mean packet delay induced at the downlink buffer.

merging; curve (4) corresponds to the results obtained un-
der Bernoulli model for B,, with parameter A, = A\;/3.
The delay results have been derived as a function of A\
and for y = 0.5; four different pairs of values of (py, p,)
have been considered. Notice that the results obtained un-
der the traffic modeling which incorporates the exact
model for the splitting operation and the approximate
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Fig. 12. Mean packet delay induced at the downlink buffer.

Fig. 13. Mean packet delay at the downlink buffer.

model for the merging operation [curve (2)] are close to
the simulations and clearly outperfrom those under Ber-
noulli [curve (4)], and bursty [curve (3)] modeling. No-
tice that when p; = p, 1 (Fig. 10), curves (2) and (3)
coincide as expected.

When splitting occurs at the input of the uplink buffer,
futher reduction in the memory captured by B3 (\;, v3) is
expected. As a result, the computed burstiness v is ex-
pected to underestimate the intensity of the queueing
problems caused by the true process B;. Indeed, it has
been observed, that under symmetric input traffic and p,
< 1, the value v5, computed as described in Proposition
3, is significantly smaller than ;. When p; = 1, it has
been observed that the corresponding computed value,
+¥¥* is equal to or slightly larger than v,. To compensate
for the superficially large reduction of the value of y; when
p1 < 1, the following approximate value of v3 has been
considered.

3 =pivi + (1 = pA.

C}lrve (5) in Fig. 13 corresponds to curve (2) when B,
= B;(\;, ¥3). Notice that curve (5) overestimates Dy,
when Aris below =~0.7; it underestimates if for \rgreater
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Fig. 14. Mean packet delay induced at the downlink buffer.

than =0.7. This behavior suggests that 73 be considered
when the traffic load is significant.

Finally, when independent and correlated splittings are
in effect at the inputs of the uplink and the downlink buff-
ers, respectively, the delay results are shown in Fig. 14.
Notice that, for the same value of pg, the corresponding
results under independent splitting in Fig. 13 [curve (2)]
are of significantly lower value, as expected.

V. DiscussioN AND CONCLUSIONS

The objective in this paper has been the study of the
effects of splitting and merging operations on bursty traffic
B(\, 7). These operations are very common in network-
ing structures, due to routing decisions and common shar-
ing of the resources. Exact representation of the traffic
generated by splitting traffic has been developed and a rel-
evant queueing system has been studied. Approximate
representation of the traffic at the output of a traffic merg-
ing point has also been proposed.

The effects of the independent splitting operation on
bursty traffic B(\, v) has been studied and a simple exact
model for the resulting traffic has been developed. At the
same time, the inadequacy of the Bernoulli or bursty traffic
models for the description of the resulting traffic has been
illustrated. The interesting case of correlated splitting,
applied on bursty traffic, has also been considered. An
exact model for the description of the resulting traffic has
been developed. It has been shown that ignoring correla-
tions in the splitting process may result in quite inaccurate
performance calculations.

A simple exact model for the description of the packet
process generated by merging packet traffic is difficult,
due to the complexity of the queueing process at the merg-
ing point. A very accurate representation of this process
is possible by adopting the approach in [5]. Unfortu-
nately, such an approach would not be applicable beyond
the first merging due to the increased complexity. In this
paper, effort has been focused on the development of sim-
ple models which, on one hand, capture to some extent
the dependencies in the true process and, on the other,
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present a complexity which does not change as the num-
ber of stages increases. The simplest model which pos-
sesses these characteristics is the Bernoulli one; which
captures only the rate of the resulting process. The pro-
posed bursty model, with parameters calculated as de-
scribed in Proposition 3, captures not only the resulting
packet rate but also dependencies between consecutive
slots (taking into consideration the effect of possible split-
ting just before the merging point) as well. As a conse-
quence, this model has been shown to clearly outperform
the Bernoulli (i.i.d) one. At the same time, the complex-
ity of its parameter calculation does not change as the
number of stages increases.

Arbitrarily complex networking topologies can be stud-
ied by incorporating the splitting and merging models de-
veloped in this work. It is proposed in [13] that the inter-
node traffic, modulated by merging and splitting
operations, be approximated by a bursty model B(\, v)
with a rate-dependent value of . In particular, it is pro-
posed that the value of v be estimated by v = 1—(1 —
e ™)/\. Clearly, this bursty model is based on the re-
sulting packet rate and fails to distinguish between a split-
ting or merging operation before the point of considera-
tion. It also fails to capture the degree of burstiness that
the traffic exhibits before the particular operation takes
place. For A < 0.9, the value of v calculated in [13] can-
not exceed 0.34 and, thus, it is not capable of represent-
ing more bursty traffic. In most of the examples consid-
ered here, the value of y which is based on A resulted in
very inaccurate results. These results were better than
those under Bernoulli modeling. Nevertheless, arbitration
of the value of v (based on \) has been found to perform
relatively well (and produce results close to those under
the proposed models), when most of the traffic arriving at
a buffer has been modulated by a large number of merging
and independent splitting operations. When the packet
traffic, generated by the sources supported by a node, is
significant compared to the transit traffic through that
node, then the arbitration of vy fails to produce accurate
delay results. The same has been observed when the traffic
of only a few sources dominates the arrival process to a

particular node and/or highly correlated splitting occurs

in the network.

When alternate routing in a fully connected network is
possible or when the interconnecting topology is arbi-
trary, transit traffic appears in the uplink buffers. Since
this traffic is modulated by a large number of splitting and
merging and probably undergoes significant splitting at
the particular node (since portion of this traffic is for-
warded to other uplink buffers or to the destinations sup-
ported by the node), the memory present in this portion
of the traffic arriving at the tagged uplink is not significant
and it may be satisfactorily captured by a burstiness coef-
ficient based on the (usually small) rate \.

There are a number of contributions that could be at-
tributed to this work. Although the idea of modeling
packet traffic as a (first-order Markovian) bursty process
is not a new one, its transformation under splitting and
merging operations has not been studied in the past. First,

a bursty model for the packet traffic after a transformation
point (merging or splitting) has been developed; its pa-
rameter take into consideration the corresponding values
before this point and they generate the true probabilities
of single events and pairs of consecutive events (Propo-
sition 1-3). It has been argued and shown that the bursty
model is inappropriate for the characterization of the traffic
right after a splitting point. Exact models have been de-
veloped for the resulting traffic in this case, under both
independent and correlated splitting policies. The case of
correlated splitting is more general and it may represent
many realistic splitting situations, such as burst switch-
ing. A relevant queueing system has been considered un-
der a general class of input processes, which contains the
models developed in this paper. An approach for the cal-
culation of important boundary probabilities has been de-
veloped (Theorem 1). This approach expands the appli-
cability of the queueing system significantly. Queueing
analysis has established that correlated splitting may cause
significantly more intense queueing problems than the in-
dependent one. Thus, correlation in the splitting process
should be ‘properly taken into consideration. A common
property to all models considered here is that their com-
plexity, in both their description and their parameter cal-
culation procedure, does not increase as the number of the
points of transformation increases. Finally, it has been
illustrated how the simple models can be applied for the
evaluation of the performance of a networking structure.
The objective at this point has been to illustrate the per-
formance of the models rather than to analyze the perfor-
mance of an important networking structure.

APPENDIX A

Proof of Proposition 1: The first part of (2) is ob-
vious. Let 7, (i), p,(i, ), i, j € {0, 1} denote the steady
state and the state transition probabilities of the equivalent
bursty traffic model. Let p, (i N j) denote the joint prob-
ability that the first and the second of a pair of consecutive
slots along the tagged direction are in states i and j, re-
spectively. It is easy to show that:

_p(10 ) p N DHp?

Pl D == ()
(1, Ha(1)p?
=

where the notation without subscript e refers to the cor-
responding parameters of the bursty traffic model B(\, v)
before the splitting. The imposed Markovian structure on
B, (N, v') implies that:

p.0, 7 (0) + p.(1, )7 (1) = 7 (1) — %
_ pe(l’ 1) - We(l)
B 7. (0)

The above equations prove the second part of (2). O
Proof of Proposition 3: The first part of (5) is ob-
vious since N’ is the total input rate. By using the defini-
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tion of y given in (1) and by imposing the Markovian
structure on B, (\’, v'), the second part of (4) is proved.
Two consecutive empty slots are observed at the output
of the buffer whenever the buffer is empty (the first empty
slot is generated) and the state of the input Markov chain
results in no new arrival (the second empty slot is gener-
ated). This event can be expressed as the union (over all
possible states X) of the following events: {(buffer is
empty) N (state of input Markov chain is X) M (not packet
generated from X }. The latter implies (7).

The state space of the Markov chains associated with
traffic models B(\) and B(X\, ) contains only one state
(state 0) which may not generate a packet. As a result,
whenever the buffer is empty the state of the input Markov
chain in the previous slot is uniquely determined. Thus,
the event that the buffer is empty and the input Markov
chain is in the state X is equivalent to the event that the
buffer is empty and a transition from the no packet gen-
erating state to state X takes place. Since state transitions
of the input Markov chain do not depend on the buffer
content, (8) is derived. O

APPENDIX B

In this Appendix, the equations for the calculation of
the first moment of the buffer occupancy process in the
queueing system described in Section III are presented.
These results are taken from [12], where the moments of
the buffer occupancy process are derived. By adopting the
notation used in the main part of this paper, the mean
buffer occupancy is obtained from the equation

0 =we
where 2 is the M-dimensional unit row vector and W =

(w1, , wiz] with {w;}™ | being the solution of the
following linear equations:

M =i

w, = 2 p(i, j) [w; + m(@) (g — 1) + 7(0; D),

1

l<j=<M

M xl

2(p; — Dw; + 2(p; — D7(0; 1)

i=1

+ Q2+ 0 —3p)T@] =0

where p; and o; denote the first and the second moments
of the number of packets generated from input state i, 1
< i < M. The mean packet delay is computed from Lit-
tle’s theorem and it is given by D = Q/\, where X is the
total packet input rate.

When all the input processes in the queue are described
in terms of the B(\) or B(\, v) modelings, then the in-
duced mean packet delay may be calculated from the fol-
lowing closed form formula [13}

N N n m
IS (PR

n=1m>n —"y” 1 __,Ym

<1 - 2 >\"> 21N

n=1 n=1

D=1+

where N is the total number of input lines and A, v, de-
note the rate and the burstiness of the nth input stream.
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