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In this paper some statistical multiplexing schemes under non-i.i.d. packet arrival processes are considered. Various packet
multiplexing policies with priorities are proposed to introduce fairness in the service process, accommodate different packet
delay requirements and avoid monopolization of the transmission media by some sources. The per input line packet arrival
process is described as a Markov Modulated Generalized Bernoulli Process (MMGBP). The MMGBP can serve as a model for
a wide class of complex packet arrival processes present in integrated services digital networks. Furthermore, when certain
priority policies are in effect the original MMGBP can be transformed into another MMGBP where the priority policy is
properly incorporated. As a result, auxiliary/equivalent FIFO multiplexing systems can be constructed with inputs described
by a MMGBP, as well. Finally, the TDM application that is presented in this paper illustrates the appropriateness of the
MMGRBP in representing the effect of certain policies on the behavior of coupled (in some sense) queues. The above properties
of the MMGBP facilitate the analysis of certain multiplexing systems under some dependent packet arrival processes.

Keywords: Communication networks, queueing systems, statistical multiplexing.

1. Introduction

Integrated Services Digital Networks (ISDNs)
should not be seen as a simple evolution of Data
Networks (DNs) which have been developed over
the last two decades. The significant differences
among the sources of information involved in
ISDNss, regarding, for instance, the packet genera-
tion processes and the packet delivery require-
ments, create a more complex environment com-
pared to that found in data networks.

Although the unit of information is a fixed size
packet for all potential users of the system, to
facilitate the integrating operation of an ISDN,
the characteristics of the various packet processes
of interest can be dramatically different from those
present in a traditional data network. Poisson,
Bernoulli, or general i.i.d. processes, widely incor-
porated in the analysis of data networks, are rather
inappropriate for the description of the packet
processes in an ISDN. For instance, packetized
voice traffic can be modeled as blocks of packets
arriving over consecutive time slots with geometri-

cally distributed length (talkspurt) followed by
periods of silence with geometrically distributed
length. Other kinds of packetized information
(such as long files, video traffic, etc.) may be
described as blocks of packets whose length fol-
lows a general distribution. The output of a com-
puter over a slot may contain more than one
packet of information; fast transmission lines may
also deliver more than one packet per slot. The
packet traffic generated by a concentrator/
transmitter and being delivered through a slotted
line is constant (one packet per slot), whenever its
buffer is non-empty and it is zero otherwise. Packet
traffics generated by various sources in an ISDN
or by network components in both an ISDN or a
DN cannot be described with the memoryless
models mentioned before.

In a discrete time slotted network, the packet
traffics for the cases described above (among other
ones) can be appropriately described by a Markov
Modulated Generalized Bernoulli Process
(MMGRBP). That is, it is assumed that the source
of information (i.e., network component or user)
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visits M states of an underlying Markov chain.
Given the current state, the number of packets
generated follows a general distribution. Clearly
this packet process is a non-i.i.d. one. It is easy to
establish that the cases of packet traffics described
before may be described (or approximated) by a
MMGRBP. For instance, the packetized voice traffic
is a MMGBP with two states, “talkspurt” and
“silence”. The probability that the voice source
generates one packet when in state “talkspurt” is
one; the probability that it generates zero packets
when in state “silence” is one. The packet process
of blocks of packets arriving over consecutive time
slots may be described by a MMGBP [7] as well.

The other important issue in a packet network
accommodating packets from sources with differ-
ent characteristics is that of the allocation of the
common facility among the sources. The alloc-
ation policy should take into consideration the
time constraints imposed on certain packets and
the possible monopolization of the common re-
source by certain sources over long periods; the
latter could introduce unacceptable delays to short
messages (e.g., consisted of single packets) of in-
teractive communication or control information.

In this paper, we analyze a number of statistical
multiplexing schemes under packet arrival
processes described by a MMGBP and under vari-
ous priority policies. The non-i.i.d. MMGBP may
be appropriate for the description of complex
packet processes, while the prioritization may in-
troduce fairness and increased efficiency in the
system.

A statistical multiplexer with N packet input
processes, each of which is described by a MMGBP
has been analyzed in [7], under the first-in-first-out
(FIFO) service policy. The analysis of the system

“in [7} (the results of which are presented in the

next section) is the ground on which the method-
ology for the analysis of the multiplexing schemes
with priorities will be built.

Packets are assumed to arrive through slotted
synchronous lines. That is, all packet arrivals are
declared at common time instants which coincide
with the end of the slots (slot boundaries). Dis-
crete time queueing models for statistical multi-
plexing schemes under non-iid. inputs and
without priorities have been analyzed in the past
[2,3,7-9]. Previous work on statistical multiplexing
where packets with different priorities are in-
volved, is heavily based on the assumption of a
memoryless packet arrival process (e.g., Poisson)
[1,5,6]. Notice that the proposed MMGBP in-
cludes simpler processes such as the Bernoulli or
the generalized Bernoulli (more than one packet
arrivals may occur over the same slot) processes
and the first-order Markov process (arrival/no
arrival), approximating packet arrivals in bursts or
describing the packetized voice traffic. Even under
these simple arrival processes and for the priority
policies considered in this paper, the correspond-
ing multiplexing schemes have not been analyzed
before.

The rest of the paper is organized as follows. In
the next section the statistical multiplexer pre-
sented in [7)] is briefly described and the results
from the analysis in [7] are presented. In Section
3, four different multiplexing schemes are consid-
ered and the methodology, based on the construc-
tion of systems equivalent to the one in [7), is
presented. The mean buffer occupancy and the
mean packet delay for all packet categories are
derived for all cases considered. In Section 4,
some numerical results on the mean packet delay
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are presented for the cases considered in Section
3. Finally, the conclusions of this work appear in
the last section.

2. The FIFO statistical multiplexer

In this section we describe the statistical multi-
plexer analyzed in [7] and present the equations
derived for the calculations of the mean buffer
occupancy and the mean packet delay. This sys-
tem will be modified to accommodate the priority
policies in the next section. By establishing equiv-
alent systems with the one presented briefly in this
section, similar equations will be used for the
derivation of the queueing results of interest in the
next section.

A statistical multiplexer which is fed by N
input lines is shown in Fig. 1. The input lines
(which are mutually independent) are assumed to
be slotted and packet arrivals and service comple-
tions are synchronized with the end of the slots. A
slot is defined to be the fixed service (transmis-
sion) time required by a packet. At most one
packet can be served in one slot. The first-in-first-
out (FIFO) service discipline is adopted. Packets
arriving at the same slot are served in a randomly
chosen order. The buffer capacity is assumed to be
infinite. The packet arrival process associated with
line i is defined to be the discrete time process
{a}},50 i=1,2,..., N, of the number of packets
arriving at the end of the jthslot; a;=k,0<k <
oo, if k packets arrive at the end of the jth slot
through input line i.

Let {z}),,0, be a finite state Markov chain
imbedded at the end of the slots, which describes
the state of the input line i. Let §'=
{x4s Xis..s X4gr—1}, M'< o0, be the state space
of {z}};50- It is assumed that the state of the
underlying Markov chain determines (probabilisti-
cally) the packet arrival process of the correspond-
ing line. That is, if a'(x’): S'— Z,, is a prob-
abilistic mapping from S’ into the non-negative
finite integers, Z,, then the probability that k

r

o : -

Fig. 1. The FIFO statistical multiplexer with N inputs.

packets arrive at the buffer at the end of the jth
slot is given by ¢(z), k) =Pr{a'(zj)=k). Fur-
thermore, it is assumed that there is at most one
state, xi such that ¢(x{, 0)> 0 and that the rest
of the states of the underlying Markov chain result
in at least one (but a finite number of) packet
arrivals, i.e., ¢(x},0)=0, for 1<k<M'—1. All
packet arrivals are assumed to occur at the end of
the slots. To avoid instability of the buffer queue
it is assumed that there is always one state x,
such as described above.

The expected number of packets in the system
is given by [7],
o= X wW(y) 0))

yef

where S=S5'xS?x...x SN and W(j), €S,
are the solutions of any M X M>x ... x MY -1
linear equations given by
w(5)= L W(Z)p(%, 7)

xe¥

+ X (- 1)p(%, ¥)n(X)
xef

"'quo(f)}’(is 5), 7€5§  (2a)
Xe

and the linearly independent equation
):S[zu,— 1)W(X) + 2(ps = 1)go(X)
+(2+0,—3pg)w(X)] =0 (2b)
where
‘N ‘ N
7(X) = gw’(x'), p(%, y)= '_l'llp‘(x‘, »'),
4o(X) = (1-2A)p(%, X),

R R
b= gl’gx(’)' Oy = 21'28':(")’
N Y
£:(7) -Pr{--): a'(x') = .}
Lim1
and
A= Egnw(f)ﬂ

is the total input traffic which is less than 1 for
stability. R is the maximum number of packets
which may arrive at the same slot from all N
lines; #'(x') and p'(x’, y') are the steady state
and the transition probabilities of the Markov
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chain associated with the ith input line. The mean
packet delay is given by using Little’s formula, i.e.,

D=Q/A (3)

3. Statistical multiplexing with priorities

In this section we consider various multiplexing
schemes under different priority policies. The per
slot and line packet arrival processes are described
by the MMGBP introduced in Section 2.

3.1. Case 1

Consider the statistical multiplexer shown in
Fig. 2; the input lines, r, and r,, are assumed to
carry synchronous packet traffic. The packet
arrival processes {a}};,o and {a})};,, are as-
sumed to be twvo MMGBPs. In particular, {a}};,0
is assumed to be a MMGBP with two underlying
states xj and x] and packet generation probabili-
ties ¢'(x), 0)=1 and ¢'(x}, 1) =1. That is, one
packet is generated when the line (or the source
connected to the line) is in state x] and no packet
is generated when in state x{. This model may
describe the packet traffic generated by a voice
source or, in general, blocks of packets of geomet-
rically distributed length, arriving over consecutive
slots. The second packet process {a} }iso is as-
sumed to be given by the general MMGBP de-
scribed in the previous section.

In the statistical multiplexing scheme consid-
ered here it is assumed that line r, carries high
priority traffic which has priority over that carried
by line r,. That is, it is assumed that the server
(which makes decisions at the slot boundaries)
moves to line r, only if the buffer associated with
line r, is empty; it returns to line r, as soon as the
corresponding buffer associated with line r, be-

Fig. 2. The statistical multiplexer of Case 1.

comes non-empty. Since at most one packet arrives
through line r,, the service policy implies that a
single packet buffer is required for line r,. If the
cut-through connection is possible, no buffer is
necessary for line r,. An infinite capacity buffer is
assigned to line r,.

Clearly, there are two categories of packets, say
C, and G,, with different priorities (a smaller
subscript indicates higher priority). Packets in C,
are served (transmitted) right away. Thus, the
mean delay of packets in C,, D, is equal to 1 (the
service time). Service of packets in C, is inter-
rupted whenever a packet arrives through line 7;;
let D, be the mean delay of packets in C,.

To compute D, we consider a FIFO system
(shown in Fig. 1) which is equivalent to the one
considered here. An equivalent FIFO system is
defined as a FIFO system whose packet arrival
processes are identical to those of the system
under consideration; let D,, denote the mean
packet delay induced by the equivalent FIFO sys-
tem. Since the queueing system is work conserving
and nonpreemptive, the conservation law [1,4] im-
plies that D,, satisfies the following equation.

_AMDy+ A D,
2T IRAR,

(4)

where A, and A, are the per slot packet arrival
rates through lines r, and r,, respectively. D;, can
be computed from eqns. (1)-(3). Then D,, the
mean delay of packets in C,, can be computed
from (4) by setting D, = 1.

A practical application of the simple priority
scheme described here is related to the mixing of
voice and data packets; r, may carry packetized
voice (A, < 0.5) and r, may carry blocks of packets
of time unconstrained information. The multiplex-
ing scheme provides (in essence) a circuit to the
voice traffic which is utilized by data packets
when idle. The mean data packet delay, in this
case, is given by D,.

Another application of the above priority
scheme, which is of both theoretical and practical
significance, is related to the analysis of a Time
Divison Multiplexer (TDM) under station traffic
described by a MMGBP. This application il-
lustrates the capability of the MMGBP in describ-
ing imaginary packet processes which represent
the operation of a system. At the same time mean
delay results for the particular multiplexer are
easily derived.
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Consider a time division multiplexing system
with N buffered stations. Each station is assigned
one slot per frame; the frame is supposed to be
consisted of N slots. The per station packet arrival
processes are assumed to be modeled as MMGBPs.
Although the queues of the stations do not inter-
fere directly with each other, the service policy
introduces a (deterministic) coupling among the
queues, in the sense that the presence of the other
N —1 queues (users) results in a service policy
which removes one packet from the queue under
study (if nonempty) every N slots. It is the num-
ber of queues (users) in the system and not their
status that, in conjunction with the service policy,
introduces the coupling which makes the analysis
difficult.

To study the queueing system associated with,
for example, station 1, a second packet arrival
process (input line) to its buffer is considered for
the representation of the coupling. This process,
denoted by (4)};,0, can be modeled as a
MMGBP. The corresponding underlying Markov
chain has N states, denoted by 1,2,..., N, and
transition probabilities given by

1 j=k+1,1<k<N
1 j=1,k=N
0 otherwise

P(k’ J)=

The corresponding probabilistic mapping is
given by: d'(1)=0 and a'(k)=1 for 1 <k <N,
with probability one.

From the above construction of the arrival pro-
cess {d}},,0 it turns out that one packet arrives
through the second line in every slot except from
the first of a sequency of N consecutive slots. By
assuming priority for these packets the decoupling
of the queue under study is achieved. Whenever
the server of the TDM system serves the other
stations, the server of the decoupled queueing
system serves the priority packets arriving from
the process {4,); . Thus, the time division mul-
tiplexing policy of the original system is repre-
sented by the second packet arrival process
{4)};50 to the queue under study. Clearly, the
queueing system in the TDM station is identical to
that of Fig. 2 where line r; carries the traffic from
the process {4} },, o and line r, carries the traffic
to the station under study. The desired mean
packet delay of the particular station corresponds
to D, and can be computed as described above.

'3.2. Case 2

Consider the statistical multiplexer shown in
Fig. 3. Both synchronous traffics {a}},,, and
{ajz- }j» o are assumed to be modeled as MMGBPs.
Case 2 is identical to Case 1 with the only dif-
ference being that more than one packets per slot
may arrive through line r,, as well. As a result,
queueing probiems appear in both lines. Line r,
carries high priority traffic (or the source con-
nected to r; has priority over the one connected to
line r,) which has priority over that carried by line
r,. To compute D; and D,, in this case, we pro-
ceed as follows.

"Calculation of D,

Consider a FIFO statistical multiplexer with
one input line which is identical to r,. By using
eqns. (1)-(3), we compute the mean packet delay
induced by this FIFO multiplexer. Clearly, this
mean packet delay is equal to D,. The priority of
r, over r, results in a buffer behavior of line r
which is not affected by the packet arrival process
in r,. Thus, the behavior of the buffer connected
to r, is identical to that of the FIFO multiplexer
described above.

Calculation of D,

To compute the mean delay of packets in C, we
use the equivalent FIFO statistical multiplexer.
The mean packet delay, D,,, is obtained from
eqns. (1)-(3). Then D, is obtained from (4).

3.3 Case 3

Consider the statistical multiplexer shown in
Fig. 4. The packet arrival process {a;},, is as-
sumed to be a MMGBP, as described in Section 2.
To avoid monopolization of the facility by long
messages (consisted of many packets) which arrive
over a single slot, the following service policy is

Fig. 3. The statistical multiplexer of Case 2.
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Fig. 4. The statistical multiplexer of Case 3.

introduced. The first packet of those arriving dur-
ing a single slot enters a single packet buffer b,
and it is transmitted in the next slot. The rest of
the packets enter an infinite capacity buffer b,.
The server moves to buffer b, only if buffer b, is
empty. This service discipline gives priority to
single packets (over a slot); packets other than the
first of a slot are served under a FIFO policy
interrupted by new arrivals. This service policy
introduces some fairness in the service policy and
favors single packets.

Clearly, the mean delay of single packets (or of
the first packet of a multipacket of a slot) is equal
to 1 slot, i.e. D; =1. The mean delay of packets
which enter b, is given by (4), where A, is equal to
7(x # x,) (the probability that the line is in any of
the packet generating states), A, = A, .., — A, and
D,, is the mean packet delay of the equivalent
FIFO multiplexer of Fig. 1 computed from eqns.

DO-03).
3.4. Case 4

Consider the statistical multiplexer shown in
Fig. 5. The per input line packet arrival process
and the service policy are as in Case 3. The first
packet per slot arriving in each of the input lines
is given priority by being sent to the infinite
capacity buffer b,; the rest of the packets arriving
over the same slot are sent to the infinite buffer
b,. The FIFO service policy is assumed for the
packets of the same buffer. Packets in b, have
priority over those in buffer b,. That is, service of
the packets in b, can start only if buffer b, is

Fig. 5. The statistical multiplexer of Case 4.

“empty. This service policy avoids monopolization

of the facility by either long messages (indepen-
dently of the generating source) or certain sources
(which by nature generate long messages). To
compute D, and D, we proceed as follows.

" Calculation of D,

Consider the statistical multiplexer shown in
Fig. 5. The per input line packet arrival process
and the service policy are as in Case 3. The first
packet per slot arriving in each of the input lines
is given priority by being sent to the infinite
capacity buffer b;; the rest of packets arriving
over the same slot are sent to the infinite buffer
b,. The FIFO service policy is assumed for the
packets of the same buffer. Packets in b, have
priority over those in buffer b,. That is, service of
the packets in b, can start only if buffer b, is
empty. This service policy avoids monopolization
of the facility by either long messages (indepen-
dently of the generating source) or certain sources
(which by nature generate long messages). To
compute D, and D, we proceed as follows.

" Calculation of D,

Consider a FIFO statistical multiplexer (Fig. 1)
whose packet arrival process is given by MMGBPs.
The underlying Markov chains of these MMGBPs
are identical to those associated with the input
lines ry,..., ry. The probabilistic mapping

N
a(x)= Y d'(x'), x€8§

i=1
is modified to describe the packet arrival process
to b,. That is,

N
a1(§)= Zl(x'¢x6)9 xXES (5)

i=1
where x{, is the state of line i which generates no
packets. Based on (5), the packet generating prob-
abilities ¢'(x’, k) are modified to the following
¢'(x§,0)=1 and ¢'(x',1)=1forx'#x} (6)
The mean delay of the packets in D, is now
computed by applying egns. (1)—(3) on the FIFO
system with packet arrival processes as determined
by (6). The total packet arrival rate A (used in (3))

is given by
N . .

A=Y a(x'#xp). )
i=1
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Calculation of D,

The mean delay of packets in buffer b, is
computed from (4), where A, is given by (7),
A2 = Aom — Ay, and Dy, is the mean packet of the
equivalent FIFO multiplexer of Fig. 1, computed
from eqns. (1)-(3).

4. Numerical results

In this section some numerical results are de-
rived for each of the four priority policies de-
scribed in the previous section. In the examples
considered below it is assumed that the underlying
Markov chain associated with any of the input
lines has two states, that is S’ = {0, 1} for the ith
line. State O is the no-packet generating state (i.e.,
a'(0) = 0); state 1 generates at least one packet, up
to a maximum of K', with probabilities ¢'(1, j),
1<j<K"

As the delay results illustrate, an input traffic
process which generates packets clustered around
consecutive slots and followed by a period of
inactivity, causes significant queueing problems
and the induced packet delay is greater that the
one induced under better randomized packet
arrivals of the same intensity. Since state 1 gener-
ates packets and state 0 does not, it makes sense
to use the quantity y', where,

y'=p'(1,1)-p'(0,1) (8)
as a measure of the clusterness of the packet
arrival traffic; p'(k, j) is the probability that the
Markov chain associated with line i moves from
state k to state j. The value of y' = 0 corresponds
to a per slot independent packet generation pro-
cess (generalized Bernoulli process). The cluster-
ness coefficient y' and the packet arrival rate X
are two important quantities which dramatically

Table 1

Mean packet delay results for Case 1.2

A Y Dy Dy, D,
0.90 0.5 1.000 13.897 26.794
0.90 0.3 1.000 9.325 17.651
0.90 0.0 1.000 5.897 10.794
0.70 05 1.000 4.799 8.598
0.70 03 1.000 3.466 5.981
0.70 0.0 1.000 2.466 3.931

affect the delay induced by the multiplexing sys-
tem. For this reason, each traffic will be char-
acterized by the pair (X, y') and the distribution
¢ (1, j), 1 <j<k'. The rest of the parameters of
the MMGBPs associated with each input line are
computed from the following equations:

P)=

2 j# (1. §)
j=1

7'(0) =1~-#(1) (92)
P'0,1)=(1-v)7'(1),

P, 1) =y +75'(0,1) (9b)
P'(1,0)=1-p'(1,1),

P'(0,0)=1-p'(0,1) (9¢)

4.1. Case 1

Consider the multiplexing system of Case 1
with distributions ¢'(1, 1) =1, ¢°(1, 1) =05,
¢%(1,2) = 0.3, ¢*(1, 3) = 0.2 and parameters A' =
M=MA/2 and y'=y?=1y (Case l.a). The mean
packet delay results D,, D, and D,, are given in
Table 1, for various values of A and vy. It can be
easily observed that for a given total input rate A,

Table 2
Mean packet delay results for Cases 1.b and 1.c
A y? Case lb Caselc e

Dy, Dy, . Dy
0.55 0.5 41.207 66.794 33.694 54.500
055 03 37.541 60.794 32472 52.500
0.55 0.0 34.790 56.294 31.139 51.000
0.35 0.5 11.966 22931 9.917 18.833
0.35 0.3 10.966 3 9.583 18.167
0.35 0.0 10.216 19.431 9.333 17.667
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Table 3

Mean packet delay results for Case 1.d

A y=00 y=03 y=05
0.04 8.500 14.928 23.500
0.06 12.250 21.893 34.750
0.08 23.500 42.785 68.500 .

the smallest induced delay is achieved for y=0
(independent per slot packet generation process).
This is due to the fact that y = O results in the best
randomization of the packet arrivals for given A
and ¢'(1, j), 0<j<K"

When N =0.35 and y' =0.93, line 1 may de-
scribe packetized voice traffic with geometrically
distributed talkspurt periods (with mean ~ 22
packets) and geometrically distributed silence
periods (with mean ~ 40 packets) [3]. The distri-
butions of ¢'(1, 1) and ¢*(1, j), 1 <j < 3, are the
same as before. The mean delay results are shown
in Table 2 for various values of A*> and y? (Case
1.b). Notice that although the total traffics consid-
ered are equal to those in Table 1, the induced
mean packet delay D, is much larger, due to the
larger value of the c]ustcrnm oocfflclent Y.

For N =0.35, y' =0.93 and ¢*(1,1)=1, the
induced mean packet delay D, is smaller than that
ofCaselb for the same values of N, y', A’ and
y? (Case 1.c). This is due to the reduced cluster-
ness resulting from the fact that only single packets
arrive through line 2, as well (as opposed to possi-
bly multiple packets arriving under the previous
case). These results are shown in Table 2 (Case
1.0).

Finally, consider a TDM system with N =10
stations and packet arrival process to the station
under study given by a 2-state MMGBP with
parameters ¢(0,0)=1, ¢(1,1)=05, ¢(1,2)=
0.3, ¢(1,3)=0.2 (Case 1.d). By following the

1. Stavrakakis / Statistical multiplexing

analysis approach described in Section 3, the mean
packet delay is calculated; the results are shown
on Table 3, for various values of A and y. These
results indicate that the presence of memory in the
packet arrival process (as captured by y) has a
tremendous effect on the resulting induced packet
delay. For instance, if a packet arrival process
with parameters A = 0.06 and y = 0.3 is approxi-
mated by an independent process (y = 0.0) with
the same arrival rate, the obtained delay result is
equal to 12.250 slots as opposed to the accurate
21.893 slots.

4.2. Case 2

Consider the multiplexing system of Case 2
with probability distribution qb(l 1) =
¢’(1 2) = 04, ¢°(1, 2) =03, ¢*(1, 4)-05
¢*(1,6)=0.2 and the parameters X =X =2A/2
and y'=y?=y. The mean packet de}ay results
D,, D, and D,, are shown in Table 4 for various
values of A and y. Notice that D, > 1 since more
than one packets may arrive over the same slot
through line 1.

4.3. Case 3

Consider the multiplexing system of Case 3
with probability distribution ¢'(1, 1) = 0.4,
#@1,2)=03, ¢'(1,3)=02, ¢'(1,4=01. The
mean packet delay results D, and D,, are shown
in Table 4 for various values of N =X and y' =7.

4.4. Case 4

Consider the multiplexing system of Case 4
with N = 3 input lines, probability distributions as
in Case 3 and parameters X' =A? =X’ =)\/3 and
y'=y?=y3=1y. The mean packet delay results

Table 4

Mean packet delay results for Cases 2, 3 and 4

A T Case 2 Case 3 Case 4 . :
D, "Dy D, D, D, b, Dy, D,

09 0.5 2247 33.468 64.689 18.500 36.000 1.818 - 21.500 53.181

09 0.3 1.831 21.754 41.676 12.786 24.5M 1.506 18.357 35.208

09 0.0 1.519 12.968 24.416 8.500 16.000 1273 11.500 21.727

0.7 0.5 2.055 11.323 20.590 6.833 12.557 1.538 9.167 16.795

0.7 03 1.703 7.608 13.513 4928 8.857 1.333 6.373 11.413

0.7 00 1.439 4823 8.206 3.500 6.000 1179 4278 7.376
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7are shown in Table 4 for various values of A and
Y.
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