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ABSTRACT A statistical  multiplexer supporting
Markov, fixed-packet sources is studied in this paper.
Unlike previous considerations, the time-constant of the
sources is assumed to be greater than system time-unit
(packet service time). As a result, the resulting arrival
process is correlated but packets can not be generated
over consecutive discrete-time instants whose distance is
less than the source time-constant, although the source
may be active. The interesting case of double-time-
constant Markov sources is also considered. As an ex-
ample, numerical results are derived for the case of mul-
tiplexing packetized voice sources.

I. INTRODUCTION

In this paper N sources of (fixed size) packetized in-
formation are multiplexed before accessing a fixed speed,
slotted transmission line. The constant packet transmis-
sion time (slot) is assumed to be equal to one and is called
the network time-constant or the network (output) time
slot. The slot boundaries of the output transmission line
define the discrete-time axis of the system. Packets are
temporarily stored in a buffer until the output transmis-
sion line is available. Packet arrivals and departures are
assumed to occur at the discrete-time instants.

The above statistical multiplexer has been studied in
the past - in both discrete and continuous time - under
correlated packet arrival processes. The most relevant
work can be found can be found in the references in [1].

The correlated (Markov dependent) discrete-time
packet arrival processes considered in the past are as-
sumed to be generated by correlated sources whose time-
constant is equal to the network time-constant; the source
time constant is defined as the minimum time interval
between consecutive packet generation instants. In this
paper the packet sources are assumed to be correlated, as
determined by a first-order Markov model. Unlike pre-
vious considerations, the transition time of the Markov
model (source time-constant) is greater than the packet
transmission time (network time-constant). The result-
ing traffic is more complex and defines a queueing system
which is different from those considered in the past under
correlated traffic. A relevant queueing system has been
studied in [2,3] under non-Markov correlated arrivals.
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There are many potential applications of the queue-
ing system presented in this paper. It may be adopted
for the modeling of a multiplexer at the access points of
high speed networks receiving traffic from lower speed
networks or from sources with slow packet generation
mechanism compared to the network slot. Due to lim-
itations on the information processing speed, the time-
constant of most information sources is larger than that
of a high speed (fiber optics) networks. Furthermore, ear-
lier developed (low speed) networks behave like slow in-
formation sources at the access point of a backbone high
speed network.

The packet arrival processes generated by some types
of slow sources are described in the next section and
the general queueing model is formulated. The queue-
ing analysis is then performed by invoking the study pre-
sented in [4], [6]. Numerical results are presented in the
last section, together with a discussion on the impact
of the correlation and the source time-constant on the
queueing behaviour.

II. SOURCE TRAFFIC DESCRIPTION IN TERMS
OF A COMMON MODEL

Consider the multiplexing of N sources of (fixed size)
packetized information as described at the beginning of
section I. Let the sequence of the slot boundaries de-
fine the discrete-time axis of the system, denoted by
J;J ={0,1,2,..}. The constant length packets generated
by the sources are temporarily stored in a buffer of infinite
capacity. The formulated queueing system can be mod-
eled in terms of a single server, First-Come First-Served
(FCFS), discrete-time queueing system with determinis-
tic and equal to one slot service time. Let S* denote the
k** packet source; a superscript k will denote a quantity
associated with the k** packet source for 1 < k < N.
Each of the packet sources is assumed to be either ac-
tive (state 1) or inactive (state 0). Transitions between
the two states occur according to a first-order Markov
model. The one step transition time from state 0 and
state 1 may or may not be identical, resulting in single-
or double-time-constant sources; let 7*(i) and p* (i, §) de-
note the steady state and the the transition probabilities,
respectively, of the k' Markov chain, i,j € {0, 1}.

II.1  Single-Time-Constant Sources.

Let v* denote the (source) burstiness coefficient de-



fined by p¥(1,1)—p*(0,1). Let 7% denote the source time-
constant which is defined to be equal to the one-step tran-
sition time of the k** Markov chain; 7* € Z+, where Z+
is the set of the positive integers. A transition is assumed
to occur in the chain every 7% time units, although its
state may not change. Finally, let c* be a constant which
denotes the time instant when the first transition of the
kt» Markov chain occurs; 0 < ¢* < 781, ¢* € Z°, where
Z9 is the set of the nonnegative integers. Note that the
steady state and the transition probabilities associated
with the k** source can be obtained from 7*(1) and +*
by incorporating the Markov properties. It is easy to es-
tablish that the sequence of time instants 7%, T* C J, at
which transitions of the k** Markov chain occur is given
by the set

TH=(es: =% e 2. (1)

The packet traffic {Af }JEJ delivered by the k*® source is
a discrete-time process defined in terms of the (underly-
ing) Markov packet generating mechanism. Packets are
assumed to be generated at the end of a one-step tran-
sition interval of the Markov chain associated with the
source, as a result of the source activity during that in-
terval. That is, they may be generated only at some time
instant t*, t* € T*. Let i be the state of the k**» Markov
chain at t* — At, t* € T¥, 0 < At < 1. The number of
packets, n, generated by the source at t* is described by
the probability mass ¢*(i,n), i € {0,1}, n € 2°. It is
assumed that no packets are generated when the source
is inactive. That is, ¢¥(0,0) =1, 1 <k < N.

In view of the above discussion, {A;c }jes is com-
pletely determined in terms of the parameters

{x*(1),4*, 7%, c*, ¢¥(1,n) for n € 2°}. (2)

Notice that the sequence of time instants of potential
packet arrivals from the k'® source, T*, is completely
determined from (2). The same holds true for the set of
time instants L* at which it is guaranteed that no packet
will be generated by the k** source. Lk is given by

% —
F=J-Tr={jeJ . ¢Z°} (3)

Note that if j € L* then j+n7* € L" as well, for n € Z°.

The packet arrival process {A;c }jes determined by
(2) is different from those associated with similar queue-
ing systems that have been studied in the past. When

= 1 (which implies that c* = 0), {A¥};es becomes
the standard Markov Modulated Generalized Bernoulli
(MMGB) process; here, the term standard implies that
the one-step transition time is equal to one time unit.
Of course, {A¥}jes for 7 > 1 may be seen as a stan-
dard MMGB process provided that the time unit of the
system be equal to 7¥. When packet sources with dif-
ferent time-constants are involved, the selection of the
network time-constant for the construction of the system
time axis J results in convenient characterization of both

“the arrival and the departure (from the buffer) processes.

One departure occurs at every time instant j € J, pro-
vided that the buffer is non-empty. In this paper it is
assumed that the time-constant of the sources are integer
multiples of the network time-constant. Thus, all arrivals
will occur at some time instant in J. A realization of an
arrival process {A}‘}je_, for 7¥ = 2 and ¢* = 1 is shown
in Fig. 1.
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Fig. 1: A realization of the arrival process {Af}{je 7}
for 7% = 2, ¢* = 1; * denotes potential arrival points.

A packet source that generates an arrival process de-
scribed by (2) for some 7¥ > 1 is considered to be slow
(with respect to the network time constant) and corre-
lated. Such packet sources may be adopted for the mod-
eling of packet arrival processes appearing in communica-
tion networks. For instance, the packet traffic delivered
by a (slow) transmission line to a multiplexer feeding a
network line which is 7% times faster, can be described in
terms of a process determined by (2). Another example
is the traffic delivered to a high speed line by a slow pro-
cessor. In this case 7%, 7% > 1, describes the processing
time required before an output (possibly multi-packet) is
generated.

It is important to note that the packet arrival process
{A }ies has a structure which affects significantly the
buffer behavior. This process presents a sequence of perl—
odic time instants (contained in L*) at which no packet is
delivered. The existence of these periodic sequences has
a positive impact on the intensity of the queueing prob-
lems, as it will be illustrated. Furthermore, the larger
the value of 7%, the less significant will be the impact of
the correlation in the source on the queueing intensity.
When 7% > 1, the correlation in the arrival process, as
seen by the network (server), is said to have been reduced,
compared to that present in the corresponding source. A
large value of 7* will allow the network to transmit a large
number (up to 7F) of packets before the next packet(s)
is delivered by the correlated source. The special case of
the arrival process {A };jes which is based on an uncorre-
lated packet generatlng mechanism is also interesting and
different from an independent and identically distributed
packet arrival process. The latter process may deliver
packets over consecutive time instants in J; the former
may not if 7% > 1.

In the rest of this section, the cumulative packet ar-
rival process, {A;}jes, where

N .
ZA;’] , 4
k=1 L



is described in terms of an appropriate MMGB model.
Let

Aj={S*:jeT*}, jel (5)

That is A; is the set of all sources whose underlying
Markov mechanism undergoes transition at time instant
j. These sources potentially generate packets at that time
instant. From the periodicity of the set T* (see (1)) turns
out that A; is also periodic. Let

M = LCM{r 72, ..., ™} (6)

where M = LCM{- - -} denotes the least common multi-
plier of the argument. It is easily shown that

Aj = Aj+nM, ne Z° or Aj = AjmodM,j €J (7)

For examplefor N=2and 71 =2, 12 =3, ¢! =0, ¢ =
0 turns out that M = 6 and A = {S*, 5%}, A; = {4},
Ay = {Sl}a Ag = {SZ}) Ay= {Sl}: Ag = {¢}

Let {Xj}je.l = {(I},If,...,I}v,Mj)}jeJ be an (N+
1)-dimensional discrete-time process; I}‘ , If €{0,1},1<
k < N, is a random variable describing the state of S* at
time instant j; {M;};es is a periodic Markov chain with
state space {0,1,---, M — 1} which evolves as described
below.

M 41 = (Mj + 1)modM with probability 1 (8)

The state of {M;};es determines which of the sources
undergo a state transition at the current time. The latter
information together with that provided by the process
{(I},12,- - -1})}jes make {X;}jes a Markov process. Let
Q, Q={0,1}"x{0,1,---, M—1}, denote the state space
of {X;}jes and let Q, Q = 2V M, denote its cardinality.
The transition probabilities of {X;};jes are given by

p{(ilyiz)""iN:n)’(Zl’zz’“"gN’ﬁ)}: H
k:S*€EA(nt1)moam

pk(ik’ik)l{ik=.’k if s* ¢ A(n+1)modM}1{ﬁ=("+1)m°dM} !
(il,iza"'ain:n)) (;1) ;2,...’;:N’ﬁ)€Q (9)
where it is defined that
II p*(i*,i*) = 1 if A(ny1)moant = {6}

k: SkEA(n+1)modM

Notice that only the transition probabilities associated
with the Markov chains of the sources in A, 41)moam are
considered, since only these chains undergo a state tran-
sition at j = (n + 1)modM. The first indicator function
imposes the condition that the state of the sources not
contained in A(n41)modm TFemain unchanged. The sec-
ond indicator function imposes the requirement that the
Markov chain {M;};cs moves to the next state as deter-
mined by (8).

The cumulative arrival process {A/};es can be de-
termined by the packet generation probabilities

B3, iV em)= | Q) #5*)| (m)
SkEAn+1
(,2,...,i% n)eq, me 2° (10)
“where

A GED

SkeAn+1
0 form#0 if Apya = {4}
1 form=0 if Apya = {8}

k-fold conv. of ¢*(i¥;.), all k:s* € Aptq, at m.

Note that packets may be generated only at the transition
instants of the corresponding Markov chain and not at
every discrete-time instant j,j € J, at which the source
is active.

The original queueing system may now be modeled in
terms of an equivalent system whose packet arrival pro-
cess is described by a MMGB process {4;}jes; {4j}ies
is described in terms of the Markov chain {X;};es and
the packet generating probabilities ¢(z;m), = € Q given
by (10).

When the N packet arrival processes are identi-
cal (and synchronized) - that is, when the parame-
ters in (2) are identical for all processes - then the
(N + 1)-dimensional Markov chain {X;};es can be re-
placed by the 2-dimensional Markov chain {X;:d}jEJ =
{(Zi%, M]%}jes; {M}%};es is a periodic Markov chain
defined as {M;};es, with parameter M = T; I]’:d is the
random variable which describes the number of active
sources at time instant j, j € J. Details about the de-
scription of the cumulative packet arrival process in terms
of a MMGB process, as well as discussion on the achieved
reduced numerical complexity in this case, may be found
in [1].

11.2 Double-Time-Constant Sources.

In the packet arrival processes considered so far, it
has been assumed that the underlying Markov mecha-
nism of the source makes a transition every 7% time units.
As a result, the set T* determines the sequence of time
instants in J at which activation of the source may oc-
cur. In some applications it is reasonable to assume that
it takes 7% time units for the source to generate (pre-
pare) a packet, when active. On the other hand, the re-
activation of the source may occur at any time instant and
not necessarily at some integer multiple of 7%. A corre-
lated source with this behavior may be described in terms
of a Markov model with two different one-step transition
times (double-time-constant source). A transition from
state 1 (active) occurs every 7% time units while a tran-
sition from state 0 (inactive) occurs every one time unit.
The packet arrival process generated by such a source is
described by the parameters in (2) with the understand-
ing that transition from a state 0 may occur in the next



slot. Under this modeling, the re-activation of the source
may occur at any time instant in J and not necessarily at
the time instants contained in T;. The length of an active
period is geometrically distributed with mean 1/p*(1,0)
in time units of length 7%; the length of an inactive pe-
riod is geometrically distributed with mean 1/p*(0,1) in
system time units.

The double-time-constant Markov source introduced
above may be alternatively described in terms of the
Markov chain {Y;* }]. ¢y Shown in Fig. 2. Let QF, Qf =
{0, 1,-..,7k } denote its state space whose cardinality Qf
is equal to 7% + 1. Let pk (4, 7),4,j € Q;, denote the tran-
sition probabilities of {Y; }..,; the nonzero such proba-
bilities are given by

EJ’

PEG,) =1, j=i+1,1<i< 7", (11)
pE(r*, 1) =1-p*(1,0) , pE(e%,0)=p"(1,0), (1)
PE(0,1)=p*(0,1) , pE(0,00=1-p"(0,1) (11)

#1.0)

Fig. 2: The Markov model for {Y}}(jes}.

Note that state 0 in Fig. 2 corresponds to the inactive
state 0 of the original two-state Markov model. A visit
to state 7% determines a time instant at which the active
source will undergo a state transition. The source moves
from state 7F to state 0 (becomes inactive) in the next
time instant with probability pk(*,0) = p*(1,0); the
source moves from state 0 to state 1 with probability
pE(0, 1) = p*(0, 1). The source remains in the active state
for 7* time units. Upon visit to state 7% packets are
generated accordmg to the probabilities

¢k (r¥;m) = g (i;m), m € 2°. (12)
No packets are generated from the other states. That is,
PE(5;0)=1,0<i< 7 (12)

In view of the above discussion, the packet arrival
process {B }jes, generated by the k** double-time-
constant source, 1 < k < N, can be described as a
MMGB process based on “the underlymg Markov chain
{Y }jes and the packet generating probabilities given by
(12) The cummulative packet arrival process {A]};es,
generated by the arrival processes {BJ’c }ies, 1<ELN,
can be described as a MMGB process whose parameters
are easily described in terms of (11) and (12), [1].

III. NUMERICAL RESULTS
In the previous section the packet arrival processes

generated by the correlated sources were described in
terms of a MMGB model determined by an appropri-
ate underlying Markov chain and a set of packet gener-
ating probabilities. The resulting queueing system has

' Mean packet delay (in network time constants) ‘

been considered in [4] and [5] and its detailed application
may be found in [1]. The moments of the queue occu-
pancy process can be computed through the solution of
linear equations whose dimensionality is equal to the car-
dinality of the underlying Markov chain. In this section,
numerical results are presented for the mean packet de-
lay induced by a statistical multiplexer under the packet
arrival processes described in Section II.

In Fig. 3 some numerical results are presented, as
a function of the source time-constant 7, under various
packet traffic models. The packet sources are assumed to
be identical with parameters (1 < k < N)

{x*(1) = .35, 4% = .93, 7, F =0, ¢*(1,1) =1},
where the number of sources, N, is set to be equal to
27. The resulting cumulative packet traffic rate is equal
to N7*(1)/r = .70 packets/time units. Notice these
packet sources have the characteristics of packetized voice
sources delivering one packet every 7 time units, when ac-
tive.
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Fig. 3: Mean delay results for voice sources.

Curve (1) in Fig. 3 presents the induced packet
delay. Notice that, for the same total traffic rate, the
induced packet delay decreases as the time-constant in-
creases. This decrement in the delay is attributed to the
reduction of the source correlation (v* = .93) as seen by
the server (as 7 increases), as well as to the increased in-
dependence in the cumulative traffic due to the increased
number of (mutually independent) contributing sources
(N = 27).

Curve (2) presents the induced packet delay when
c¥, 1 < k < N, are not identical for all sources but they
are spread nearly uniformly over 7. When 7 = 1, no such
spreading is possible and ¢* = 0, 1 < k < N. In this case
curves (1) and (2) coincide. Notice that the larger the
value of 7, the larger the smoothing of the arrival pro-
cess that can be accomplished through the spreading of
cf. The intensity of the queueing problems is decreased
as 7 increases, as a result of the distribution of the po-
tential packet arrival instants associated with the various
sources.

Curve (3) presents the mean packet delay results
when the packets are delivered by each of the N = 27



sources according to a Bernoulli process with rate 7%(1)/7
packets per time unit. The second moment of the cumula-
tive arrival process (Binomial) is easily found to increase
with 7 and, thus, the mean delay also increases, as in-
dicated by the closed form delay formula derived in this
case, [1]. This trend is clearly observed in curve (3) of
Fig. 3. Notice that as 7 increases the difference between
curves (1) (or (2)) and curve (3) decreases, as expected.
Curve (4) presents the delay results under the traf-
fic modeling considered for curve (1) but assuming that
v¥ = 0,1 < k < N. That is, the sources are assumed
to be uncorrelated. Notice that the resulting cumulative
packet arrival process is different from the binomial pro-
cess which was considered for the derivation of curve (3).
For v = 0,1 <k < N, and 7 > 1, the source can gen-
erate packets only at time instants in T* (separated by
7 time units) and not at any time instant in J, which is
the case under the underlying Bernoulli model assumed
for curve (3). Notice that the delay results have smaller
values in this case compared to those under curve (3),
possibly due to the positive effect of the constraint that
packets can not be generated at time instants separated
by less than 7 time units under the model for curve (4).
Finally, curve (5) presents the delay results under the
model considered for curve (4), but under the assump-
tion that the values of ¢*, 1 < k < N, are near-uniformly
spread over 7. As it was explained before, this spread-
ing of the potential packet arrival instants has a positive
impact on the queueing intensity; this effect is clearly
observed by comparing curves (4) and (5) of Fig. 3.
Notice that when 7 = 1 the arrival processes may
change state at any slot. In this case, the results may
also be obtained from the closed form expression derived

in [6].
Fig. 4 presents the delay results obtained by mul-
tiplexing N = 3 packet sources with different time-

constants given by 71 = 2, 72 = 4 and 73 = 4. The
rest of the parameters are assumed to be identical. The
source burstiness coefficient is equal to 4*¢ = .5 and the
packet generating probabilities are given by ¢4(1,1) =
3, ¢'9(1,2) = .4 and ¢'4(1,3) = .3. The probability
that the packet source is in the active state, 79(1), is se-
lected so that the resulting cumulative packet traffic rate
is equal to some value from the horizontal axis of Fig. 4.
Curves (1), (2), (3), (4), and (5) show the mean packet
delay under the traffic modeling considered for the deriva-
tion of the corresponding curves of Fig. 3. Curve (6) is
derived under the assumption that each of the sources
may be re-activated at any time instant and not at inte-
ger multiples of 7%, 1 < k < 3. Thus, the double-time-
constant source model, discussed in Section II.2, has been
assumed. Curve (7) presents results under the source
modeling considered for curve (6) under the assumption
that v* = 0, 1 < k < 3. Notice that states 0 and 1 may
be merged in this case (Fig. 2), resulting in a reduced
number of linear equations. Further reduction may be

“achieved by expoiting the partial symmetry in the arrival
process.

60 ®
‘A=)

50

P
P«
@=(5

Mean packet delay (in network time constants)

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97
Cumulative traffic rate A

Fig. 4: Mean delay results for the N=3 packet sources.

Notice that the coincidence of curves (1) and (2) and
curves (4) and (5) is due to the specific parameters of
the selected example. Finally, notice that curve (6) is
always above curves (1) and (2) derived for the same val-
ues of ¥, 1 < k < 3. Similarly, curve (7) is always above
curves (4) and (5) derived for v* = 0, 1 < k < 3. This
behavior may be explained in view of the fact that the
minimum separation between two consecutive active pe-
riods in the traffic for the curves (1), (2), (4) and (5) is
equal to 7%, 1 < k < 3, while that under the traffic mod-
els for the curves (6) and (7) is equal to one. The latter
is expected to have negative effect on the intensity of the
resulting queueing problems. Finally, the increased de-
lay results presented under curve (3) may be explained
in view of the fact that there is no minimum separation
between consecutive packet arrivals, in any case, for the
traffic model for curve (3).
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