INTERNATIONAL JOURNAL OF DIGITAL AND ANALOG COMMUNICATION SYSTEMS, VOL. 5, 157-165 (1992)

‘"TRAFFIC MODELLING FOR PACKET COMMUNICATION
NETWORKS

IOANNIS STAVRAKAKIS
Department of Electrical Engineering and Computer Science, University of Vermont, Burlington, VT 05405-0156, U.S.A.

SUMMARY

A general model for the description of traffic processes in packet communication networks is presented
in this paper. The packet traffic generated by a network component is described in terms of a
generalized Bernoulli process whose intensity depends on the state of the component. When the state
space of the component is large, an approximate traffic characterization is proposed based on the
dominant states. The latter characterization is shown to be well performing for the considered examples
of practical network components. Based on the proposed general model, an analysis approach for
multi-component communication networks is presented. Numerical results illustrate the inaccuracy of
the widely adopted i.i.d. modelling, the effectiveness of the proposed general model and the significant
complexity reduction through the adoption of the approximate one.
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1. INTRODUCTION

Packet communication networks have been widely
adopted as an efficient means of transferring infor-
mation. Such networks extend from small local
area networks to large systems of interconnected
networks, covering extended geographical areas.!
The development of local area (or single hop)
networks has been the focal point of extended
research over the last two decades.! The perform-
ance evaluation of these networks has been facili-
tated by the simplicity of the models adopted for
the description of the packet generation mechanism.
The Bernoulli process has been widely considered
as a model for the per user packet generation
process over a fixed time interval (slot), in a system
with a small (finite) user population. In the case of
a large (infinite) user population system, the Poisson
model has been adopted for the modelling of
the cumulative packet generation process. The
memoryless property of these models captures
effectively the randomness and unpredictability of
the packet generating mechanism of the users.

In a large packet communication network the
packet arrival processes to a network component
may be not only the direct packet traffic, as
generated by the users, but also packet traffic
generated by other network components. In this
paper, a network component is defined as a
network subsystem which generates packets. Such
components can be a local area network, a network
switch or a repeater, a statistical multiplexer, a link
that carries traffic from another large network, or
any line carrying packetized information of virtually
any kind. We define the first stage component
(FSC) to be a network component whose packet
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‘input process is determined by simple first-born

traffic. The simple first-born traffic is defined as a
traffic which is not modulated by any network
component. This type of traffic is assumed to be
satisfactorily modelled by an independent process.

In a large packet communication network (defined
here as a network with more than one component),
there is usually a system which serves as the
backbone network required for the interconnection
of the involved components. Clearly, (some of) the
packet processes in this system are the output
processes from the supported components. We
define the second stage component (SSC) to be a
system whose input process is (at least partially)
determined by the output processes of other network
components. Thus, all network components which
are not FSCs are SSCs.

The analysis of FSCs has received significant
attention in the past, resulting in the development
of many analytical techniques. The simplicity of the
simple first-born traffic models has played an
important role in the development of these tech-
niques. The analytical tractability provided by
Bernoulli/Poisson modelling for the simple first-
born traffic has tempted many researchers to adopt
these models for the description of the input
processes to SSCs as well.2¢ There are two major
problems regarding the adoption of a memoryless
model for the input process to an SSC. The first
problem arises from the intuitively unpleasing nature
of such a model. Although the input process to ‘a
FSC may be considered as memoryless, the FSC
introduces dependencies in its output process. The
second problem is related to the inaccuracy of
the performance evaluation of a SSC, under a
memoryless model for its input process. This inaccur-
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acy may lead to erroneous identification of the
bottlenecks of the network, to erroneous delay
calculations and finally to inaccurate overall network
performance evaluation.

The accurate description of a packet process
generated by a network component is essential to
the performance evaluation of the network. In a
large network, the input processes to an SSC may
be the output processes of either FSCs or SSCs or
a combination of the two. For this reason, the
output processes from both types of network com-
ponents are described in a unified manner. Although
it is reasonable to expect that the developed model
for the output process of a network component be
more tractable in the case of FSCs (due to the
simple first-born input traffic), the general model
description applies to both cases.

In this paper, an alternative to the i.i.d.
(independent and identically distributed) charac-
terization of the packet (output) processes generated
by the components of a communication network, is
presented. The proposed model is exact and it is
presented in the next section. The output process
is described as a generalized Bernoulli process whose
intensity depends on the state of an underlying
Markov chain describing the operation of the
component. The cardinality of the state space of
this Markov chain may be almost arbitrarily large.
To provide for a numerically tractable solution in
the later case, the exact model is appropriately
modified. For this purpose, a meaningful approxi-
mate model based on the output process, based on
the dominant states of the underlying Markov chain,
is introduced. The approximate model is described
by introducing the concept of the a%-exact model.

In section 3, some practical packet communication
network components are presented. Their output
processes are described by incorporating the pro-
posed models (exact and a%-exact). These examples
illustrate the applicability of the general models for
the description of the packet processes generated
by network components.

A packet communication network which consists
of components such as those described in Section 3
is. considered in Section 4 and its performance is
evaluated. Numerical results are presented in Section
4. The derived numerical results illustrate both the
inaccuracy of the i.i.d. models and the effectiveness
of the proposed models in generating fairly accurate
results with modest complexity. Finally the summary
and conclusions of this work are presented in the
last section.

2. MODELS FOR THE (DEPENDENT)
OUTPUT PROCESSES OF NETWORK
COMPONENTS

2.1. The exact model for the packet generation
(output) process

The discussion in this paper is confined to discrete
time network components, as formulated by slotted

“packet communication systems. The description of

the dependent packet process generated by a
network component (FSC or SSC) is essential to
the analysis of a SSC since the input processes to
the latter are determined by the packet processes
generated by the feeding network components. The
proposed exact model on the output (or packet
departure) process of a network component is
described through the following definitions. The
discussion in this paper is confined to discrete time
network components, as formulated by slotted
packet communication systems.

Definition 1. The packet generation (output)
process of a network component is defined to be
the discrete time process of the departing packets,
{a;};=0; a; = p, 0=p<o, if p packets leave the
component at the jth time instant.

Definition 2. Assume that the network compon—f
ent satisfies the following:

(a) There exists an ergodic Markov chain {z;};=0
associated with the description of the state
of the component; let § = {x{,%s,...,Xp}>
M<x, be the state space of {z;};>o and
P(Xk,X;), w(xx), xx,X;ES, be the correspond-
ing state transition and steady state probabilit-
ies.

(b) There exists a stationary probabilistic map-
ping a(z;): S—Z, (where Z, is the set of
non-negative finite integers), which describes
the number of packets departing at the end
of the jth time interval (slot). Let a(z;) = p,
0=w=wx, z;€S, with probability ¢,(z;).

Then, the output process of the component is given
by

{a;}j=0= {4,(z))};=0 )

‘i.e. it is described as a Markov modulated gen-:

eralized Bernoulli process. It can also be seen as a-
random reward process associated with a state
transition of a Markov chain.” A two-state Markov
modulated Poisson process has been adopted in
Reference 9 for the approximate characterization of
the superimposition of voice and data traffic. :

Notice that the process {a;};-0, as given by (1),
describes exactly the output process of a network
component, provided that the conditions in Defi-
nition 2 are satisfied. ‘

2.2, The approximate model for the packet

generation (output) process

Let {z;},=0 and {a;(z;)};=0 be two processes, as
described in Definition 2, associated with a certain
network component. Let {z}};~o be a new Markov
chain constructed from {z;};- in the following way:
its state space S’ = {x1, ..., xap} for some M'<M,
where xi, ..., Xy—, are the M’'—1 dominant states
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and x;,- is the union of the remaining states of the
original Markov chain {z;};=0. Dominant states are
the states with the largest probability mass. That is,
the reduced state space Markov chain {z}};=¢ is
formulated by merging all the probabilistically
insignificant states of the original Markov chain into
a single state xj,. The parameters (probabilities) of
the new Markov chain {z}};= are identical to those
of the corresponding original processes except from
those associated with the new state xy,.. In the latter
case, appropriate averaging is incorporated (see the
Appendix).

Let {a}};=0 be a process similar to {a;};=o With
a corresponding underlying Markov chain {z}};=o.
That is

{aj}j=0={a}(z})};=0

where a’(z}): §'—>Z, is a probabilistic mapping;
a'(z)) = p, 0=sp<w, zES', with probabilities
ba(xt), xi €S’ which are identical to the correspond-
ing ones of the original Markov chain when the
dominant states are involved, and they are given by
appropriate averaging when the new state x is
involved (see the Appendix).

Clearly, the process {a;};=¢ is an approximation

on the true packet output process of the network.

component described by {a;},= (. The approximation
is introduced through the reduction of the state
space of the original underlying Markov process
{2;};=0, which describes completely the operation
of the component. In view of the construction of
the approximate process {a;}, it is reasonable to
expect that as M’ increases, {a;};=o approaches
{a;};=0; that is, the approximate model approaches
the exact one. When M’ = M, the approximate
model coincides with the exact one. It is also
reasonable to expect that the larger the total
probability mass of the (unchanged) M'—1 states
the better the approximation achieved by the
reduced state space process. In view of the previous
observations, the following definition-measure of
the approximation on the exact process {4;};=¢ may
be defined.

Definition 3. The process {a;}};-o defined above
is called a%-exact if the cardinality M’ of the
corresponding approximate underlying Markov
{z;}j=0 (defined above) is such that

2 w'(x})za  and

1=k=M-1

> w()<a

1=k=M'-2

That is, the total probability mass of the unchanged
states of the original Markov chain {z;};., is at
least a and the total probability mass of the M'—2
dominant states is less than a.

Definition 3 may be roughly interpreted in the
following way, under ergodicity of all processes

involved: an a%-exact output process {a;};=o i$

based on the true packet generating mechanism
(state of the system) a% of the time; (100-a)% of
the time, the output process is based on an average
packet generating mechanism. An average packet
generating mechanism is the only one assumed
present when {a;};~=o is approximated by a
(generalized) Bernoulli process. The latter case
corresponds to merging all states of the true
underlying Markov chain into a single one (M’ =
1). An average number of outputs is generated
under the latter model throughout the time horizon,
independently of the true state of the underlying
packet generating mechanism. In view of Definition
3, the exact model on the output process {a;};=0
corresponds to o = 100. 100-o. may also be seen as
a measure of the smoothing on the output process
introduced by the merging of the states of the true
packet generating mechanism.

From the definition of the a%-exact process and
the construction of {z}};=o turns out that the
cardinality of the state space of {z}};~o (i.e. M')
increases with a. Thus, it is reasonable to expect
that the larger the value of o the better the
approximation on the packet output process.
Assuming that this is generally true, there is a trade-
off between the degree of the accuracy.of the
approximating process and the introduced com-
plexity in its description, as measured by M’. The
real concern at this point is not about the complexity
in the description of the approximating (or exact)
packet output process itself, but it is on the
tractability of the analysis of other components of
a large network, whose input processes are described
by the proposed models. '

In many packet communication components the
state of the underlying packet generating mechanism
(Markov chain) may be defined to be the number
of packets currently in the component. Such com-
ponents may be network nodes, where centralized-
queues are formulated (the length at the queue may-
define the state of the component in this case), or
multi user (random access) communication net-
works, where distributed queues are formulated
(the number of blocked users may define the state,-
in this case). In such network components,  the
transitions of the underlying Markov chains are
generally gradual and large jumps have very small
probability of occurrence. Also, given an operation
point of the network component, there is a state:
(e.g. number of packets in the component) which
dominates probabilistically. Originating from this
state, a monotone decrease of the steady-state
probabilities is usually observed, by moving toward.
smaller or larger states. As a result, there are two
(asymmetric, in general) tails of the steady state
probability distribution. Construction of the process.
{z}};=0 as outlined in (2) could lead to the merging
of probabilistically insignificant states from both
probability tails.

For network components with behaviour as
described in the previous paragraph, a slightly
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“different construction procedure for the reduced
state space underlying Markov chain {z}};., may
be followed. The objective in the new construction
approach is to distinguish between the two tails of
the steady state probability, whenever states from
both tails are included in the last, averaging, state
Xy By making the reasonable assumptions that (1)
neighbouring states determine similar packet gener-
ation (output) mechanisms, (2) there are only a
few dominant states among those in the probability
tail and these states are neighbours, and (3) states
in different probability tails determine quite different
packet generation (output) mechanisms, it can be
seen that excessive smoothing of the output process
introduced by the approximating process {a;};=o
(constructed as in (2)), could be avoided by creating
two merging states; each of these merging states
contains probabilistically insignificant states of the
original Markov chain coming from the same
probability tail. The parameters of the new Markov
chain and the probability mappings, which are
associate with the new merging states, are obtained
through appropriate averaging (Appendix).

3. THE OUTPUT PROCESS OF SOME
NETWORK COMPONENTS

In this section, the output process of some simple
network components is described by incorporating
the models developed before. In the next section,
the performance of a large packet communication
network which consists of such network components
is evaluated.

Example 1: bursty traffic network links

Consider a link which carries traffic modulated
by various other components of a large network
and by routeing decisions. The network component
in this case is the link and its input and output
processes are identical. In Reference 8 it has been
found that network packet traffic is bursty. As a
result, a first-order Markov model could be adopted
in the description of this packet process. If p(0,1)
and p(1,1) are the conditional probabilities of a
packet arrival (departure) given that 0 or 1 arrivals
(departures) occurred in the previous slot, respect-
ively, then the burstiness coefficient is defined® as

77 =P(1’1) —p(O,l)

This traffic model can be easily described in terms
of the proposed model on the packet process
generated by the link (network component). Let z;
be the number of packets in the link at the beginning
of the jth slot. Clearly, {z;};~¢ is a Markov chain
with § = {0,1}. The transition probabilities are
identical to those of the first-order Markov model

that describes the bursty traffic. The mapping a(z;)

is, in this case, deterministic and it is given by

$1(0) =0, d5(1) = 1, bo(0) = 1, bo(1) = 0

‘The packet (output) process of the link just

described can be the model for an on/off switch
with Bernoulli packet arrivals. In this case, when
the switch is on the output process is the same
Bernoulli process and it is zero otherwise. Markov
models can usually be incorporated in the description
of the on—off activity of a switch. A switch in the
off position could correspond to a failure or to a
situation in which it serves other links.

The parameters of the packet output process of
a network component which generates bursty traffic
are determined from the packet rate w(1) and the
burstiness coefficient y. Given these quantities, the
rest of the parameters of the Markov model are
calculated from the equations ‘

w(0) =1 - (1), p(0,0) =1 - p(0,1),
p(1,0) =1 - p(1,1) p(0,1) = w(1)(1-v),
p(1,1) =~y + p(0,1)

Notice that the packet traffic considered in this
example describes blocks of packets of geometrically

destributed length followed by idle periods of
geometrically distributed length.

Example 2: the single message node

Consider now a network node which is capable
of storing and forwarding a single message at a
time. It is assumed that the input process to this
component is Bernoulli with intensity p messages
per slot. Each message is assumed to consist of a
variable number of packets let o(i) = Pr{message
consists of i packets}, 1=<i=< K. The single message
buffering assumption implies that messages which
find the component non-empty are either discarded
or served by a (buffered) low priority link. In the
second scenario, the link served by the node under
consideration is reserved for new messages. These
messages are given a chance to be transmitted right
away (if the line is not busy), before they enter a
(probably) first-in—first-out queue formulated in the
input of another link. Without loss of generality, it
is assumed that a new message is also accepted if
there is only one packet (the last of the previous
message) in the node. It is assumed that arrivals
occur at the beginning of a slot. As a result, a-new
message may start being served right after the end
of the previous message transmission. The packet
output process of this component is definitely -a
non-Bernoulli process. It can be easily described in
terms of the processes {2;};=¢0 and {a;};=¢ defined
in the previous section. If z; is the number of packets
in the node at the end of the jth slot, then it can
be easily shown that {z;};=¢ is a Markov chain with
state space S = {0,1,2, ..., K}. The transition
probabilities are given by
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p(0,i) = p(1,i) = po(i), 1<i=K
p(0,0)=p(1,0)=1-p
p(k.k-1)=1,2=<k=K

p(k,i)=0,2=k=K,1=<i<K,i=k-1
Given p and o(i), 1=si<K, the steady state
probabilities (i), 0=<i=K can be easily computed.
The mapping given by (1) is deterministic in this
case and has the following parameters:

 di(k) =1,1=k=K, $;(0) =0

¢0(k,i) =1- ¢1(k,i), 0<k=K

A Bernoulli approximate model on the output
process of the node would have intensity

A= le(i) =1 - x(0)

A better approximate model on the true packet
output process could be a first-order Markov model.
If 1 and 0 denote one or zero packet outputs,
respectively, then the parameters of this Markov
model are given by

 m(0) = w(0), (1) = 1 — 7y(0)

pm(O’O) =1 _Pm(O,l)’Pm(l,O) =1 _pm(1 1)

Pn(0,1) = i, P(1,1) = 1 = pu(0,1) 1""((0))

and the corresponding burstiness coefficient v is
given by

7'7 =pm(1’1) —pm(o’l)

Notice that the packet traffic considered in this
example describes blocks of packets of generally
distributed length followed by idle periods of
geometrically distributed length.

Example 3: a node with arbitrarily large buffer

In this case it is assumed that all messages which
would fit into the buffer of size M < are received;
no message is partially received. Let g(k), 0=k =<K,
be the probability that a message with k packets
arrives over a slot; k=0 corresponds to no message
arrival.

Similarly to the previous example, the output
process of the finite buffer node can be easily
described in terms of the processes {z;};=¢ and
{a;}j=0. If z; is the number of packets in the node
at the end of the jth slot, then {z;};~, is a Markov
chain with state space S = {0,1,2, ..., M}. The
transition probabilities are given by (assume g(k)
= 0 for k>K)

‘where N\, i = 1,2,

p(0,)) = g(1),0=j=M
p(k.j) = g(j—k+1),1sk=M,k-1<j=M

"and the probabilistic mapping is determined by

$u(k) =1,1=k=M, $,(0) =0
bo(k) =1 dy(k),0=k=M

The Bernoulli and the Markov approximations
on the resulting packet output traffic can be
determined as in the previous example.

Notice that the packet traffic considered in this
example describes blocks of packets of generally
destributed length followed by idle periods of
geometrically distributed length.

4. PERFORMANCE ANALYSIS OF A LARGE

PACKET COMMUNICATION NETWORK

In this section it is illustrated how the proposed
models for the output traffic of a network component
can be effectively incorporated in the analysis of a
multi-component network. The focus is on the
performance evaluation of SSCs, which requires a
complete description of their input processes and
an appropriate analysis technique. The star topology
shown in Figure 1 is considered as an example of a
multi-component network, and the mean packet
delay in C, is calculated. The SSC of this network
is a common queueing system which has been
analysed under various input processes; the single
server is assumed to have a buffer of infinite
capacity. The arrival processes {a/ },ZO, i=172,
N, are assumed to be synchronized discrete tlme
processes; at most one arrival can occur in each
input line per unit time. The time first-in—first-out
(FIFO) policy is adopted and the service time is
assumed to be constant and equal to one slot.
Arrivals that occur at the same time instant are
served in a randomly chosen order.

When each of the output process of - the com-,
ponents C;, C,, ..., Cy is a first-order Markov.
process, the mean packet delay in Cy'is given by®

DM-1+‘Z‘§'“(1+ E 171)
B3

(2

, N is the intensity of the
output process of component i, and v, i = 1,2, ...,
N is the corresponding burstiness coefficient. The
mean packet delay result under Bernoulli packet
arrival processes is also given by (2) by setting y=0.

When the output processes of the components
C.,C,, ..., Cy are given by (1) (see Section 2),
then the mean packet delay in C, is obtained from
the solution of M!XM?x xXMN (M is the
cardinality of the underlying Markov chain of the
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7Figure 1. A star topology of a N +.1 component network

ith component) linear equations (or by a smaller
number of equations, in symmetric cases), provided
that the queue stability condition

A= Z pem(X) <1

zes

is satisfied; ¥€ES = S1x$2x ... XSV (sup i denotes
a quantity associated with the ith component), and
p; is given below. These equations are described
by MIXM?x ... XMN~1 equations (with respect to
W(x), £€S) from the following set:

W) = X W(E)p(£,)

i€s

+ 2 (= )p(E,7)m(%)

xes

+ 3 p(0;8)p(£.9), 5ES  (3a)

x€Ss

and the equation

S [2(pe—1)WE) + 2(pe — Dp(032)

zes

CH[2+ 05— 3pg]m(2)] =0 (3b)

(see Reference 10), where

N N

(%) = [ w(x'), p(%,7) = [T Py

i=1

e = V8 (V), 0 = 0 1284 (V)

\ 4

g:(v) = pr{state X results in v packet arrivals} and
p(0;x) is the joint probability that the buffer is
empty and the underlying Markov chain is in state
%. For the examples considered in this paper, it is
only state 0 that results in no packet output and,
thus'® p(0;x) = (1-\)p(0,%).

The average number of packets in Cy, Q, is given
by the sum of the solutions of equations (3). The
average time, D, that a packet spends in C, can be
obtained as the ratio Q/A, by using Little’s formula.

In the sequel, some results are derived for the
mean packet delay induced in C, for various cases
of network components C,, ..., Cy and under exact
or approximate descriptions of their packet output

processes (Figure 1). These results lead to some

conclusions regarding some commonly made over-
simplifying assumptions on the packet processes
generated by network components. N=3 network
components (other than C,) are considered in the
following cases.

Case 1

Let C; be the network component described in
Example 1 with parameters w(1) = 0-1 and y =
0-3. Let C, be the network component described in
Example 2 with parameters K =5, o(0) = 0, o(1)
= 01, o(2) = 0-3, o(3) = 0:3, a(4) = 02, o(5)
= (-1 and p. = 0-1, which result in a packet output
rate of 0-244 packets per slot. Finally, let C; be the
network component described in Example 3 with
parameters M = 50 (buffer size), r = g(0) = 0-8
(probability of no message arrival in a slot), g(1)
= 0-1(1-r), g(2) = 0-3(1-r), g(3) = 0:3(1-r),
g(4) = 0-2(1—r) and g(5) = 0-1(1-r), where g(k),
k=1, ..., 5, is the probability that a message consists
of k packets. The output processes of components
C, and C, are exactly described as mentioned in
Section 3. For the description of the output process
of component C;, both the exact (which involves
an underlying Markov chain with a state space of
cardinality 51) and the a%-exact approximate
(which involves an underlying Markov chain of
cardinality less than 51) models, are adopted (see
Section II). —

For the network described above, the mean
packet delay induced by the SSC C, is shown in
Table I, for various degrees of approximation o
(the range of the corresponding dominant states is
also shown) of the output process of C;. The exact
results, obtained by incorporating the exact models
on the input processes to C,, are also shown. It can
be easily seen that, e.g., the mean delays induced
in Cp under the 97%-exact model (resulting in a
Markov chain of cardinality 10) are very close to
the accurate ones, which are obtained by solving
five times the number of linear equations. This
observation indicates that significant reduction in
the numerical complexity of the problem can be
achieved by incorporating an approximate model
based on the dominant states of a component, at

“Table I. Delay results for Case 1

“Model

Delay
100% (0-50) 14-655
Bernoulli 4-174
Markov 13-427
85% (0-5) 13720
90% (0-6) 13-959
95% (0-8) 14-295
97% (0-9) 14-388
99% (0-12) 14-515
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the expense of a rather insignificant deviation from
the accurate results. Other possible approximations
on the true output process, which also simplify the
analysis, are the Bernoulli and the (first-order)
Markov ones. Results under these approximations
are also shown in Table I. As can be easily
concluded, the Bernoulli model completely fails to
approximate the accurate result, whereas the Mar-
kov model is clearly inferior to the a%-exact model
for sufficiently large o. Some more conclusions
about the performance of the a%-exact model are
drawn in the next case.

Case 2

Let C; be as in Case 1 and C; and C, be network
components as described in Example 1. Let (1)
= (-17 and y = 0-3 for each of the components C,
and C,. The delay results in C, under various models
on the output processes of C,, C, and C; are given
in Table II, for vy = 0-3, and in Table III for y =
0-0; the latter value of vy corresponds to Bernoulli
traffic.

For a very small value of a only the most
significant state will be considered, while the rest
of them will be merged into a single state. This
situation is reflected for & = 1 where the state 0
(the most significant one) is selected. Let 1’ denote
the new state generated by merging all other states
1-50. Since, for this particular component, state 0

“Table II. Delay results for Case 2

Model Delay
100% (0-50) 12-884
Bernoulli 4-060
Markov 10-604

1% (0-0) 10-604
50% (0-1) 10-171
80% (0-4) 11-595
90% (0-6) 12-387
95% (0-8) 12-705
97% (0-9) 12-793
98% (0-10) 12-850

"Table III. Delay results for Case 2

Model Delay
100% (0-50) 11-404
Bernoulli 4.060
Markov 9-140
1% (0-0) 9-140
50% (0-1) 8-689
80% (0-4) 10-113
90% (0-6) 10-905
95% (0-8) 11-224
97% (0-9) 11-311
11-368

98% (0-10)

“results in no packet generation and state 1’ (or

states 1-50) always results in one packet generation,
the 1%-exact model coincides with the first order
Markov approximation! Thus, the delay results for
both models are the same (10-604). Although
one would expect monotone improvement of the
accuracy of the obtained delay results as the number
of states merged into a single state decreases,
this turns out not to be the case. Although the
approximation on the output process itself is refined,
the effect of this on the improvement of the accuracy
of the delay result is not well determined, due to
the complexity of the queueing process and the
significance of the probability mass which is concen-
trated in the new compound state. As this probability
mass decreases, the delay results improve in a
monotone fashion. In the example considered here,
the a%-exact model give monotonically improving
delay results (which are better than those under
the Markov model) when the compound state
concentrates less than 20% of the probability mass.

The plot of the induced mean delay D in C, for
Case 2 (for y=0-3) is presented in Figure 2 as a
function of o, to illustrate better the obtained
accuracy as the value of a increases. The previous
results are also plotted in Figure 3 as a function of
the model complexity C. The model complexity C
is defined as the ratio of the cardinality of the
reduced state space Markov chain and the original
one; that is, C = M'/M. From Figure 3 it is clearly
concluded that very accurate results can be obtained
by adopting a model whose complexity is only a
small portion of that of the exact one.

5. SUMMARY AND CONCLUSIONS -

In this paper, an alternative to the (commonly
adopted) independent and identically distributed
(i.i.d.) characterization of the packet (output)
processes generated by various components of a
packet communication network, has been presented.
The proposed characterization uses an underlying
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Figure 2. Delay results for case 2 (y. = 0-3) as a function of a
under the Bernoulli (B), Markov (M), the exact (E) and the
a%-exact models
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Figure 3. Delay results for case 2 (y = 0-3) as a function of the
model complexity C under the Bernoulli (B), Markov (M), the
exact (E) and the a%-exact models

Markov process which describes the behaviour of
the component. For many practical components,
this Markov process can be identified as the one
developed for their study. Based on the state of the
component (underlying process), an exact descrip-
tion of its packet output process has been developed
based on an appropriate i.i.d. model associated with
each state of the component, as opposed to a single
one independently of the state (i.i.d. model).

When the underlying Markov chain has a large
(or infinite) state space, there are: usually only
few states which dominate probabilistically, under
stability. For such cases, a meaningful aproximate
model has been introduced based on the concept of
the dominant states of the component, to improve
the numerical tractability of the original model.
The approximate results obtained under the latter
modelling can: be almost arbitrarily close to: the
exact one, for most of the cases, at the expense of
increased computational effort.

In the sequel, it has been shown how the
developed models for the output processiof 'a
network component can be effectively incorporated
in the performance evaluation of a multi-component
packet communication network. Some cases associ-
ated with the topology shown in Figure 1 have been
considered. The Bernoulli model and the first-order
Markov model (usually adopted for the description
of bursty traffic) are special cases of the general
model proposed in this paper. Thus, when the input
process to a component consists of a mixture
of Bernoulli, Markovian and Markov modulated
generalized Bernoulli processes (as described here),
the proposed models offer a unified description of
all such processes. When at least one of the input
processes is neither a Bernoulli nor a first-order
Markov process, the analysis results based on
Bernoulli or first-order Markov modelling have been
found to be fairly inaccurate.

Finally it should be noted that the basic ideas
behind the proposed analytic models can be adopted

for the reduction of the complexity of accurate
simulators of large networking structures. By sel-
ecting a level of approximation a, significant savings
in memory and computation time may be achieved,
at the expense of a controlled (through the value
of o) deviation from the accurate results.
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APPENDIX

We give the averaging expressions for the calculation
of the parameters of the approximate model associ-
ated with the merging state of the reduced space
Markov chain:

M -1

m(e) = > mx)=1= 3 w'(x})

XES)y i=1

If (x4,x;) denotes a transition from x; to x; and Sy,
denotes the set of all merged states, then

P X Xog) = 2 p(x;,,xj), 1=sk=M'-1
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When two merging states, Xy._,, Xy, are con-
structed the parameters associated with these new
states are given by the following averaging
expressions.

Let

_léUSr} and xip = Ux:

i=u+1l
and
a=M'-1,M'a,b=M'~1, M', w,(M")Su+1,
wa(M')=M, wi(M'~1)=1, wy(M'~1)=I-1 .

Then
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