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Queueing Analysis of a Class of Star-
Interconnected Networks under Markov
Modulated Output Process Modeling

loannis Stavrakakis, Member, IEEE

Abstract—In this paper, a Markov modulated process is devel-
oped for the exact characterization of the output process of a class
of random access networks (C'-RAN’s) and the mean packet delay
induced by the central node of a star interconnecting scheme is
calculated. The latter is obtained through an approximate analy-
sis of an appropriate queueing system under Markov modulated
arrivals.

It is shown that the ALOHA network is a C'-RAN. ALOHA
networks interconnected according to a star topology are studied
and delay results are obtained. These results are compared with
those obtained under Bernoulli approximation on the network
output processes and simulations.

1. INTRODUCTION

ACKET communication networks have been widely
adopted as an efficient means of transferring information.
Such networks extend from small local area networks to
large systems of interconnected networks covering extended
geographical areas, [1]. The development of local area
networks (or, in general, single networks) has been the focal
point of extended research over the last two decades, [1]. The
performance evaluation of these networks has been facilitated
by the adopted models on the packet generation mechanism.
Independent and identically distributed (i.i.d.) processes are
widely used to model the per user packet generation process
of a small (finite) user population network over a fixed
time interval (slot). In the case of a large (infinite) user
population system, the Poisson (or batch Poisson) model is
usually adopted for the cumulative packet generation process.
The previous models are in accordance with the randomness
and the unpredictability of the packet generating mechanism,
which is captured by the memoryless nature of these processes.
The single communication network imposes severe limita-
tions on the information exchange capabilities of the supported
users. To enhance these capabilities, simple communication
networks are interconnected, resulting in larger and more
complex systems, [2], [10]. At the same time, new network
components are created to support the interconnection of the
involved networks. These new components form the backbone
network.
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The basic problem in analyzing systems of interconnected
networks is that of the characterization of the output processes
generated by the supported networks. The characterization
of this process is of fundamental importance to the analysis
of interconnecting schemes. It is the input process to the
interconnecting system and affects considerably its operation.
In the case of a random access network (RAN) the packet
output process is the process of the successfully transmitted
packets, if all the packets are assumed to be forwarded to
the interconnecting mechanism. Another problem is that of
determining how a random access protocol operates in the
presence of a node that forwards exogeneous traffic coming
from other networks. The latter problem can be avoided by
assigning a separate channel to the exogeneous traffic. In
this case, the operation of the protocol is not affected by the
exogeneous traffic, but the problem of optimum allocation of
the available resources (channels), arises. The latter issue has
been discussed in [11] where the objective is to maximize the
throughput of the interconnected networks.

The output process of a RAN depends on the protocol that
has been deployed. Although its input process may be assumed
to be memoryless, the random access protocol introduces
dependencies to the output process. The description of this
process is a difficult task and only approximations based on
special assumptions have been attempted. The output process
of RAN’s is a highly dependent process and memoryless
models are meaningless. Despite it, many researchers have
adopted such models due to the tractability of the resulting
models. In [12], the Bernoulli model for the output process
of a CSMA/CD network is implied. In [13] the authors
consider the output process of ALOHA and CSMA networks
by making the assumptions of the heavy traffic conditions
and the memoryless property. Memoryless output processes
are also implied in [14] and [15] in the analysis of two-hop
ALOHA and CSMA packet radio networks and in [16] in
the case of the multi-hop extension. The packet interdeparture
process of ALOHA and CSMA networks is derived in [17].

In previous work, [18], [19], we developed Markovian
approximations on the output process of a certain class of
RAN’s, the objective being to capture, to some extend, the
dependencies introduced by the random access protocol. This
class contains all RAN’s whose analysis utilizes the process
of the renewal points induced by the operation of the deployed
protocol. Most continuous and limited sensing algorithms fall
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into this category. The performance of such interconnected
RAN’s was evaluated by incorporating the Markovian approx-
imations on the output processes of the involved networks.
In this paper a Markov modulated process is proposed for
the description of the packet output process generated by
certain RAN’s; we call such RAN’s C-RAN’s. This process
is an i.i.d. process whose parameters depend on the transitions
of an underlying Markov chain describing the evolution of
the RAN (Section II). In the sequel, a queueing system with
Markov modulated arrivals (according to the model presented
in Section II) is analyzed and the induced mean packet delay
is calculated (Section IIT). This queueing system is used to
model the central node of a star topology of interconnected
C-RAN’s, Some practical systems where star topologies of
interconnected RAN’s appear are presented (Section IV). In
Section V, ALOHA networks are considered. It is shown that
the finite population ALOHA network is a C-RAN. It’s output
process is exactly described by incorporating the Markov
modulated process (defined in Section IT) and a system of
star interconnected ALOHA networks is studied by apply-
ing the queueing results derived in Section III). Finally, the
conclusions of this work appear in the last section.

1. DESCRIPTION OF THE OUTPUT PROCESS

Consider a slotted communication network. It is assumed
that the length of a slot is equal to the time required for a
packet transmission; packet transmissions can be attempted
only at the beginning of the slots. Network users are usually
assumed to generated packets according to an i.i.d. compound
process. In most cases, it is possible to describe the operation
of the network by incorporating an appropriate Markov chain
embedded at the beginning or the end of the slots. Given the
state of the Markov chain, it may be possible to completely
determine (probabilistically) the packet departure process from
the network. Networks for which the latter is possible will be
called C-NET’s.

A C-NET and its packet output process is precisely deter-
mined through the following definitions.

Definition 1: The output process of a slotted communication
network is defined to be the binary discrete time process
{a]} o of the departing packets; a; = 1 if a packet leaves
the network at the jth slot and a; = 0 otherwise.

Note that in the case of a contention-free network {a;},
is the process of the channel status (or activity). In the case
of a random access network (RAN), {a;} 5 is the process of
the successfully transmitted packets.

Definition 2: Define C to be the class of slotted networks
which satisfy the following.

a) There exists a finite-state Markov chain {z]} 507 embed-
ded at the slot boundaries which describes the evolution
of the network. Let S = {zq,z1, -,z } be the state
space of {z;},5-

b) For any state tramsition (say from z; to zx), there

exists a stationary probabilistic mapping a(z;, Tk) :
S x 8§ — {0,1}, which describes the channel activ-
ity in the slot over which the state transition takes
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The queueing system of the star topology.

place. Let a(z;,z;) = 1 with probability ¢(z;, zx) and
a{z;, 1) = 0 with probability 1 — ¢(z;, zx).
Networks which belong in the class C will be called C-NET’s.
C-NET’s whose operation is determined by a random access
protocol will be called C-RAN’s.
Definition 3: Following definitions 1 and 2 we define the
output process of a C-NET to be the process

{aj} ;50 = {ai (@i 26)} 500

That is, the output process is described as a Markov modulated
Bernoulli process; the output process is a Bernoulli process
whose intensity depends on the state transition of an underly-
ing Markov chain. To the best of our knowledge, this is the first
time that such a process is proposed for the description of the
output process of a (random access) communication network.

III. ANALYSIS OF A SINGLE SERVER QUEUEING SYSTEM

In this section we study a single server queueing system
with Markov modulated arrivals. This general queueing model
will be used for the analysis of star interconnect C-NET’s.
We believe that the significance and the applicability of this
queueing model is beyond the particular application presented
in this paper.

A. General Case: Asymmetric System

The asymmetry of the system is due to the fact that although
all arrival processes are described by the same model, at least
one of their parameters is considered to be different for at
least two such processes.

Consider the queueing system that is shown in Fig. 1. It
consists of N input streams which feed a single server. The
server has an infinite capacity buffer. The arrival processes
{a3 } ot =1,2,--,N, are assumed to be synchronized
dlscrete time processes; at most one arrival can occur in
each input line per unit time. The time separation between
successive possible arrival points is constant and equal to one.
The first in—first out (FIFO) policy is adopted and the service
time is assumed to be constant and equal to the distance
separation between successive time instants. More than one
arrivals (from different input streams) that occur at the same
time instant are served in a randomly chosen order.

Let {2} .., denote a discrete time ergodic Markov process
associated with the ith input stream, with finite state space
§' = {ai,-+, x4} Let also a' be a stationary probabilistic
mapping from the set S¢ x S* into the set {0,1} where 1
corresponds to an arrival and 0 to no arrival. Then, we define



STAVRAKAKIS: CLASS OF STAR-INTERCONNECTED NETWORKS

the arrival process of the ith input stream to be

{a;’}jzo {a'(% Zj-1:%j )}]>0

From the description of the arrival process it is implied
that successive arrivals from the same input stream are not
independent, but they are governed by an underlying finite
state Markov chain, {Z} } - The arrival process can also be
seen as the random rewar& associated with a state transition
of a Markov chain, [20]. Given a transition from state k to
state j, the arrival process is described by the probabilistic
mapping a i(k,j) where a(k,j) = 1 with probability ¢*(k, j)
and a*(k,j) = 0 with probability 1 — ¢1(k 7). It is assumed
that the underlying processes {z} } v §= 1,2, N, are

mutually mdependent and thus the arrival processes {a } >0
i=1,2,---,N, are also independent.

Previous work on similar queueing systems can be found
in [21]-[25] (and the references cited there). All previous
models differ significantly from the one presented here. In
[21], the authors assume a single arrival line and a two-state
Markov modulate Poisson arrival process. In [22], the author
considers a single input line and arrivals that depend on an
underlying two-state Markov chain. In [23]-[25], N input
lines are considered. In [23] it is assumed that the packet
arrival process of each of the identical input lines depends on
an underlying two state Markov chain (active/inactive). In [24]
it is assumed that the per line packet arrival process is a first-
order Markov chain and at most one packet arrival is possible.
A closed-form solution for the mean packet delay has been
derived for the latter case. In [25], a closed-form expression
for the mean packet delay in the case of Bernoulli per line
arrival can be found. The systems presented in [23]-[25] (and
some special cases of the system in [22]), are special cases of
the general system considered in this paper.

Let 7i(k) and p*(k,j), k,j € S, denote the steady state
and the transition probabilities of the ergodic Markov chain,
{z } s L =1 2,---,N. Let also p™(j: %) denote the
joint probability that there are j packets in the system at
the nth time instant or slot boundary (arrivals at that slot
boundary are included) and the states of the Markov chains
are yl,y2, .y~ where § = (y'.9%,---.y"). The vector
7 describes the state of a new ergodic Markov chain that is
generated by N independent Markov chains described before,
with steady state probabilities 7(y), transition probabilities
p(Z,7) and state space S given by

N N
7 =[], »@m=]IrGe"y)
=1 =1
T=5"x87x...x SN, (1)

The operation of the system can be described by an IV + 1
dimensional Markov chain imbeddeg at the slot boundaries,
with state space T = (0,1,2,---) x S. Let wz where

N
z—zz 931!

be a random variable describing the cumulative packet arrivals
which result from a state transition from T to 7; let gz5(v),

@
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0 < v £ N, pzy and 04 be the probability distribution,
the mean and the varlance of wgy, respectively. The state
probabilities of the N + 1 dimensional Markov chain are given
by the following equations:

N
=Y > G+ L - wDpE D (v)

Fes v=0
i>N+1 (3a)
Jj+1
pEm = Y, P k@ g+ 1 - k)
zes k=1
+ ) PO T)p(E. H)g 77 ().
z€S
0<j<N (3b)

where T is the state of the N-dimensional Markov chain at
time instant n— 1. Equation (3a) is easily understood by noting
that the N + 1 dimensional Markov chain is in state (j;7) at
the nth slot boundary if it were in state (§ + 1 — v;T) in the
previous slot boundary and a transition from T to y took place
resulting in the arrival of v packets. Equation (3b) is explamed
in a similar way. There are totally M* x M? ox MN
equations given by (3) for a fixed j and all § € S where M?
is the cardinality of S, i = 1,2,---, N.

Ergodicity of the Markov chains associaled with the in-
put streams implies the ergodicity of the arrival processes
{a} } 5o @ = 1,2, N. The latter together with the er-
godicity condition for the total average input traffic A

A= wgp(@p)m(@) < 1 )

zeS yeS

imply that the Markov chain described in (3) is ergodic.
The steady-state (equilibrium) probabilities can be derived by
considering the limit of the equations in (3) as n approaches
infinity, and obtain similar equations for the steady-state
probabilities. By considering the generating function of these
probabilities, manipulating the resulting equations, differen-
tiating with respect to z and setting z = 1, we obtain the
following system of linear equations (see Appendix A).

ZP'(I 7)p(T. Y) + z pag — Dp(Z, 9)7(T)

z€S zes

+ Y pO;m)p(T.Y), TES. (5)
zTeS

In general, the exact calculation of the boundary joint proba-
bility p(0; %) is complicated. We use the following expression
to estimate its value
% p(z.7)7(z)a0 (= )
zeS
EEEER PR

zeS

p(0;T) = (6)

where pg = 1 — A is the probability that there is no customer
in the system and ¢o(Z,T) is the probability that the state
transition from Z to Z results in no customer arrival; the latter
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probability is easily obtained from the probabilistic mappings
in the independent streams and it is given by

N
q0(z,T) = H (1- ¢ (zl,ml)) (7

Notice that the calculation of the above boundary probability
is the only point of approximation in this work. This is the
reason for which we derive simulation results in the application
presented in Section V. The exact calculation of the boundary
probability is easy when for each state T there is only one
state Zo such that a transition from Zo to T may result in no
packet arrival; all other transitions into state T will result in at

least one packet arrival. In this case, the boundary probability
is easily derived to be equal to

p(0;Z) = pogo(Zo, T)- 8)

The ML --- MY linear equations with respect to J € S that
appear in (5) are linearly dependent. This is the case when the
equations are derived from the state transition description of
a Markov chain. By manipulating the original equations and
using L’Hospital’s rule we obtain an additional linear equation
with respect to P'(1;7), ¥ € S, (see Appendix B) which is
linearly independent from those in (5) and it is given by

2[2(“5_ DP'(1;7) + 2(pz — 1)p(0;7) +

zEeS
[2 +o2+ (uz)? - 3%]”(5)} -0 (9)

where

2

pz = Egluzg], 0% = By[ozy). (10

By solving the M'z - - - MY dimensional linear system of
equations which consists of (9) and any M'z---zM |
equations taken from (5), we can compute P’ (1;7), T € S.
Then, the average number of packets in the system () can be
computed by adding all the solutions. The average time D
that a packet spends in the system can be obtained by using
Little’s formula as the ratio Q/A. This is the mean delay of
an arbitrary packet arriving at any of the input streams.

Consider the special case in which the per stream arrival
process is Bernoulli. The underlying Markov chain has one
state and (5) and (9) become

(5"
and

2p— 1)P'(1) +2(un — )p(0) + [2+ 0% + p* = 3u] =0
)

where

N
o= A(1-\) (11)
i=1

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 8, AUGUST 1992

where ), is the rate of the ith network. From (5') and (9') we
get the following equation with respect to P'(1)

N N
S AN+ (- )

i=15>1
(1-p)
where Qp is the average number of packets in the system.

The mean packet delay, Dp is given by Qp/u, which is a
known result, [25].

(12)

P(1)=Qp =

B. Special Case: Symmetric System

Let us now assume that the queueing system is symmetric,
that is, the parameters of all input processes are identical. Let
M be the cardinality of each of the involved one-dimensional
Markov chains. As expected, the number of equations which
need to be solved for the calculation of the mean delay in the
queueing system is reduced significantly. This can be easily
seen by observing that the unknown quantities in (%), P'(1;Z),
are the same with those corresponding to a permutation of T.

If 5(Z) = (v (%), v2(T), - vm(T)) is an M -dimensional
vector with v;(%), i = 1,2,---, M, denoting the number of
input processes at state S;, then each vector v(Z) with the
constraint Egl v;(T) = N, represents a class of equivalent
states T. The number of equivalent states Z in a class ¥(Z)
is given by

c(T) = (vl(a—;)wQ(fj)\,j‘ .- ,UM(T)>

B N
T oo (@) (T)! o (T

(13)

where v;(T), is the number of input processes in state Si, as
determined by 7, i = 1,2,---, M (see [26, pp. 20)).

Let F be the set of representative states T of the symmetric
system (i.e., no two states T € F' belong to the same class
of equivalent states); let v(Z,) be the class of the equivalent
to T, states. For each 7,7, € F, (5) and (9) can be written
as follows:

P(Lg,)= 3.4 > p@7,) P17

T,eF | z€V(Z,)
+ Z (Hzy, —1)
zES
p(T,5,)n(@) + Y p(0:T)p(T,T),
7€l
¥, € F

S e(@o)2(uz, — DP(1;To)
F

To€
+ 3 (2w = 1p(0:7) +

TES

[2+ 02 + 2 — 3uz] 7r(f)J =0 (52)

By solving the above equations with respect to P'(1;T,),
T, € F, we obtain the average number of customers in the
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Fig. 2. Star topologies of interconnected packet radio networks.

queueing system under input state T,, for each T, € F. Then
the average delay in the queueing system can be obtained
from
2 P(15%0)e(Zo)
D, = =L 14
. - (14)
where ) is given by (4). Depending on the number of input
streams, the reduced number of equations K in (5a) is easily
computed. This number is given by

(M+N —1)!
NI(M - 1)

which is the number of ways of partitioning /V things into M
groups [26]. From (15) it turns out that significant reduction
in the number of equations can be achieved, especially for
small values of M, in the case of symmetric inputs. Partially
symmetric inputs will also result in a reduction of the number
of equations.

K= (15)

IV. STAR TOPOLOGIES OF INTERCONNECTED NETWORKS

The objective in this section is the presentation of some
practical systems of interconnected RAN’s where a star inter-
connecting scheme seems to be both meaningful and efficient.

Consider a system of two packet radio slotted commu-
nication networks which operate on virtually the same (or
neighboring) areas (Fig. 2). In each network a random access
protocol is employed for the allocation of the common channel
to the network users. The users of each RAN can be either
static or mobile. A central node, properly located, receives
and retransmits the successfully transmitted packets coming
from the corresponding network. Each RAN is assigned two
channels, an uplink and a downlink. Thus, four different
channels, to avoid interference, would be needed for the
support of the two RAN’s.

An important observation at this point is that the downlinks
will be idle most of the time, due to the throughput limitations
of the random access protocols. One way to save the bandwidth
would be to divide unequally the bandwidth between the
uplink and the downlink. This approach has been suggested
in [11]. Another approach would be to use a common down-
link for both RAN’s. Comparison of the two approaches is
beyond the scope of this paper. For the implementation of
the latter scheme a common central node, receiving packets
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Fig. 3. Star topologies of interconnected (isolated) packet radio networks.

from both RAN’s would be required. This structure saves one
channel and offers an efficient solution to the problem of the
interconnection of the involved networks. In fact, the latter is
provided almost for free. At the same time a queueing system
is formed at the common central node, due to the possibility
of having simultaneous arrivals from both RAN’s.

The system of the two RAN’s described before can be
extended to one which accommodates more than two RAN’s,
provided that the cumulative arrival rate to the central node
is less than one packet per slot. The latter can be the case
when the throughput of the RAN’s is sufficiently small, or
when a portion of the packet traffic arriving at the central
node is not retransmitted because its destination is outside the
interconnected RAN’s.

Another system of practical interest is the one in which a
buffer receives packets coming from (isolated) RAN’s not to
be retransmitted within the generating (or the interconnected)
network, but to be forwarded to a distant destination via an
appropriate transmission line (Fig. 3).

Clearly, the above are simple examples of star topologies of
interconnected networks. The queueing system formulated in
the central node of these topologies is hard to analyze. In the
next section it is illustrated how a star topology of intercon-
nected ALOHA RAN’s can be analyzed by incorporating the
Markov modulated model on their output process and using
the analysis of the queueing system presented in Section III.

V. STAR-INTERCONNECTED ALOHA NETWORKS

In this section we analyze a star topology of interconnected
ALOHA networks. At first, the output process of a slotted,
single buffer, finite user population ALOHA network, [1], [14],
[17], [27], [28], [29], is described. From the description turns
out that this network is a C-RAN; we call it a C-ALOHA
network. Then, the results from the analysis of the queueing
system, presented in the previous section, are used for the
calculation of the mean packet delay in the central node of a
star topology of interconnected C'-ALOHA networks.

Let M be the number of users of the MUCN. A user can be
either active (if its buffer is nonempty) or inactive (if its buffer
is empty). An active user can be either a backlogged one (if its
buffer was nonempty at the beginning of the current slot) or a
new one (if its buffer was empty at the beginning of the current
slot). The per user packet generation process is assumed to be
Bernoulli with per slot probability of packet arrival A. The
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single buffer assumption implies that new packets which find
the corresponding buffer full are discarded.

Two policies may be considered, the delayed first trans-
mission (DFT) and the immediate first transmission (IFT).
Under the DFT policy, new and backlogged users (at the end
of the last slot) transmit at the beginning of the current slot
with probability p. Under the IFT policy, the backlogged users
transmit at the beginning of a slot with probability p and the
new users transmit with probability 1.

Let us assume that the length of a slot equals one. We
define the jth slot to be the time interval (4,7 + 1). Let 2;
be the number of active users (under the DFT policy) or the
number of backlogged users (under the IFT policy) at the
end of the jth slot. Under the IFT policy we assume that the
new arrivals over a slot appear at the beginning of this slot,
[17), [1]. Tt is easy to see that {;} 5, is a Markov chain
under both policies with state space S = {0,1,2,---, M}.
The transition probabilities of this Markov chain have been
derived for the analysis at these ALOHA protocols, [16],
[29], [1], and are given in Appendix C. This Markov chain is
finite and irreducible so it is ergodic, for all arrival rates, [1],
[20]. Let P denote the state transition probability matrix. The
stationary distribution II = (w(0),7(1),---,7(M)), where
7(k) = lim;_,. Pr(z; = k), is simply obtained by solving
the system

Im=nr (16)
Since p(k,j) = 0 for j < k — 1 the system can be solved
recursively, [29].

Suppose that the Markov chain {z;};,, moves from state
k at time j — 1 to state i at time j. Let a(k,%) be a binary
random variable that describes the channel activity over the
jth slot; a(k,) equals 1 if a successful packet transmission
took place in the jth slot and it is O otherwise; a(k,i) is
a Bernoulli random variable which is completely described
by states k and ¢ and the policy under consideration. More
specifically, the expressions for the transition probabilities lead
to the following:

{1 with probability ¢(k.1)
a(k.1) = {o with probability 1— g(k,i) 7
where
a) under DTF policy
X 0 ifi<k-1
(k. 1) = { o fp_1<i<cM (18
OkitThi - =
b) under IFT policy
o(k,7) =
0 fi<k—1lori=k+lorM>i>k+2
1 ifi=k-1 (18b)
m fi=k

The involved quantities are defined in Appendix C.
The above system description, in view of Definitions 1-3,
implies that the ALOHA network considered above is a
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C-RAN; its packet output process is completely described by
the process {a(zj-1,%; } o

Consider N C-ALOHA 'fetworks interconnected according
to a star topology. Each of these networks is assumed to
support M users. The star topology may model a practical
network interconnecting scheme, as discussed in Section IV.
The central node of this topology is assumed to have the
characteristics of the single server described in Section III.
All networks are synchronized and have identical slot lengths.
A packet departure from a network occurs at the end of a slot
involved in a successful packet transmission and is declared as
an arrival to the central node at the beginning of the next slot.
Clearly, the output process of the ith C-ALOHA network,
{a }]>0 = {d} (25152 )} 500 is the arrival process of the
sth input stream, accordmg to y the terminology of the previous
section; superscript i denotes quantities associated with the
ith network.

The mean time that a packet spends in the central node of
the star interconnecting topology is given by the solution of the
linear equations given by (5) and (9) [or by (5a) and (9a) for
the symmetric case] where the following expressmns are used
for certain quantities (assuming a transition from z* to y b

o = E{z e yf)} - Y (o)

=1

= Z o' (z*,y") (19)
LZIJ\I )
#(e) = 3 o)
j=0
k=) (1-¢'(="))¢' (=) (20)
= M N
pr = Bylug) = > Y ¢ (a'y')p' (a7, y)
3=0 i=1
=3 #(e) 1)
i=1

p'(z'.y"), 7(z') are calculated from (16) by using (C.1) and
(C.2); ¢*(z%,y") are given by (18a), (18b).

Numerical results for the mean delay in the central node
of N = 2 and N = 3 ALOHA networks interconnected
according to a star topology and operating under the DFT
policy have been obtained by solving the equations in (5) and
(9) [or (5a) and (9a) for the symmetric case]. In Table I, delay
results are shown for the simple case of M = 2 users per
network and for N = 2 and N = 3 interconnected networks.
Similar results are shown for the case of M = 10 users per
network and for N = 2 in Table Il and N = 3 in Table Il
Results are shown under the Bernoulli approximation on the
network processes as well. Both results are compared with
simulations. The results show that both the Bernoulli approxi-
mation and the developed exact model on the network output
processes perform satisfactorily under light traffic. When the
traffic increases, the developed model clearly outperforms the
Bernoulli approximation.
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TABLE I
RESULTS FOR THE MEAN PACKET DELAY IN THE CENTRAL NODE OF A STAR TOPOLOGY OF N = 2 AND NV = 3 INTERCONNECTED ALOHA
NETWORKS UNDER DFT PoOLICY; Aip IS THE PER NETWORK INPUT RATE, Agut IS THE PER NETWORK OUTPUT RATE, p IS THE PACKET

TRANSMISSION PROBABILITY, Dyet 1S THE NETWORK INDUCED DELAY, Dy
1S THE QUEUEING DELAY FROM THE SIMULATIONS AND D x—

A IS THE QUEUEING DELAY UNDER THE DEVELOPED MODEL, Dy N5
» IS THE QUEUEING DELAY UNDER THE BERNOULLI MODEL

M = 2 users per network

Ain Aout r Diyet D2 Dga2—s Dyo2—p Dy3 Dy3s Dy3-p
0.10 0.098 0.86 1.40 1.06 1.06 1.06 1.14 1.14 1.14
0.20 0.188 0.82 1.64 1.14 1.15 1.15 1.40 143 1.43
0.30 0.266 0.78 1.85 1.25 1.27 1.28 2.16 2.20 231
0.35 0.300 0.77 1.96 1.32 1.35 1.37 3.56 3.62 3.96
0.40 0.330 0.75 2.06 141 1.44 1.49 28.78 29.39 34.00
0.50 0.381 0.73 2.25 1.66 1.70 1.80 * ok % * k% * ok *
0.60 0.419 0.70 2.44 2.07 2.12 229 * k% * % K * % K
0.70 0.447 0.68 2.61 2.80 2.77 3.1 * ok ok * %k * ok *
0.80 0.480 0.64 2.79 3.98 4.00 4.45 * ok k * *k * * %k kK
TABLE I

RESULTS FOR THE MEAN PACKET DELAY IN THE CENTRAL NODE OF A STAR TOPOLOGY OF N = 2 INTERCONNECTED ALOHA NETWORKS
UNDER DFT POLICY; Aip IS THE PER NETWORK INPUT RATE, Aoyt IS THE PER NETWORK OUTPUT RATE, p 1S THE PACKET TRANSMISSION
PROBABILITY, Dhpet IS THE NETWORK INDUCED DELAY, Dy 2 IS THE QUEUEING DELAY UNDER THE DEVELOPED MODEL, Dyo-s
IS THE QUEUEING DELAY FROM THE SIMULATIONS AND Dg 5 _p IS THE QUEUEING DeLay UNDER THE BERNOULLI MODEL

M = 10 users per network

Ain Aout r Dyet Dq,? qufs Dq.z—b
0.10 0.099 0.51 2.40 1.07 1.06 1.06
0.20 0.190 0.41 3.70 1.16 1.16 1.15
0.30 0.265 0.33 5.41 1.27 1.28 1.28
0.40 0.320 0.29 7.51 1.40 1.42 1.43
0.50 0.350 0.24 9.62 1.49 1.55 1.58
0.60 0.366 0.21 11.63 1.61 1.65 1.69
0.70 0.375 0.18 13.36 1.65 1.70 1.75
0.80 0.380 0.17 14.80 1.74 1.7 1.79

Notice that as long as the per network packet generation
rate is less than 0.4 (so that the packet rejection probability be
small), the induced queueing delay is less than half a packet
length in the case of N = 2 networks. This was expected
since the total output rate from both networks is less than
0.65, well below the capacity limit of the server which is 1.
In the case of N = 3 networks, the total packet departure
rate from all networks can be as high as the capacity limit
of the server. Under such rates the queueing delay introduced
by the interconnecting topology can be arbitrarily high as the
capacity limit of the server is reached.

VI. CONCLUSION

In this paper, we have proposed a Markov modulated
process for the description of the dependent output process
of communication networks and we have analyzed a multi-
input single server queue that models the central node of a
star topology of interconnected networks.

The Markov modulated process has been shown to be
capable of describing exactly the packet output process of a
class of communication networks, the C-NET’s. This class
consists of all networks whose operation can be described
by a finite state Markov chain and the output process can
be obtained by a well defined probabilistic mapping from
the state space of the Markov chain into the {departure/no-

departure} set. The proposed model is exact and, unlike the
i.i.d. approximation, captures the dependencies present in the
network output process. It has been shown that the single
buffer, finite population ALOHA network is a C-NET. By
using the results of the analysis of the single server queue,
a star topology of interconnected C-ALOHA networks has
been approximately analyzed, under the Markov modulated
model for the output processes. The results have shown that
the proposed model outperforms the i.i.d. approximation on
the network output process.

APPENDIX A

In this section we derive the linear equations that are given
by (5). We write the steady state probabilities (under ergodic-
ity) by considering the limit of (3) as n — oo and obtain

N
PG =3 Y o+ 1 - v T)p(T. gz (),
z€S v=0
€S Ps N4
i+l
pGm) =Y. S p(kD)p(@.H)gz7(i +1— k)
zeS k=1
+ 3 (0 T)p(T, G)g75(),
zeS 0<i< N
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TABLE 111
RESULTS FOR THE MEAN PACKET DELAY IN THE CENTRAL NODE OF A STAR
TopoLoGY OF N = 3 INTERCONNECTED ALOHA NETWORKS UNDER DFT
POLICY; Ain IS THE PER NETWORK INPUT RATE, Aout IS THE PER NETWORK
OUTPUT RATE, p IS THE PACKET TRANSMISSION PROBABILITY Dre¢ IS THE
NETWORK INDUCED DELAY, Dyg.3 1S THE QUEUEING DELAY UNDER THE

DEVELOPED MODEL, Dy 3— IS THE QUEUEING DELAY FROM THE SIMULATIONS

AND D 3_ 1s THE QUEUEING DELAY UNDER THE BERNOULLI MODEL

A = 10 users per netowrk

Ain Aout P Dyet Dg3  Dgs-s Dgs-p
0.10 0.099 0.51 2.40 1.15 1.14 1.14
0.20 0.190 0.41 3.70 1.48 1.45 1.44
0.30 0.265 0.33 541 2.31 2.27 2.29
0.40 0.320 0.29 7.51 7.14 6.80 7.62
0.43 0.329 0.26 8.12 22.64 19.79 27.64

If P(z;37) is the z-transform of the joint probability
distribution that there are j packets in the system and the
Markov chain is in state 7, defined by

P(z7) =Y p(z79)?
§=0

then we obtain

Zp]yz]+ Z ZZPJ+I—VT)
j=N+1 g5 v=0
: P('f A )
=Z ,yZ’+Z Z ZP(JJrl—Vf)

j= v=0 j=N+1 7§
(T 97 gﬁ(V)

=ZP<JW’+Z > %

v=0 k=N+2-v zc3

plk; )(zy)’” 'gz5(v)
=Zp(1yz9+z ZZ" !

.{Z

k=N+42—v

2J+Z Zz" !

v=0 zc§
N+1—v
. [P(z;f)—- Z p(k;f)zk}
k=0
: P(T 7)gz5(v)

=ZP1W+Z 2.7

v=0 73§

- P(z;7)p(T,9)975(v)
N

- 3N 2 p(0:)p(E, 9)g (V)

v=0 zcg

p(k; f)p(f»@)z'“gﬂ(w}

J=0
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N+1 N+1-k

- Z Z 3 2 (ks T)p(E D9 (v)

= IES
N .
= > PGP+ Z >
=0 v=0 ze§
P(z;T)p(Z, %) 9= (V)

(A1)

By differentiating the above equations, setting z = 1 and
carrying out the sum with respect to v we obtain the equations
in (5).

APPENDIX B

To derive the additional equation that is shown in (9), we
differentiate (A1) and then add all the resulting equations.
Since

Z > Pl(z7)9z(v)

v=0 ze3

=> 9w

y€S

ZP (%) =

zES
(BO)
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we obtain
N
P= 3 B”—Ufmﬂﬂmfﬂwz—uﬂm@]
v=0 ze35
+ P (5 7) +p(0;f)]]g5(y).
By adding

N
ZP'(2) — 2 Z
v=0

to the second part of above equation and rearranging terms
we obtain that

P(z,T)g=(v)
S

8|
m

P'(z) =

11—z

where

N
Az) =)

[(v ) P(E) + (2 - 1)p(0:7)]
€S

8|

+ U P/ () + pl(0: )
- zP’(z;a]gf(u).

Since, P’(1) is the average number of packets in the system,
which is finite if (4) holds, and since 1 — z = 0 for z = 1, we
compute P’(1) by applying L Hospital’s rule to (B1); thus
dA(z)/dz ’
2= AL —2)/dz ],

From condition (B2) and by using (B0) we obtain (9).

P'(2) = —dA(2)/dz|.=1. (B2)

APPENDIX C

In this Appendix we give the transition probabilities de-
scribing the Markov chain of the ALOHA networks described
in Section V.

a) Under DFT Policy:

. 0 j<k-—1
P(k-,J)={ J

ngtoy k-1<j<m  (©

where 71; denotes the probability that there is no successful
packet transmission when k& users compete for the channel
and that § — k from the inactive users are activated; similarly,
ok; denotes the probability that there is a successful packet
transmission when k& users compete for the channel and that
Jj—k+1 of the inactive users are activated. These probabilities
are given below where bi(1) denotes the probability of a
successful transmission, i.e., a single transmission, when &
users compete for the channel

Thj = [1— br(1)] (A;I__:),\j—k(l - )\)M—j‘

M-k+1\,;_ i
Okj =bk(1)<j_k+1 )/\] k- )M

and b(0) = (1 - p)¥, be(1) = kp(1 —p)* " and (T) =0
for k < 0.
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b) Under IFT Policy:

p(k,j) =
0 ifj<k—1
b(1)(1 = )M 7* j=k-1
Thj T Ok ji=
um%»@-m“**a—mm»j=k+1
(“f:f)A"’“(l - j>k+2
(Cb)
where
Thj = [1 - bk(l)] (1—XM* and
oh = (M = k)M1 = )M F1p,(0).

These equations are explained as those under the DFT policy.
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