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Queueing Study of a 3-Priority Policy
with Distinct Service Strategies
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Abstract—TIn this paper, a discrete-time, single server, 3-queue
system is presented and analyzed. A distinct service strategy,
namely the consistent-gated (c-G), 1-limited (L) and Head-of-
Line (HoL), is applied to each of the queues (c-G/L/HoL policy).
It is shown that this queueing system provides for an accurate
analytical model for a DQDB station, as well as a means for an ap-
proximate evaluation of the correlation associated with key traffic
processes in that network. In addition, the developed queueing
system could be useful for the modeling of the queueing behavior
of an ATM link shared by high-priority, low priority and control
traffic. Through an asymptotic analysis under heavy low-priority
traffic, the worst case performance for the high priority traffic
is determined. Furthermore, it is illustrated that the asymptotic
analysis provides for a potentially tight delay bounding technique.
Finally, the delay performance of the developed queueing system
is compared to that of a similar system in- which one of the
queues receives 1-limited service and the other two exhaustive
(HoL~/L/HoL" policy).

I. INTRODUCTION

ISCRETE-TIME queueing models are frequently devel-

oped for the study of packetized communication net-
works [1]-[4]. In particular, the evaluation of new switching
technologies such as ATM (Asynchronous Transfer Mode)
and network standards like DQDB (Distributed Queue Dual
Bus) and FDDI (Fiber Distributed Data Interface), is heavily
dependent upon the development of sophisticated queueing
models, which frequently involve multi-priority service disci-
plines [4]-[19].

Token-passing protocols such as FDDI are often modeled
as cyclic polling systems, in which a single server attends to
queues in a fixed and cyclic order. The service strategy at a
queue can usually be described by one of three basic policies
and their variations: limited service, in which a specified
number of customers are served during each visit by the server;
gated service, in which case only customers present at the
queue upon arrival of the server are considered for service;
or exhaustive service, in which case the server remains at the
queue until it becomes empty. Detailed surveys on recent work
in polling systems may be found in [15], [16].

The exact analysis of polling systems has, for the most
part, been limited to a few special cases [18]. Specifically, for
polling systems with cyclic order of service and either purely
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gated or purely exhaustive service policies, detailed analyses
exist for an arbitrary number of queues. However, as the order
of service becomes noncyclic and/or service policies among
the queues become mixed, exact analysis becomes difficult
at best. In [19], a discrete-time pseudoconservation law for
mean waiting times is derived for a system of queues with
mixed cyclic-service strategies and nonzero switch-over times
between queues.

A discrete-time system of two queues served according to
two distinct policies has been considered in [20]. Queue Qr
(associated with low-priority customers) receives limited ser-
vice while queue Q¥ (associated with high-priority customers)
receives consistent-gated service. The service policy in [20] is
characterized as consistent in the sense that it guarantees that
no low-priority customer will be served before a high-priority
customer that arrived at an earlier time (or simultaneously). A
continuous-time system of two queues with mixed exhaustive
and k-limited services has been studied in [21].

In this paper, a discrete-time system of three queues (QF,
Q¥ and QF) with mixed service policies is considered. Note
that the adopted service policy was originally introduced
in continuous time in [9], and referred to as the quasi-
gated discipline in [10], {11]. Although the resulting queueing
system could be viewed as a step toward the consideration
of more than two queues with mixed services, its study has
been motivated by the following major potential applica-
tions.

The three-queue system with the adopted mixed service
policies is shown here, as well as in [10], [11], to model
accurately the queueing behavior of a station in the DQDB
metropolitan area network (MAN). In fact, the only point of
approximation is introduced by the approximate modeling of
the arrival processes to each of the three queues; otherwise,
the three-queue system is an exact model for the queueing
behavior of a DQDB station. This work marks the first
time that correlated arrivals are considered for one of the
key network traffic processes, thereby increasing the model’s
accuracy. Detailed discussion on this application, which is
motivated by the work in [9]-[11], may be found in Section
III.

In addition to the DQDB application, the mixed service
policy of the developed three-queue system is an appeal-
ing candidate for implementing network resource sharing or
bandwidth allocation in an ATM environment [6], [7]. The
two-priority service policy mentioned earlier is inadequate
in capturing the diversified service requirements in the in-
tegrated traffic ATM environment. In such an environment,
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a limited service policy would be meaningful for delay-
insensitive traffic which, if not properly controlled, could
temporarily monopolize network resources, causing severe
degradation of the service provided to delay-sensitive traffic.
An asymptotic analysis (Section V) establishes the inherent
capability of the limited service policy in protecting network
resources against “misbehaving” delay-insensitive traffic; long
file transfers could represent such traffic. On the other hand,
a gated service policy for delay-sensitive traffic guarantees
that all the accumulated delay-sensitive traffic will be served
before the network resources become available to the delay-
insensitive traffic. At the same time the accumulation horizon,
or the time interval over which delay-sensitive traffic is not
being served, is controlled by the provision of limited service
to delay-insensitive traffic. Depending upon the structure of
each class of traffic, a specific type of limited service could
be determined so as to provide a required quality of service
to delay-sensitive traffic; video and voice represent such
traffic.

In the integrated traffic ATM environment, a third major
class of traffic is assumed to be present. This type of traffic
consists of critical, network control and reservation informa-
tion, the delay of which adds significantly to the deterioration
of the overall service provided by the network. The volume
of this control traffic is usually small, but its service requires
immediate availability of the network resources, which would
otherwise be used for the service of delay-insensitive and
delay-sensitive traffic. The network resources can be assumed
to adequately serve the control traffic and, thus, the evaluation
of the quality of service provided to this third type of traffic
is not an issue. What is of interest in this case is the
evaluation of the induced degradation of service provided
to the delay-insensitive and, in particular, the delay-sensitive
traffics. The resulting queueing model for the resource-sharing
policy described above, would be that of a three-queue system
with distinct services, or, equivalently, that of a two-queue
system with distinct services and vacations.

In the next section the three-queue system with distinct
services is described and analyzed. The applicability of this
system for the modeling of the queueing behavior of a DQDB
station is presented in Section III. Numerical results for the
general three-queue system, as well as the DQDB stations,
are presented in Section IV. In view of the fact that the
three-queue system with distinct services exactly describes
the service policy of a DQDB station, the accuracy of the
results suggests that the adopted modeling of key traffics
is a well performing one and, thus, could be used in other
DQDB studies. An asymptotic analysis under heavy delay-
insensitive (low-priority) traffic is presented in section V,
and the worst case performance for delay-sensitive (high-
priority) traffic is established. In addition, it is illustrated that
the asymptotic result could be used as a bounding technique
which could generate very tight bounds on the numerically
obtained performance bounds. Finally, a comparison between
the proposed three-queue system with distinct services and
a three-queue system with distinct services which treats the
delay-sensitive traffic as control traffic, is presented in the last
section.
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Fig. 1. The discrete-time queueing system.

II. ANALYSIS OF THE THREE-QUEUE SYSTEM

A. Description of the Queueing System

In this sub-section the three-queue system is described in
detail (Fig. 1). Time is assumed to be slotted and the service
time of all customers deterministic and equal to the duration
of one slot. Customers will be called packets in the rest of the
paper. Packet arrivals and completion of service are assumed
to occur at the slot boundaries.

The packet arrival processes to QL and QF are assumed
to be Bernoulli processes with rates A and A, respectively.
The packet arrival process to QF is assumed to be correlated,
delivering at most one packet per slot. The latter process is
described by a two-state Markov chain; one packet is delivered
to Q¥ when the chain is in state 1 and no packet is delivered
when the chain is in state 0. The mean number of packet
arrivals per slot is given by the steady-state probability that
the chain is in state 1, and denoted by AP. The fact that this
process delivers at most one packet per slot, together with
the fact that these arrivals receive Head-of-Line priority (see
below), implies that a buffer capacity of one packet is sufficient
for the dimensioning of QF. QT and Q*, on the other hand,
are assumed to be of infinite capacity.

It should be noted that the assumptions on the arrival
processes considered above are not to be viewed as critical,
since they may be relaxed in a number of ways. For instance,
the analysis is directly applicable to the case in which the
arrival process to Q¥ is a general independent and identically
distributed (i.i.d.) process with arbitrarily distributed batch
size over a time slot, and/or the arrival process to QL is
an i.i.d. process with geometrically distributed batch size. In
both cases, some of the equations will be slightly modified. A
similar analysis procedure may be followed when the arrival
process to Q¥ is correlated, resulting in increased complexity
of the numerical solution.

Packets arriving to QF, Q¥ and QL will be called P-
packets, H-packets and L-packets, respectively. The service
policy for the three-queue system, denoted by c-G/L/HoL, is
described by the-following rules.

(a) The system is work conserving (WC) and nonpre-
emptive (NP). Non-preemption is guaranteed by the
deterministic service time of one slot and by the fact that
packet arrivals (and service completion) are assumed to
occur at the end of a slot.
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Fig. 2. State diagram for the c-G/L/HoL policy.

(b) QF is served according to the HoL priority policy. That
is, P-packets begin receiving service immediately. In
view of the adopted arrival process to QF, the previous
implies that P-packets suffer a delay of one time slot
(service time).

If an H-packet (L-packet) arrives to a previously empty
system, the server visits and starts serving Q¥ (QL) at
the beginning of the next slot. If an L-packet and an
H-packet arrive simultaneously to a previously empty
system, the server switches to Q¥ and serves the H-
packet. It then operates on the system as described
below.

The server switches from Q% to Q¥ after serving
the L-packet at the head of QF, provided that QF
remains empty. Otherwise, the server switches to Q¥
and remains there as long as P-packets are present. It
then switches to Q¥ to begin service of the H-packets.
Upon leaving QL, the server closes a gate in Q¥ . If
QF was left nonempty, the server serves all H- packets
present at the time the gate was closed. If, however,
a P-packet arrives following the completion of service
of the L-packet or one of the H-packets, the server
temporarily suspends service to @ by switching to QF
and remaining there until no P-packets are present. The
server then switches back to Q¥ and resumes service
of H-packets. When all of the H-packets present at the
time the gate was closed have been served, the server
switches back to QL, providing that QF is empty.

If upon closing the gate in @, no L-packets were
present in QF, the server will serve all H-packets that
arrive prior to or over the same slot as the next L-packet
(consistency property). The server then switches back
to Q, providing that QF is empty. (Again, the service
of H-packets will be suspended any time a P-packet is
found in the system.)

The above service policy can also be described in terms of
the state diagram in Fig. 2, where states represent the position
of the server and transitions are made at slot boundaries
according to rules (a)—(f).

The resulting queueing system is identical to that presented
in [10], [11] when the arrival process to QF is Bernoulli. A
first attempt at analysis is made in [11] by providing loose
bounds on the mean packet delay of customers corresponding
to L-packets. The objective in the sequel is to provide an exact
result for mean packet delays of all classes of customers in the
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Fig. 3. Discrete-time axes used to represent system.

three priority queueing system, where arrivals to QF follow a
more general first-order Markov process.

B. Delay Analysis of the Queueing System

The analysis of the three-queue system is carried out by
following an approach similar to that developed in [20] for
the study of a two-queue system with distinct policies. Let
{S, : n € N} denote the sequence of time instants (defined
at the slot boundaries) at which the system is empty; N
represents the set of natural numbers. It is easy to establish that
{S. : » € N} is a renewal sequence. The random variables
Xn, n > 1, which represent the length (in slots) of the
ntP renewal cycle, are independent and identically distributed
(i.i.d.) with mean value X given by

- 1

X = '1—_‘; , 1
which is easily proven using the Regeneration Theorem (The-
orem 6-7 in [23]). p = AF + A7 4+ AP denotes the system
utilization; under stability (p < 1), X < oo.

Let C! denote the cumulative delay of the i-packets that
arrived (and were served) over the nt? cycle, i € {H,L, P},
n > 1. {C,’l :n € N} is a regenerative process with respect
to the renewal process {S, :n € N}. The expected value
of the cumulative delay of the i-packets will be denoted by
E{Ci.} = C'. The subscript n may be dropped since the
definition of a regenerative process implies that {C};}:’:O
is stochastically equivalent to {C,‘l +6}z°=0 for all n,6 € N.
By invoking the Regeneration Theorem once again, the mean
delay of a i-packet can be obtained from,

Vou
CONX
where A is the arrival rate of the i-packets.

The remainder of this section is focused on the calculation of
Di,ie {H,L, P}, n > 1. To facilitate the description of the
analysis, a multiple discrete-time axis is introduced as shown
in Fig. 3. The system axis describes the evolution of the system
at the server output, and the z-axis is a fictitious time axis used
to mark the arrival of i-packets, where ¢ € {L, H, P}.

Let {t,},~ denote the time instants at which the server
is ready to switch to QL in order to serve the L-packet at
the head of that queue (if such a packet is present). Define
Va, 0 <V, < 00, to be a random variable describing the
length (in slots) of the unexamined interval on the H-axis at
a given time instant ¢,. V,, represents an unexamined interval
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in the sense that none of the H-packets which arrived over the
interval V;, have been considered for service by time ¢,,. Let
U,, 0 < U, < o0, be a random variable such that U,, + V,,
describes the distance from £, to the arrival time of the L-
packet at the head of Q% (oldest packet in QL). Finally, let
{rn}nso denote a stochastic process embedded at {tn},~,
with state space {(¢,5) : 0 < ¢,j < oo}, where i and j are the
values of U, and V,, at the current time instant ¢, € {t,}, 5.
Due to the fact that switching instants ¢,, can only occur when
QF is empty, together with the fact that packet arrivals to
QT and Q¥ are independent over consecutive slots, it is
easy to show that {r,} ., is a Markov chain embedded at
th € {ta}ns-

Let fr(-) [fu(-)] denote the Bernoulli probability mass
function (PMF) for L-packet [H-packet] arrivals. Let {2},
denote the first-order Markov chain describing the P-packet
arrivals. A P-packet arrives to QF during the k** slot if
Zy = 1; no packet arrives if Z, = 0. Let G be a random
variable that describes the length (in slots) of a burst of
consecutive packet arrivals to QF beginning at some time
k, given that Z,_; was equal to 0. The random variable G,
0 £ G < o0, has the following PMF, denoted by fg(-).

fe)=Pr(G=1)= {pOU forl=0 3

po1-pyil po forl>1,

where p;; = Pr(Zx = j/Zkx-1 = 1), Yk > L.
In order to proceed with the analysis, the following quan-
tities need to be defined.

1) [X(%,7):] A random variable describing the amount of
time (in slots) it takes the system to move from state
(2,7), at time ¢,, to empty (the next renewal epoch from
{Sn:ineN}; 4,5 >0,i+ 7 # 0. Its expected value
will be denoted by X(3, 7).

2) [X(0,0):] A random variable describing the length of the
time interval between two consecutive instants when the
system is empty. Notice that X (0, 0) is equal to the cycle
length, X, defined earlier but should not be interpreted
as X (i, ) - defined above - evaluated at (4, j) = (0,0),
since this is not defined. Let X (0,0) denote its expected
value.

3) [C*(i,5):] A random variable describing the cumulative
delay of all L-packets which arrived (and were served)
over the interval X (¢, j), for ¢,7 > 0. Its expected value
will be denoted by CZ(3, 7).

579

4) [CH(i,j):] Same as CL (4, 4) applied to H-packets.

5) [Ax:] A random variable measuring the elapsed time
between the earliest L-packet arrival to QL and the
current time, over an unexamined interval of k slots;
0 < A <k

6) [Bg:] Same as A applied to H-packets.

7) [Hy:] A random variable describing the number of H-
packets arrived over k slots. Let h(k,j5), 0 < j < k,
denote its PMF which is given by the k-fold convolution
of fu(-). Note that when fy(-) is Bernoulli, h(k, j) is
given by the binomial distribution.

8) [G’k:] The sum of k i.i.d. random variables G;, i =
1,2,...,k, where G; denotes the i** potential burst of
P-packets arriving during the interval (¢,,tn+1), for all
tn € {tn},>1. Let the PMF of G be denoted by g(k, j),
0 < j < oo, which is given by the k-fold convolution
of fG()

The procedure used to calculate the mean cumulative delay
of i-packets over a renewal cycle, C?, where i € {L, H}, will
first be used to compute X(0,0) = X. Although the mean
cycle length can be computed exactly from (1), it is more
convenient to present this analytic approach for the derivation
of the quantities X (,7), 4,7 > 0, which will then be used
to compute X (i, ), 4,5 > 0. The same approach will lead to
the computation of C* and CH, which are needed to compute
mean packet delays in (2). Note that DF = 1, as explained
earlier.

The length of the time interval between two consecutive
instants when the system is empty is given by,

X(0,0) = X

1 ifA1+B1+G1 =0
1+G1+X(O,G1) ifA1+Bl=0,Gl>0
1+G+X(1,G) i A =1,B=0
2+G2+X(A1,1+G2) ifB; =1

C))

where for ¢ > 1, 7 > 0, see (5) below, and fori =20, j > 1,
see (6) below.

Equation (4) can be explained by referring to Fig. 4, which
represents a realization of the system given that B; = 1. The
system is empty at time instant ¢, and (4) represents the amount
of time (in slots) that passes until the next such time instant.
If no packets arrive to the system during the time slot (¢,t’),
then the system is empty at time ¢’ and X = 1. If, however,

1
1+ G1+ X(0,Gy)

X(,4) =

if Ai+j + Bj+1 +G; =0
if Aiyj+Bj4+1=0,G1 >0 5

1+G + Hj+1 + GHJ+1 + X(AH_]',HH.l + éHj+l+1) otherwise

0

X(0,5) =< X(1,4, - 1)

1+ G+ X(A,Bj + Gy)

ifA]'+B]'=0
ifA; > Bj,A; >0 6)
ifBjZAj,Bj>0.
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Fig. 4. Sample realization for derivation of (4) with B; = 1.

only a burst of P-packets arrives during (¢, ¢'), corresponding
to the event A; + B; = 0,G; > 0, then the P-packet(s)
receive service beginning at ¢'. The time instant at which
service to this burst of P-packets is completed, ¢”, belongs
to the sequence {,}, - of potential switching instants to QL
as defined earlier. At time ¢” the unexamined interval on the
H-axis is equal to G and the state of the system is defined as
(0, G1). If an L-packet arrived during (¢, ') but no H-packet
arrived, in which case A; = 1, B; = 0, then the system is in
state (1, G1) at time ¢”. Notice that under this scenario, G; can
equal zero if no burst of P-packets arrives over (£, '), in which
case t” coincides with ¢'. If an H-packet arrives during (¢, '),
that is, if By = 1 (which is the case in Fig. 4), then it will
receive service beginning at time ¢”. After completing service
to the H-packet, at time t” + 1, the server begins serving
the burst of P-packets that may have arrived over the slot
(t",t” +1). Service to this burst (G2) is completed at time ¢’
when the system is in state (A;,G1+1+G3) = (A;, 1+é2).
Notice that if no burst arrives during (¢, + 1) ,that is, if
G2 = 0, then t" coincides with " + 1. Equations (5) and (6)
represent the values of X (¢, 5) for 4,5 > 0 when i + j # 0.
Equation (5) represents the amount of time required for the
system to pass from state (4, j) to empty when ¢ > 1. Referring
to Fig. 5, the system is in state (4, 7) at time ¢ € {¢,},,-.,. Note
that whenever ¢ > 1, there exists an L-packet at the head of
QF awaiting service. This packet receives service which is
completed at time ¢’ = ¢ + 1. If at time #' no L-packets have
arrived over the interval i 4 j (A;1; = 0), no H-packets have
arrived over the unexamined interval of length j + 1 (Bj4; =
0), and a burst of P-packets has not arrived over the time slot
(t,7') then the system is empty and X (3, 7) = 1. If, however,
Aitj+Bjy1 = 0, but a burst of P-packets began arriving over
the time slot (¢, ¢’), then this burst will receive service over the
interval (#/,t'+ G1). In this case, the system is in state (0, G)
at time ¢ = t' + Gy, which represents a switching instant,
and X(i,j) = 1+ G1 + X(0,G1). If, as is the case for the
realization of Fig. 5, A;; + Bj41 # 0, then at time t” the
service of H-packets that may have arrived over the interval
of length j+1 will commence. During the transmission slot of
each of the H; 1 H-packets, the arrival of a burst to Q¥ will
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cause the server to suspend service to Q¥ until the burst has
been served. Clearly, the contribution of these bursts to X (%, j)
will be equal to G1+Ga+- - -+Gy,,, = GH,,,- When service
to all H;,; packets is completed at time " € {tn},>1, the
system is in state (Aiyj, Hj11 + Ga,,,+1) and X(i,j) =
1+ G+ Hjy1 +Gu,,, + X(Aij, Hiy1 + G,y 41). The
derivation of (6) is very similar to (5) and hence will not be
discussed here.

By applying the expectation operator to (4)—(6), the follow-
ing infinite dimensional system of linear equations is obtained.

X(i,5) —a21)+zzbu, i',3")

i'=05'=0

X(,3") 4,5 >0 ()

The constants a(4,7) and the coefficients b(i,j,i,j’) for
t,J,%',7' > 0 are derived in Appendix A.

A lower bound on X = X(0,0), call it X;,(0,0), can be
obtained by solving a finite number of the equations in (7),
in which case the following finite system of linear equations
is obtained.

Ni N,
Xio(,7) = a(i,5) + Y Y b(i, 5,7, ) Xio (i, §')
i"=03'=0
0<i<N,0<j<N  (8)

It can be shown [24] that the system in (8) yields so-
lutions, Xi,(4,5), which satisfy Xi,(i,5) < X(4,5) and
thlyN2_‘°° Xio(i,j) = X(4,7) for 0 < i < N; and
0 < j < Na. The above establishes the fact that X;,(0,0)
can be made arbitrarily close to X = X(0,0) by solving a
sufficiently large system of equations in (8), which is verified
through numerical results.

Lower bounds on C* and CH can also be obtained by fol-
lowing the approach detailed above. The following equations
for CL(4, j) and CH(4,5), 3,5 > 0, are easily derived in view
of equations (4)—(6).

i+J

Ch(i,j) = i+ j+ CL(0,Gy)

i+j+CH(Airj, Hi1 + CGa,yyp1)

0 if Ay+B; =0
CH0,00=¢CL(1,G1)  if A =1,Bi=0 (9
CL(A1,1+Gy) ifB =1
if AH‘J' + Bj+1 +G,=0
if Ai+]' + Bj.H =0,G1 >0 (10)

otherwise
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where for ¢z >

1, 7 > 0, see (10) on the previous page, and
fori =0,53 >1

o

ifA;+B;=0
if A; > Bj,A; >0 (11)
if Bj > A;,B; >0.

c0,5) = CF(1,4; - 1)

CY(A1, B + G1)

The cumulative delay over a renewal cycle for H-packets is
given by (12)—(14) below.

The derivation of (9)—(14) is similar to that of (4)—(6).
Nevertheless, an explanation of (13) is included here since it
contains quantities, L,, and K, that have yet to be introduced.
Recall that CH (i, ;) represents the cumulative delay of all
H-packets that arrive over the interval X (i,7). For ¢ > 1
and j > 0, CH(i,j) will be zero if no packets arrive
(Aitj + Bj+1 + G1 = 0) by time ¢’ (see Fig. 5). If only a
burst of P-packets arrive by ¢/, then no contribution to C¥ (i, )
has yet been made and CH (4, 5) will be equal to CH(0,G1),
which describes the cumulative delay of H-packets over the
interval X (0,G1). If some H-packets have arrived by time ¢',
that is if H;11 > 0, their contribution to C¥ (i, 5), up until ¢,
will be equal to S35+ L., where L,, denotes the amount
of time that the m** H-packet, which arrived over the interval
of length j + 1, has been waiting in Q¥ at time ¢'. Their
contribution to CH (3, j) over the interval (¢',t") is given in
(13) by K, which is equal to (1 + G1) + (24 G2) + ... +
(Hjs1+Gn,,,) = H1+1(H;+1+1)+G;HJ+1(H,+1+1)~The
remainder of the contribution to CH (3, §) corresponds to that
associated with the time interval X (Aiy;, Hj41 + G Hjp1+1)
and is given by CH(A;y;, Hj11 + GH,+1+1)

By taking expectations for (9)—(14), two sets of equations of
the same form as (7) are obtained for CZ(4, 5) and CH (i, 5),
i,j > 0, with coefficients, b(4, j, %', j'), identical to those in (7).
Only the constants, denoted a (3, j) and a¥ (i, 5), are different
from a(i, 7). These constants are derived in Appendix A. Tight
lower bounds on C% = CL(0,0) and CH = CH(0,0) can be
obtained by solving truncated versions of the corresponding
infinite dimensional systems of linear equations. These lower
bounds, denoted by C£ and CH, are then substituted into
(2) to obtain lower bounds on the mean packet delay of L-
packets and H-packets, respectively. Finally, upper bounds on
the mean packet delays of H-packets and L-packets can be
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computed from

N
. 1 o
D;pz_/\i ADFIFO _ E: MDI
j=1,3#i

15)

This relation is a direct application of a well-known conserva-
tion law {22] for nonpreemptive priority systems supporting N
priority classes. DFT¥© denotes the mean packet delay in the
equivalent FIFO (First In-First Out) system. The equivalent
FIFO system is assumed to be identical to the three-queue
system presented in this paper, except that the service policy
is FIFO. Since the service time of all customers is deterministic
and equal to one slot, the arrival rate A is equal to the system
utilization, usually denoted by p. DFIFO can be calculated

by [26]
Z Z N1+ 2 :
DFIFO_1+ i=1 j=i+1 1"7]
B (1= ’
(16)
where v; denotes the burstiness coefficient of the ith arrival

process and N denotes the number of independent arrival
streams present in the system (in this case, 3). For the two
Bernoulli processes, v, = vy = 0. For the arrival process
{Z:} k00 the burstiness coefficient is defined as v, = p11 —
po1, Where py; denotes the probability that {Zx} k>0 Moves
from state k to state j, k,7,€ {0,1}.

III. APPLICATION OF THE c-G/L/HoL
PRIORITY PoLiCcY To DQDB MODELING

A useful application of the queueing system analyzed in the
previous section is in modeling the queueing behavior of a
station in the DQDB MAN, which will be described briefly in
order to facilitate the discussion of the model. For a complete
description of the DQDB medium access protocol, the reader
is refered to [25].

The DQDB network consists of two high speed uni-
directional buses carrying information in opposite directions
(Fig. 6). The network users (stations) are distributed along
the buses and are capable of transmitting information to,
or receiving information from, any network station. For

0 if Ai+B; =0
CH(0,0) = { CH(1,G) . ifA=1,B,=0 (12)
1+G1+CH(A1,1+G2) lfB1=1
where for + > 1, 5 > 0,
O lf Ai+]' + B]'+1 + G1 = 0
cH(i,j) = { CH(0,Gy) if Aiyj+Bjr1=0,G1>0 13)
S Hitt L+ K+ CH(Ayyj, Hj1 + Ga,, +1) otherwise
where the quantities L,, and K are described, and for : = 0, j > 1,
0 if Aj +B;=0
H,5)={ CH(1,4;-1) if A; > Bj,A; >0 (14)

Bj + CH(Al,Bj + Gl)

if Bj > Aj,B; >0
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the topology shown in Fig. 6, station i,1 < ¢ < N, uses
the forward bus to transmit information to its downstream
stations ¢+1, ..., N and receive information from its upstream
stations 1,2,...,4 — 1 ; it uses the reverse bus to transmit
information to its upstream stations and receive information
from its downstream stations. Each bus is equipped with a
terminal station, called the head of the bus, which continuously
generates fixed size slots that propagate downstream past each
station before being discarded at the end of the bus. Since
the media access protocol is identical for both network buses,
packet transmissions only along the forward bus will be
considered.

At any given time a DQDB station may be either busy
or idle; it is busy if a packet is queued in its buffer (to be
transmitted on the forward bus), and it is idle otherwise. A
busy station must notify all upstream stations by registering a
request on the reverse bus. Each station continuously counts
requests on the reverse bus by incrementing its request counter
(REQ-CNTR) whenever a set busy bit is detected. An idle
station also decrements its REQ-CNTR whenever an empty
slot is detected on the forward bus, since this slot will be used
to satisfy a downstream request.

When a station passes from the idle state to the busy state, it
immediately downloads the value of the REQ-CNTR into the
countdown counter (CD-CNTR) and resets the REQ-CNTR to
zero (remember that the station must also send a request on the
reverse bus). The busy station then decrements its CD-CNTR
whenever an empty slot is detected on the forward bus; the
station continues counting requests by incrementing the REQ-
CNTR as before. When the value of the CD-CNTR reaches
zero, the station is permitted to transmit into the next empty
slot on the forward bus, since all downstream requests counted
before the tagged station became busy have been satisfied.
When the packet is delivered to the forward bus, the station
enters the idle state. If another packet has been waiting in the
buffer, the station enters the busy state instantaneously. Notice
that the above procedure prevents any station from having
more than one outstanding request at any given time, which
could cause monopolization of the network by a few stations.

Performance evaluation of the DQDB MAN based on
analytical models has proven to be a difficult task, and
therefore, most of the work in this area has been based
on simulation studies [27]. In [28], a throughput analysis
is performed for networks operating with and without the
bandwidth balancing (BWB) mechanism, under the assump-
tion that stations are heavily loaded. In this paper, no BWB
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mechanism is assumed to be present. A two-queue system
served under the quasi-gated policy, which was originally
formulated in continuous-time [9], was adopted in [10], [11]
for the development of a DQDB simulator, as well as the
derivation of rather loose bounds on mean packet delays at
a DQDB station. This two-queue system, however, does not
allow for effective modeling of the busy slot process on the
forward bus, which is a result of packet transmissions from
upstream stations, since this process is incorporated into the
model through a Bernoulli server availability. The busy slot
process imposes an additional delay on packets arriving to
the station being modeled since the station cannot transmit
a packet in a busy slot or satisfy a downstream request (by
allowing an empty slot to pass). The effect of the busy slot
process on the queueing behavior of a station is approximately
modeled in [12] by merging the request and busy slot processes
to describe high priority traffic in the c-G/L policy, as well as
introducing a second stage queueing system into the model.
The three-queue system served according to the c-G/L/HoL
priority policy allows the busy slot process to be introduced
into the model for a station in a straightforward manner, as
described below.

Let @~ model the queue of the tagged DQDB station under
study; L-packets represent information that the tagged station
wishes to transmit on the forward bus. H-packets arriving to
QF will model the arrival of downstream requests on the
reverse bus, while P-packets model the arrival of busy slots
on the forward bus.

If, upon transmitting a packet, the tagged station’s queue
is empty, rule (f) of the c-G/L/HoL priority policy (Section
I) guarantees that the DQDB medium access protocol will be
followed exactly. That is, all downstream requests (H-packets)
that are registered prior to or over the same time slot as the
next local arrival (L-packet) will be satisfied (by allowing an
empty slot to pass) before the station can transmit it’s own
packet. Note that a station fails to satisfy a downstream request
whenever a busy slot passes on the forward bus, which is
consistent with the queueing model since H-packets will never
be served when a P-packet is present in the system.

If, on the other hand, upon transmitting a packet, the tagged
station’s queue remains nonempty, all pending requests present
following the transmission must be served before the station
transmits it’s next packet. This order of events is guaranteed
by rule (e) of the service policy (Section II). Again, packet
transmissions and the service of requests will be delayed
whenever a busy slot passes on the forward bus (P-packet
arrives to QF).

Clearly, the c-G/L/HoL priority policy captures the queueing
behavior of a DQDB station. However, the accuracy of such a
model is heavily dependent upon assumptions regarding the
nature of traffic on the buses. In particular, the busy slot
process on the forward bus exhibits significant dependencies
among consecutive slots. For this reason, Bernoulli arrivals
have been shown to be insufficient in modeling this process
[12], [13]. A first-order Markov process is a simple model that
has been used in [13] to capture some of the correlations in
the busy slot process. A high degree of accuracy is achieved
for a wide range of loads under correlated busy slot arrivals,
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Fig. 8. Delay results for DQDB station 2 as a function of yp.

which is captured by the arrival process for HoL customers in
the c-G/L/HoL priority policy. In the sequel, it is shown that
the degree of flexibility introduced by adopting such an arrival
process to QF provides for the ability to accurately describe
the delay performance of a DQDB station.

IV. NUMERICAL RESULTS

In this section, numerical results for upper and lower bounds
on the mean packet delay of each priority class are presented.
Applicability of the queueing system to DQDB modeling is
also examined by obtaining mean delay results for stations
located at opposite ends of a bus in a DQDB network of 25
stations.

The performance of the queueing system, in terms of mean
packet delays for H-packets and L-packets, is illustrated in
Fig. 7. The results in Fig. 7 are derived for A\ = AP = 0.2
and 7, = 0, in which case the arrival process {Zp},~ is
Bernoulli. The mean packet delay is plotted as a function
of the total load, A, which varies with the arrival rate of L-
packets, AL. The bounds on the delay have been obtained by
solving a truncated at N; = 60, No = 10 version of the
infinite dimensional system of linear equations and setting the
unknowns outside the truncation region equal to the closest
unknown on the boundary B of the solution region. Details
on this bounding approach may be found in [20], as well as
other bounding techniques. The new coefficients b(, 5,1, j'),
for (¢/,5') € B, are derived in Appendix B.
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Figs. 8-10 present results for three stations in a DQDB
network that are modeled in terms of the ¢-G/L/HoL priority
policy. The network consists of N = 25 stations. The arrival
rate (A\L) to the local queve (QY) of the tagged station ¢
is proportional to the number of downstream stations. The
arrival rate of requests from downstream stations is given as
M = E;\;Z 4+1Aj» Where }; denotes the local packet arrival
rate to station j. Similarly, the arrival rate of busy slots on
the forward bus is given by A¥ = Z;;ll Aj. All results are
obtained for total load A = A# 4 AL + AP = 0.8, which is
considered to be a nominal load for DQDB operation, and
N; = 10, N, = 70.

In Figs. 8-10, the mean packet delay, DY, of the tagged
station is plotted as a function of v,, which represents the
burstiness coefficient of the busy slot process, modeled by
{Z1} > Notice that as -y, increases, the mean delay bounds
become loose, which should be expected since the process
{Zi};>o generates packet bursts (G) of greater length and
states (4, j), for large values of j, are expected to be visited
by the system more frequently. Consequently, the truncation
effect increases and the bounds become looser. Notice that
the delay bounds shown in Figs. 8 and 9 fall within the 95%
confidence intervals obtained by simulations of a uniformly
spaced network with inter-station spacing of two slots. In both
cases, the Bernoulli approximation (7, = 0) for the busy
slot process in the analytical model produces results that are
significantly lower than simulation results, which justifies the



use of correlated arrivals to model this process. Note that the
discrete event simulator used here described the DQDB MAN
exactly and, therefore, the busy slot and request processes
evolved “naturally”, and did not require modeling.

In order to understand Fig. 10, it must be made clear that
in a dual-bus network consisting of N stations, only N — 1
stations transmit information on a single bus. Specifically,
the station at the end of a bus has no downstream stations
to communicate with, thereby eliminating the need to send
requests on the reverse bus. Clearly, this means that A = 0
in the queueing model for station N — 1, which is station 24
in this case. This, together with the fact that the delay of P-
packets is deterministic and equal to one slot, implies that (15)
and (16) can be used to determine the exact result for DL at
station N — 1, which explains why only one curve is present
in Fig. 10.

Fig. 10 suggests that station 24 can be modeled accurately
by choosing v, from the interval [0.38,0.44]. Similarly, Fig.
9 implies that station 20 can be modeled sufficiently well
by choosing v, from the interval [0.3, 0.4]. This trend is
reasonable, in an intuitive sense, since it is expected that
stations at the end of a bus should see a more highly correlated
busy slot process on the forward bus. For this reason, the
results for station 2 (Fig. 8) seem to be inconsistent, since this
station is best modeled by choosing «y, from the interval [0.45,
0.53]. This inconsistency, however, is a result of the Bernoulli
model for the request process on the reverse bus, which
should also contain some dependencies among consecutive
slots. Consequently, it appears that the process {Z}, ., for
stations at the head of the forward bus, needs to be made
“artificially” bursty to account for the additional packet delay
induced by a correlated request process. However, by applying
a burstiness coefficient of 0.4, which is in the range of ~, for
stations at the end of the bus, only a 4.7% deviation from
simulation results is observed at station 2. This suggests that
for a given set of network operating conditions, a value of 7,
that is constant with respect to the station index could be used
to produce satisfactory delay results for all stations. A more
analytical study of 7., as a function of a station’s position
along the bus and the network size, is the subject of future
research and beyond the scope of this paper.

V. ASYMPTOTIC ANALYSIS UNDER
HEAVY L-PACKET TRAFFIC

The purpose of this section is to quantify the claim that D¥
is upper bounded for all values of AL, as long as A¥ + AP < 1.
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Derivation of this upper bound Dﬁ, proceeds by first observing
that whenever AL > 1— (AH +F), there will always be work
present at QL in the steady state. Therefore, upon completion
of service to @ and QT the server visits Q* with probability
one and serves exactly one packet. In other words, U, > 1,
Vn > 1. Consequently, the state space of the Markov chain
{rn},>o, embedded at {{,}, 5., can be reduced to a single
dimension {j : 0 < j < oo}, where j is the value of V,, at the
current time instant ¢, € {¢,}. Note that the renewal sequence
{Sn},>0 is now defined as the sequence of time instants at
which Q¥ and QP are simultaneously empty.

In view of the above discussion, it is easy to establish that
the length of a renewal cycle, and the cumulative delay of H-
packets are determined by modifying (5) and (13), respectively
to yield, for 5 > 0, see (17) and (18) below.

Again, by taking expectations and solving the corresponding
systems of linear equations, X;, and C}I are determined.
Since the state space of the Markov chain {r,}, has been
reduced to a single dimension, it is no longer computationally
difficult to solve a sufficient number of equations to ensure
that X, (CH) converges to X (CH). In fact, for all results
generated in this section, the system size N, or the number
of linear equations solved, was increased until X;, (C) was
numerically equivalent to X (CH). The resulting upper bound
on D given X\F and A¥ is given by,

CH
MX S
The upper bound computed in (19) holds for all values of AL,
as long as A 4+ AP < 1. An important observation regarding
this upper bound on D¥ is that, for high system loads, such as
those in Fig. 7, ﬁfp is much tighter than the upper bound given
by the conservation law in (15). Consequently, by using D{Z
calculated in section II, and the upper bound IA)f;, equation
(15) can be used to compute extremely tight bounds on DX,
This is illustrated in Fig. 11 which represents delay results for
the system that is identical to the one presented in Fig. 7.

SH O
up —

19)

VI. SOME COMMENTS ON THE
PERFORMANCE OF THE c-G/L/HoL PoLICY

As previously mentioned, one of the advantages of the c-
G/L/HoL priority policy is that it guarantees L-packets some
degree of fairness by ensuring that an L-packet is served during
every switching cycle. It is therefore expected that the mean
delay suffered by L-packets will increase if Qf is granted
HoL priority over Q. This can be illustrated by comparing

1 ifBjy1+G1=0
X(]) = 1+G1+X(G1) . ~ if Bj+1 =0,G1 >0 17
1+G1+Hj+1+GHj+1 +X(Hj+1 +GHj+1+1) otherwise
and,
. CH(Gy) if Biy1 =0
H 1 j+1
— . ~ 1
cr0) {Zg’:{ Lm+K+CH(Hj41 +Gh,,,+1) otherwise s

where L,, and K remain as given in (13).
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the c-G/L/HoL policy to a policy in which QF continues
to receive HoL priority over the other queues (HoLt), QF
continues to receive limited service, but QH is granted HoL
priority (HoL™) over QL. The resulting system is consistent
as defined earlier and will be denoted HoL~/L/HoL™". The
delay performance of the new system is easily established as
follows.

Let DHoL denote the mean packet delay of an arbitrary
packet arriving to Q¥ or QF, and let D (D¥) denote the
mean delay of P-packets (H-packets) in the new system. The
delay of P-packets is deterministic and equal to one slot, as was
the case in the c-G/L/HoL policy, and DH°L can be computed
from (16) to yield,

NPAH (14 7222

yHoL __
D =1+ (1 _ ,\HoL)/\HoL ’

(20)

where AHoL = AP 4 M\H_ Finally, D¥ and DY can be
computed by using the conservation law in (15).

Delay performances of the two consistent queueing disci-
plines are compared in Table I as a function of M where
AL = AP = 0.2 and vp = 0. As expected, for all values of
p in Table I, the inequalities DL < DL and D¥ < D hold
true. It is also clear that DX > D¥ and DY > D¥ which
implies that

EH H
0<~—<ﬁ

DL <1.

€3y

The ratio of the smallest delay to the largest delay for each
queueing discipline can be seen as a measure of fairness
similar to that suggested in [18]. That is, the fairness of the
queueing policy can be measured by the magnitude of the
appropriate ratio in (21), which implies that the c¢-G/L/HoL
policy is more fair than the HoL~/L/HoL™" service policy.

Obviously, by gating the service to Q¥ and thereby re-
lieving pressure to QF, H-packets are forced to pay a price
in the form of increased delay. In many instances however,
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TABLE I
PACKET DELAYS (IN SLOTS) FOR HoL~/L/HoLt AnD
¢-G/L/HoL ForR VARIOUS VALUES OF OFFERED LOAD p

P AH DL pH pL  pL pH DHE
0.6 0.2 217 133 | 195 195 155 155
0.7 03 307 140 | 251 251 177 L77
0.8 0.4 500 150 | 366 366 217 217
0.9 05 1133 167 | 780 784 306  3.08
0.94 0.54  20.26 1.77 14.21 14.85 3.77 4.01

this may be a desirable trade-off, especially since the mean
delay of H-packets remains relatively small even for high
loads.

VII. CONCLUSIONS

In this paper, a three-queue system with mixed service
policies has been presented and analyzed in discrete time.
While section II provided an exact analysis for mean packet
delays of each priority class, the numerical results produced
tight upper and lower bounds on these quantities by solving a
truncated version of an infinite dimensional system of linear
equations.

The proposed queueing system was shown to accurately
model the queueing behavior of an arbitrary station in the IEEE
802.6 (DQDB) MAN. One of the significant contributions
to DQDB modeling is the inclusion of correlated arrivals to
model the busy slot process on the forward bus. A Bernoulli
model for the busy slot process, which has been used in
the past, was shown to produce delay results significantly
lower than those obtained by simulation. One limitation of the
proposed model for a DQDB station is the fact that the request
process on the reverse bus is assumed to be uncorrelated.
Although this assumption does not significantly effect the
delay results for stations situated near the end of the forward
bus, it does account for lower than expected delays for stations
near the head of the bus.

The c¢-G/L/HoL policy is also potentially applicable to
bandwidth allocation in integrated traffic environments such
as ATM, since it provides HoL service to network control
traffic. An asymptotic analysis under heavily loaded low
priority traffic established the worst-case packet delay for
delay-sensitive traffic, represented by H-packets. The resulting
upper bound on D¥ was shown to produce extremely tight
bounds on the delay of L-packets as well as H-packets.

Finally, delay performance of the c-G/L/HoL queueing
policy was examined with respect to a similar three-queue
system in which arriving H-packets receive HoL priority over
L-packets. It was illustrated that, by gating the service of
H-packets in the c-G/L/HoL policy, L-packets are ensured
a degree of faimness not provided by the HoL~/L/HoL*
policy. This fairness, however, comes at the expense of
increased delay to H-packets, which may be an acceptable
tradeoff in many cases, depending on quality of service
requirements for this traffic class.

APPENDIX A

By applying the expectation operator, E{-}, to both sides
of (4)—~(6) the following equations are obtained.
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X(0,0) =1+ E{G} + Pr(B1 = 1)[1 4+ E{G}] + Pr(A; = 0)Pr(B; = 0)

MP
Z Pr(G =3)X(0,5') + Pr(A1 =1)Pr(By = 0) ¥ Pr(G = j)X(1,5)
7'=0
2.M¥
+ Pr(B; = 1)ZPT A =7) )" Pr(Gy=k)X (i k+1)
=0 k=0
where for ¢ > 1, 5 > 0,
MP
X(i,) =1+ E{G} + ( + DAE{G} + (j + VAT + 3~ Pr(G = j')Pr(Air; = 0)
Jj'=1
B j+1
Pr(Bji1 = 0)X(0,5') + Pr(Ai; = 0) Y Pr(Hjy1 = k)
k=1
(k+1)MP 5 B i+j j+1
> Pr(Grar = K)X(0,k+K) + D Pr(Au; =i)Y Pr(Hjp = k)
k'=0 =1 k=0
(k+1)MFP
> Pr(Gra = KX k+ )
k'=0

and for j > 1,

X(0,5) =[1 + E{G}|Pr(B; > A;,B; > 0) + X]; Pr(A; = k)Pr(B; < k)X(1,k - 1)
k=1

J MP
+ZPT( ;= k)Pr(A; <k)ZPr(G—l)ZPr(A1_z)X(z k+1)
— =0 =0

where M¥ is the maximum burst size for P-packet arrivals. To facilitate a numerical solution, M* must be finite and,

in this work, is set equal to maz(Ny, N2). In view of the above equations, the nonzero constants a(i, ;) and coefficients
b(i,4,4,4') for 4,5,7,5/ > 0 are given by,

a(0,0) = [1 + AH] [1 + %]

5(0,0,1,0) = A% [1 - A¥] f5(0)
5(0,0,0,5") = [1 = M) [1 - AF] fa(s') + AT [1 ~ AF]§(2,5' = 1) 1< <N,

b(0,0,1,5") = M ALG(2,5" = 1) + AL[1 = M fo(i) 1< <N,
For i > 1, j

[\
L

Pio

ali, )_1+P01 +[]+1]/\H{1+P01}

b(4,5,0,4") =h(j + 1,0)d(i + j,0) fa(j') + d(i + 5,0)
min{j+1,5'}
Y RG+LEGk+1, k) 1< <N
k=1
min{j+1,5'}

b(i, 5,5 ) =d(i+4,9) Y kG +1L,E)Gk+1,7 —k)  1<i <min{Ny,i+5},0< 5 <N,
k=0
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where

(1= fL(O)[fzO) 7 ifj>0

d(k.3) = Pr(Ax =) = { .
[£2(0)] if j=0

and for j > 1,
- Po1 | ... . . .
a(0,4) = [1 + zﬂ] 3(7) 5(0,5,1,0) = d(3j,1)h(j,0)

min{j,j'}
b(0,5,0,5)= Y sGRfe('—K)[1-A] 1S5 <N
k=1
min{;5.i'}
b(0,5,1,5') = pas(i, 3’ + )+ AF D" (G, k) fali' — k)

1<y <j-1
k=1

min{j,j'}
b(0,5,1,) =A* D" s kel =k J<i <N

k=1
where,

pab(J k) = Pr(A; = k)Pr(B; < k)
=[1 = OO fa@F T §>1,1<k<]
s(j,k) = Pr(A; < k)Pr(B; = k)
=1~ fu@frO@F *LOF ™  j>1,1<k<]

sG@)=>_sG,k) i>1

k=1
The constants generated by taking expected values of (9)—(11) are given by,

al(0,0) =0

at(i,j)=i+j i>1,520

a(0,5)=0j>1
The corresponding constants generated by (12)—(14) are given by,

af(0,0) = \FEL | \H
P10

J
a?(0,5)=>"sG.kk =1
k=1

1 1 . ,
af (i, j) = 3+ AE 4+ [%[J + 1A 4 EE{HJZH}] [1 + ?] i>1,7>0
10
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N APPENDIX B
The increased coefficients b(i, j, 7', j') for (¢/,5') € B are given by,
N oo Nz—1
5(0,5,0, Na) = Z:(OLOJ)—E:MOLOJ%-E:b@JﬂJ)
j'=N2 3'=0 3'=0
L] Na2—1
=33 s k) el = k) fL(0) = Y 5(0,5,0,5)
3'=0k=1 3'=0
Np-1
= fr(0)3() - > b(0,5,0,5') 1< <N
j'=
. j—1 Np—-1
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