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Abstract—In this paper, some new traffic regulation schemes
are defined in terms of a relief-spacing (or spacing of the al-
lowance for cell delivery to the network) function. The class
of open-loop traffic regulators (TR’s) is defined in terms of
relief-spacing functions which depend on some user-state; this
class may be viewed as an extension of the Spacer-Controller
defined in terms of some constant (user-state independent) relief-
function. The optimal open-loop TR’s are derived by formulating
proper optimization problems and applying a Markov decision
approach. Numerical results illustrate the improved performance
of the optimal open-loop TR over that of the (constant relief-
spacing) Spacer-Controller. Finally, the class of closed-loop TR’s
is defined in terms of relief-spacing functions which depend on
both some user- and some network- state information and its
optimal element is derived. The improved performance under the
optimal closed-loop TR over that of the optimal open-loop TR is
illustrated and their difference determines the performance gain
if feedback information can become available on time.

I. INTRODUCTION

REVENTIVE CONTROL is considered to be a promising

approach for traffic congestion management in the emerg-
ing high-speed asynchronous transfer mode (ATM) networks.
An extended survey of mechanisms—called bandwidth en-
forcement mechanisms or traffic regulators (TR)-developed for
the implementation of such control may be found in [2]. The
object function of a TR is to control the flow of the user traffic
to the network in a way that unacceptable network congestion
be avoided; no network state information is assumed to be
available to the users.

The prevailing approach for the design of efficient TR’s has
been the following. At first, certain key measures of basic
traffic characteristics—which have a significant impact on
the network performance—are identified. For instance, such
measures can be the cell rate and burst length of the user-
traffic. Then, the user and the network agree on some limits
on the values of these measures (contract), so that the network
be able to plan based on the maximum expected amount of
stress (potential for congestion) coming from the particular
user. Network congestion may then be controlled through
an effective TR, whose basic function is to provide for the
smoothing of the user traffic and prevent network congestion.
A TR may also be seen as a mechanism which enforces

Manuscript received November 1993; revised April 1994; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor H. Miyahara. This work
was supported in part by the Advanced Research Project Agency (ARPA)
under Grant F49620-93-1-0564 monitored by the Air Force Office of Scientific
Research (AFOSR).

The authors are with the Department of Computer Science and Electrical

Engineering of the University of Vermont, Burlington, VT 05405 USA.
IEEE Log Number 9404854.

compliance with the contract agreements. Smoothing of the
traffic occurs by not allowing the values of key measures
associated with the actual traffic delivered to the network to
exceed some predetermined limits. It also leads to a higher
utilization of network resources [3]. There is a trade-off
relationship between the regulation level of the user traffic and
the improvement of network performance. While the network
performance can be improved through increased regulation of
the user traffic streams, excessive regulation may result in
unacceptable performance at the user premises as illustrated
in [1].

The insightful description of the basic functions that need
to be implemented by a TR, presented in [1], as well as
numerical results, have pointed to the ineffectiveness of the
leaky bucket TR and the improved performance delivered
by Spacer-Controller type TR’s [1], [10], [14], [17]. By
defining the relief rate (or intensity, or function) to be the
rate of allowance for cell delivery to the network, the class
of o — Relief TR’s was introduced in [1], as a practical
implementation of a fixed (and equal to o) relief function in
the slotted ATM environment.

In this paper, the class of constant o — Relief TR’s
introduced in [1], is extended to include TR’s implementing
nonfixed, state-dependent relief functions. The class of user-
state dependent traffic regulation schemes is defined and
studied. An open-loop relief-spacing regulation scheme is
defined to be one whose relief function depends only on user-
state information; the user-state is defined in terms of the user-
queue and source states. The optimal elements in the resulting
class of the TR’s are identified by defining some meaningful
optimality criteria and following a Markov decision approach.
Finally, the class of closed-loop relief-spacing TR’s is also
defined and studied. The associated relief function depends on
both user and network state information; the latter is defined in
terms of the state of the network-queue receiving the regulated
user-traffic. It should be emphasised that the closed-loop traffic
regulation approach is not proposed as an alternative to the
open-loop one unless the user and the network buffers are not
far apart and the propagation delay is assumed to be negligible.
Rather, the closed-loop approach is considered to establish the
magnitude of performance improvement that can be achieved
through the availability of network-state information and to
also gain insight towards the development of more efficient
open-loop schemes or hybrid schemes.

In [12], an open-loop regulation concept was introduced
by proposing a two-level shaper for the regulation of the
traffic generated by an on/off Markov source. Two different
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cell-delivery (service) rates were considered in a continuous-
time setup: a service rate equal to the source peak cell rate
when the user-queue is full, to guarantee loss-free performance
at the user premises; a lower service rate (referred to as
intermediate), otherwise. The work presented in [12] was
extended in [13] where an M -level shaper was introduced
and analyzed for M =2,3. Although the problems considered
in [12], [13] may be viewed as special cases of the general
open-loop formulation presented in this paper, no attempts
were made to identify optimal elements in the limited class
of shapers considered there.

II. THE OPEN-LOOP TRAFFIC REGULATION SCHEME

Almost the entirety of the TR’s which have been proposed
in the past can be classified as open-loop since their regulating
parameters do not depend on the network-state. With the ex-
ception of [12], [13], as explained in the introduction, the open-
loop TR’s proposed in the past are also user-state-independent.
In this section, the class of open-loop, user-state-dependent,
relief-spacing TR’s is introduced and its performance at both
the user and network premises is evaluated.

In this paper, an allowance for cell delivery to the network
provided by the TR is defined to be a unit of relief and, thus,
the TR’s are characterized as relief-spacing; a relief unit is
also equivalent to a user-service unit. A relief-spacing TR is
defined to be one which is completely determined in terms
of its relief-spacing function, defined on some appropriate
space. The o — Relief TR in [1], is completely determined
by the constant value o of the relief intensity function. To
avoid practical problems associated with the implementation
of relief-rates in a time-slotted environment, the relief-spacing
TR’s considered here, are defined in terms of the relief-spacing
function (in slots), T'(.), rather than the not always feasible
relief rate o(.); 7(.) is in general, a function of some selected
system state, and takes positive integer values.

Let S, and S, denote the state-space of the Markov
source to be regulated and the state space of the user-queue-
occupancy process, respectively. An open-loop, user-state-
dependent relief-spacing TR is completely defined in terms
of the associated function 7'(s,q,), (s, q.)eSs x S, which
determines the next slot at which a relief unit becomes
available, given that the system’s state is (s,q,) in the slot
at which the latest relief-unit was available. The class of
such TR’s is described in terms of the class of all possible
mappings:

T:8%x8,—2Z5={1,2..B},B< )

and is denoted by (R — T'(s,g,)), that is,
(R=T(s,94)) = {T(5,qu), (5,qu)€Ss x Sy : T(s, qu)eZg}.

An example of a relief-spacing function T'(s, g,) is shown
in Fig. 1. A Spacer-Controller type of TR [1], [10], [14], [17]
can easily be viewed as a relief-spacing TR with constant
relief-spacing function 7'. Such a TR does not utilize locally
available user-state information and is expected to deliver
suboptimal performance. The performance of the proposed
class of open-loop TR’s defined in terms of the general
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Fig. 1. An example of the open-loop regulation function.
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Fig. 2. A queueing model for the relief-spacing TR.

Fig. 3. A service pattern realization for the open-loop, relief-spacing TR.

relief-spacing function T'(s, ¢,) is considered in the next two
subsections.

A. Performance Analysis at the User Premises
for the Open-Loop Relief-Spacing TR

A queueing model for a relief-spacing TR is shown in
Fig. 2. The server provides service (relief) to the finite-
capacity user-queue of size C,, according to a pseudo-periodic
pattern determined by the relief-spacing function T'(s, q,,), as
follows. Let t denote the beginning of a slot at which the server
visits the queue and let s and g,, be the state of the user-source
and user-queue occupancy process, respectively, at that time.
The server remains at the user queue for one time slot and
provides one unit of service if a cell is available. Then the
server takes a vacation of length T°(s, g, ) — 1 and returns to the
user-queue at time ¢+ 7'(s, g,,); if T'(s, g,) — 1 = 0, the server
is assumed to return to the user-queue instantaneously. If the
user queue is empty at the time of server visit, the server will
only switch away after providing service to the first arriving
cell. A service pattern realization in time is shown in Fig, 3.

In the sequel, the cell loss probabilities induced at the user
premises are calculated for the queueing system shown in
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Fig. 2 under an arbitrary service (relief-spacing) policy defined
by the mapping (1).

Let S, = {0,1} denote the state space of the two-state
Markov source generating one cell when in state 1 (on) and
no cells when in state O (off); the transition probabilities from
state ¢ to state j are denoted by p(i,7), the stationary state
probabilities by 7(z), the source cell rate by A and the source
burstiness coefficient is defined by v = p(1,1) — p(0,1). Let
S, = {1,..,C,} denote the state space of the user-queue
occupancy process, assuming some finite user-queue capacity
Cy.

Let {I;,Q}}i>0 denote the two-dimensional process de-
scribing the state of processes {I;};>0 and {Q}'};>0 at the be-
ginning of the slot at which the /th cell departure from the user-
queue occurs (departure slot), where {1, };>0 ({Q} }1>0) denote
the state of the source (user-queue-occupancy) at the beginning
of the Ith departure slot; a relief unit is available to the user-
queue at that time slot. It is assumed that cell departures from
the user-queue occur at the end of a departure slot. The state
of the source is declared at the beginning of a slot, but cell
generation due to the visit to that state are declared at the end
of the slot. It may be easily established that {I;, Q}'};>0 is a
Markov chain embedded at the beginning of the cell departure
slots. Let A = [a(?1,7n1,12,7n2)] denote the transition proba-
bility matrix of {I;, Q}}i>0,%1,12€Ss, 11, n2eS,,. Calculation
of these probabilities (leading to the stationary probabilities of
{51. Q% }1>0) will be facilitated by the description of the length
of the sequence of interdeparture intervals at the boundaries
of which {I;,Q}'}i>0 is defined. Furthermore, the average
length of interdeparture intervals will be utilized directly for
the derivation of the cell loss probability, as it will be shown
later.

Let a,, be a random variable describing the number of
cells generated by the source in m consecutive time slots; let
(i B j,am = k) denote the joint event that the source state
moves from ¢ to § in m steps and a,, = k, with probability
™, 4, k), 1,7eS5,0 < k < m, derived in Appendix A. Let
ID(i,n), (i,n)eSs x S,, denote the time in slots between
two consecutive cell departures, given that {I;, Q}'}i>0 was
in state (i,n) at the beginning of the first one. It is easy to
express ID(¢, n) in terms of the relief-spacing function T'(¢, n)
governing the service of the user-queue, as shown below.
For i€S,:

"T(i,n) ifn>2
T(i,1) ifn=1,
(i "% jageny = k) 1<k
ID(i,n) = |TGD)+1 ifn=1,G"%"1,apq) = 0)
TG, 1) +k if =165 jarqy) = 0),
(0*320,a5_0 = 0),
L (051,01 =0),2<k.

Starting from some departure slot in state (,n) with n > 2,
the next departure slot will appear exactly after T'(4,n) slots.
The same holds if n = 1 and argyy) 2 1. If n = 1 and
ar@,1) = 0, the next departure slot will appear after 7(i, 1)
slots plus the time it will take for the source to switch to state
1 afterwards. The expected value of ID(4, n), ID(i,n), (to be
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Fig. 4. The integrated queueing system.

utilized in the cell loss probability calculation) is obtained by
applying the expectation operator to the above expression.
For i¢S,:

ID(i,n) = T
ID(i,1)

(i,n),n >2
T 1) SE T, F7OD(,5.K)
+ T(,1)fT6D(,1,0)
+ ZJes > oo (T, 1) + k) fTED 4, 0) @
p*7%(0,0)p(0,1) i
= T(i,l) + FTEN(,1,0) + L0600

Following a similar reasoning to that in the description of
the interdeparture process, the following expressions for the
transition probabilities a(z1,mn1,%2,n2),%1,22€Ss, N1, N2€Sy,
of {I;,Q}}i>0 can be easily obtained.

For ileSs,igeSs,nl > 2:

fT(il’nl)(il,ig,nz —ny + 1),

nl—lgnzscu—l

T(i1,m1) T(i,m1) (5. 5o
k:Cu—n1+1f (11,"1)(21,12’]‘“)_

a(iy,ny,iz,ng) =

a(ilanla i?a Cu)

For 71€S,,179€S;:

ali, 1,z 1) SO 1) 4 p(1 i2) x
(fT_(ll‘l)(il, 1, 0) + fT(ix,l)('il,O, 0))
FTON (g, i, mg),2 < g < Oy — 1
ST TGN i, b)

Cy <k < T(iy,1).

a‘(ilz 1, iZ? 712)
a(ilz 1, 'i2: Cu)

The steady-state probabilities (i, n),i€S,neS, are ob-
tained from the matrix equation I = AIL 1T = [« (¢, n)] with
the normalizing condition Ile =1 where gis a unity vector.
The cell loss probability L, at the user premises can then be
obtained from the expression:

Ezss ZneS ( XL )7"(1’ n)
/\ZieSs Ene (m)7r(z n)

where L, (i,n) denotes the expected number of cells lost over
the interval ID(é,n) and is given by

T(i,n)
=2 2

jeSy k=Cy—n+1

L, =

©)]

(k= Cy+n—1)fTEM( 4, k).

4)
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B. Performance Analysis at the Network Premises
for the Open-Loop Relief-Spacing TR

To establish the performance of the relief-spacing TR at the
network premises, the network-queue receiving the regulated
user traffic is studied. The integrated system of user-queue
and network-queue shown in Fig. 4, is considered for this
purpose. The network-queue is assumed to be served according
to the First-In—First-Out (FIFO) service policy and to be of
finite capacity C,. In addition to the regulated user traffic,
the network-queue is also fed by a background Bernoulli
cell traffic, with rate A;, representing other network traffic.
Primarily to introduce a new class of TR’s and develop a
procedure for the determination of its optimal elements, the
simple Bernoulli model is considered for the background
traffic; other models can also be considered as explained
later.

In [12], the performance of the proposed traffic shapers
is analyzed using an approximate model. The parameters of
the output shaped traffic are matched to a 3-state Markov
chain model and a network queue fed by a number of such
Markov chains is studied to yield an approximate expression
for the cell loss probability. Similar approximate analyses
for a multiplexer loaded by a set of leaky bucket regu-
lated traffic streams are presented in [13], [16], where a
similar traffic matching technique is employed. Contrary to
the above mentioned approaches, the analysis adopted in
this paper is exact, since no approximations are involved
in the description of the regulated traffic. The transition
probabilities of the integrated model and the cell loss prob-
ability at the network premises are obtained using a similar
analysis to that presented in Section II-A and can be found
in Appendix B.

The number of states in the state space of the three di-
mensional process governing the behavior of the system—see
Appendix B—is 2 x C, x C,, thus requiring large storage
space for the resulting transition probability matrix A. In order
to solve for systems with larger than 2000 states, the renewal
based recursive equations technique used in [1], was used. In
that technique, the storage space requirement is eliminated by
computing the transition probabilities—instead of storage in
some matrix—in each iteration of the recursive algorithm, thus
trading computing time for storage space. Systems containing
as many as 5000 states were solved in conveniently short
time.

III. OPTIMAL RELIEF-SPACING
TRAFFIC REGULATION SCHEMES

The class of open-loop, user-state-dependent relief-spacing
TR’s, (R — T'(s,qy)). contains the sub-class of fixed (user-
state-independent) relief-spacing TR’s (Spacer-Controllers). It
will be interesting to compare the performance of the “best”
performing R — 7T'(s,¢q,) TR to that of Spacer-Controllers, to
establish the magnitude of performance improvement that can
be achieved by using R — T'(s,q,) TR’s. In the next sub-
section the optimal element in (R — T'(s, ¢,,)) is identified by
formulating a Markov decision based optimization problem.
Some numerical results are presented in Section III-B.

A. Optimal TR’s Based on a Markov Decision Approach

The objective in regulating the user-traffic in an ATM
(multiplexing) environment is to increase the network uti-
lization while guaranteeing the Quality of Service (QoS) of
all supported users. An effective TR delivers to the network
a user-traffic that induces low level of network stress. The
network then will potentially be in a position to not only
provide the necessary QoS but also accommodate a larger
number of services (users).

Let the Quality of Service Margin (QoSM) be defined as the
maximum amount of “disturbance” of the user traffic which
can be tolerated before the necessary QoS is not provided. The
QoSM is basically described in terms of probabilistic measures
on cell delay and/or loss (as for the QoS). Let QoSMR,, and
QoSMR,, denote the value of the QoSM Reduction at the user
and network premises, respectively. A TR may be adopted
only if

QoSMR, + QoSMR,, < QoSM.

Note that by increasing (decreasing) the level of traffic
regulation, QoSMR,, increases (decreases). Thus, an optimal
TR could be defined to be the one balancing these trends
optimally, minimizing QoSMR,, + QoSMR,,. Such an opti-
mality criterion may not lead necessarily to a well performing
TR in a real networking environment, due to network traffic
unpredictability and the lack of direct consideration of QoS
requirements associated with other supported services. In
addition, this optimality criterion does not seem to lead to
a tractable optimization formulation which would identify
the optimal TR in a given class. Since QoSMR,, basically
measures the performance of the TR at the user premises,
it can be calculated in terms of the TR and the source
characteristics. Thus, a feasible optimization problem, leading
to the derivation of some optimal TR, could be set up in terms
of the following objective:

min : QoSMR,, subject to: QoSMR,, < w. (5)

In this paper, the cell loss probability is considered to be
the measure of the provided QoS. w = 0 corresponds to an
optimization formulation identifying the loss-free at the user
premises TR, which minimizes the network induced losses.
It should be noted that the optimization formulation in (5),
allows for the consideration of QoS measures (Q0SMR units)
which are different at the user and network premises. This is
particularly appealing for the derivation of optimal open-loop
TR’s, as it will be seen below.

Let L, and L,, denote the cell loss probabilities at the user
and network premises, respectively. The optimal element in the
class of open-loop, user-state-dependent relief-spacing TR’s,
(R —T(s,q4)), according to the criterion in (5) will be:

min
T:S; XS, —2Z

Rs —T(s,q) = arg{ +{Ln} : L, <w}. (6)

B

Since B2*C elements are contained in (R — T'(s, q,)), it is
apparent that exhaustive search for Rs — T'(s, q,,) as described
above, is unrealistic for most practical cases. A different and
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more tractable formulation of the optimization problem for the
open-loop case is developed below.

In view of the definition of the class (R — T'(s,qu))
and the presentation in Section II, it is easy to establish
that given a function 7'(s,q,), the evolution of the semi-
Markov process {I;,Q}'};>o is probabilistically completely
determined. Similarly, given the state of {I),Q}}i>0, the
evolution of the relief-spacing process {T;}:;>0 is completely
determined; 7; denotes the relief-spacing applied at the [th
departure slot, where Ty = T'(I;, Q}). By interpreting the
relief-spacing process {7}} as a set of decisions, each taken
upon a visit to some state (s,q,) of the Markov process
{Ii,@Q:}, and by associating a certain cost with each decision,
a total cost associated with a given relief-spacing process {1;}
can be computed. Thus the optimal relief-spacing function
(or R — T(s,q,) TR), in the sense that it minimizes some
performance measure (cost), can be identified by following a
semi Markov decision approach, provided that the cost during
decision instances can be determined completely in terms of
the action T'(I;, Q}') taken and the state of {I;, Q}'}i>0. The
advantage of such a formulation of the optimization problem
is that non-exhaustive, computationally appealing approaches
exist for the derivation of the optimal policy, such as the policy
and value iteration algorithms and the linear programming
approach [15].

Unfortunately, the cost associated with the optimization
problem described in (5), that is cell loss at the network
premises, cannot be determined by the state of {I;, Q¥}i>o0
and {T;};>0 at the departure (decision) instants, since the
state of the network-queue is not available in the open-loop
case. In view of the Bernoulli model for the background traffic
(see Section [I-B), knowledge of the state of {I;, Q}, Q} }i1>0
(see Appendix B) would be sufficient. The approach can
be easily extended to incorporate other types of background
processes such as a batch arrival process. This will require the
substitution of the proper values for the set of probabilities
bT (k) used in Appendix B to describe the probability that k
background arrivals occur in 7" time slots. Correlated models
for the background traffic (e.g. a Markov source) can also be
incorporated at the expense of increased system size.

To develop a semi Markov decision formulation of the prob-
lem of deriving the optimal open-loop TR defined here, a net-
work performance measure (cost)}—to be minimized—which
can be determined by the state of the semi-Markov process
{I;,Q¢}i>0, and the action taken, is considered. In this
section, the variance of the cell interdeparture process is
considered as a measure of the smoothness of the regulated
traffic and the potentially induced network congestion. Thus,
the optimal R — T'(s, qy) is defined by

min

R, —T(s,q,) = arg{
T:8, X8, —2Z

D)} :Lusw) @

B

where v(7T') denotes the variance of the cell interdeparture

process given by

B Z(i,n)rssxsu c(i,n, T(i,n))mw(i, n)
Z(i,n)sss XSy T(i’ T, 77(i7 TL))ﬂ'(Z, n)

o(T)
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Fig. 5. Relief-spacing function for R, — T'(s,qy).

where 7(i,n,T(i,n)) = ID(i,n) is the expected time until
the next decision (departure) instant given that 7°(,n) is
the action (relief spacing) chosen in the present decision
instant at which the semi-Markov process is in state (i,n);
c(i,n, T(i,n)) = (ID(i,n) — +)? is the expected cost until
the next decision instant given that T'(i, n) is the action chosen
in the present decision instant at which the semi-Markov
process is in state (z,n). The linear programming algorithm
outlined in Appendix C is used to identify the optimal element
R, ~ T(s,qu.)-

B. Numerical Results—Fixed Versus Optimal Relief-Spacing

In this section, some numerical results are presented on the
performance of some optimal (R—T'(s, g,,)) TR’s. To illustrate
the performance improvement obtained by utilizing the user-
state-dependent relief-spacing functions, the subclasses

(R=T)={T(s,qu) = ¢,(8,0u)€Ss X Su: ceZf}

and

(R - T(Qu)) =
{T(s,qu) = T(qu), (8, qu)eSs X Sy : T(QU)fzg}

are also considered. Note that the relief-spacing function
is user-state-independent in (R — T) and is source-state-
independent in (R — T'(¢,)). Let R, — T and R, — T'(qu)
denote the optimal elements in these classes in the sense that
they minimize the variance of the cell interdeparture process;
R, — T can be easily derived through an exhaustive search
procedure; the linear programming algorithm has been used
for the derivation of R, — T'(g,) and R, — T'(s, qy).

Fig. 5 shows the relief-spacing function for R, — T'(s, )
for loss-free performance at the user premises {w = 0 in (5)],
for A = 0.09, v = 0.8 and C, = 30; a maximum relief-
spacing B = 10 = % has been considered. The improvement
in performance obtained through the adoption of the user-
state-dependent relief-spacing TR’s is illustrated in Fig. 6,
where the cell loss probability at the network premises, L,, is
plotted for the loss-free optimal policies R, — T, R, — T'(qy,)
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Fig. 6. Cell loss probability L, versus Cy, induced by R, — T, Ry —T(qu),
and Ry, — T(s.qu).
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Fig. 7. Cell loss probability L, versus C, induced by Ry —T', R —T (qu ),
and R, — T(s.qy) for L, < 1078,

and R, — T(s,q.); Cn = 50,10 < C, < 50, A = 0.09,
v = 0.8 and Ap = 0.8. It can be observed that lower cell
loss probabilities L, can be achieved by R, — T(qy) or
R, — T(s,q,) as C, increases.

The performance of R, — T, R, —T(q,) and R, — T(s, )
under the constraint L, < 107% is presented in Fig. 7; the
system characteristics are otherwise identical to those of the
system associated with Fig. 6, where L, = 0. Notice that a
lower value of L,, can be achieved if losses are allowed at the
user premises compared to that under loss-free performance at
the user premises. The tradeoff between L, and L, is shown
in Fig. 8; C,, = 50, C,, =40, A = 0.09, v = 0.6 and A\, = 0.8.
It can be observed that L,, increases as L, decreases, implying
that a very low constraint on L, may result in substantially
increased value of L,, resulting in a degradation of the overall
performance.

IV. THE CLOSED-LOOP TRAFFIC REGULATION SCHEME

Motivated by the potential for improved performance when
network state information can be available at the user premises,
the class of closed-loop relief-spacing traffic regulation
schemes is introduced in this section. Unlike the class of

R,-T 1
- -R,-Ta,)
— Ry-Tis.ay)

Fig. 8. L, versus L, tradeoff.

open-loop TR’s presented in Section II, the relief-spacing
function associated with the closed-loop TR’s is assumed to
depend on the network-state as well as the user-state.

In this paper, the network premises has been defined to
consist of the network-queue receiving directly the regulated
user-traffic together with some Bernoulli background traffic.
With this definition, the network-state is sufficiently described
by the network-queue occupancy process {Q7}i>0. Accord-
ingly, if the user and the network queues are not far apart, it
may not be unrealistic to assume that such information can be
timely available, and therefore the effects of propagation delay
are assumed to be negligible. In fact, such network-feedback-
based traffic regulation schemes have been recently proposed,
in an attempt to improve on the relatively poor performance
of totally preventive congestion control approaches [18]. More
complex network models incorporating both propagation delay
effects and procedures for network state determination are
beyond the scope of this work and will be considered in future
studies.

The queueing model of Fig. 4, considered for the study of
the closed-loop regulation scheme, is interesting in its own,
with potential applications elsewhere. The optimal closed-
loop, user-state-dependent relief-spacing TR minimizing, for
instance, total cell losses, could provide for an optimal policy
for cell load distribution in a cascade of two queues (of
capacities C, and C,) with external inputs and/or for an
optimal distribution of some available total buffering capacity
C = Cy + C, to the two queues.

A. Formulation of the Optimization Problem

A closed-loop, user-state-dependent relief-spacing TR is
defined in terms of the associated relief-spacing function
T(5,qus Gn), (S, Gu, @n)€Ss X Sy X S, and is denoted by R —
T(s, qu, gn)- The class of such TR’s is defined in terms of all
possible mappings

T:8 %8, %8, —»Z={1,2,..,.B},B< oo
and is denoted by

<R_T(57Qann)) =
{T(quuv(h)v(swQann)fss X Su X Sn : T(seQann)EZg}.
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In view of the discussions in Sections II and III and
the presentation in Appendix B, it is easy to establish that
a semi-Markov decision approach can be followed for the
derivation of optimal elements in (R — T'(s,qu,qn)). The
semi-Markov process {(I;, Q}', Q) }i>o defined at departure
slots is used to completely describe the evolution of the
system under a given relief-spacing function T'(s, qy, ¢, ) and
determine the induced performance measure (cost) involved
in the optimization problem formulation. The optimal TR’s
in (R — T(8,qu,qn))—(< R: — T(s,qu,qn)) and (R,, —
T'(s,qu, gn))—are derived in the following two senses:

AL+ L)} ®

B

min
T:S; xSy x8,—2Z

Rt - 1’(37 Qus qn) = arg{

min
T:S:XSyuXSp—2

R, ~ T(S:Qusq".) = a'rg{ +{Ln} Ly < w}-

B

9)

Notice that the calculation of L, in terms of the semi-
Markov process and the action taken, is now possible and,
thus, it can be part of the quantity to be minimized. This is
contrary to the open-loop case where only some traffic smooth-
ness measure (determined by the user-state) was possible to
consider.

The optimization formulation in (9), implies that the cor-
responding closed-loop relief-spacing TR’s do not treat the
user-traffic as a best effort service since it guarantees a
certain cell loss probability L,. This formulation is a con-
strained optimization one, which may be more suitably tackled
by employing the linear programming approach leading to
the derivation of the optimal element R, — T(s,qu;qn)-
However, since the state-space of the semi-Markov process
{11, Q}, Q} }i>o can be very large (2 x Cy, x C, states) and,
consequently, the number of variables (2 x B x C,, x Cy,) and
constraints which need to be stored under the linear program-
ming algorithm, this approach can be easily made intractable.
This is not the case with the unconstrained optimization
problem (8), where the more efficient value iteration algorithm
presented in Appendix D is employed for the derivation of
R, — T(s, Gus Gn)-

By utilizing the fact that no losses can occur at the user-
queue when the relief spacing 7'(s, gy, qs) is less than the
remaining queue capacity (Cy, —qy+1), then, Ro—T1'(s, gy, ¢n)
which is the optimal loss-free element at the user premises
((w = 0) in Ry, — T(s,qu,4n)) can be simply identified as
a member of the sub-class of loss-free at the user premises
closed-loop, user-state-dependent relief-spacing TR’s, (Ry —
T'(s,qu,gn)). determined by,

<Rf —T(S, qanﬂ))
= {T(5,qu:qn); (:Gu: 4n)€Ss X Sy X Sy
2 T8, Qus @n )25, T(8,qu. gn) < Cu — qu + 1} (10)

and therefore, Ry — T'(s, ¢y, ¢n) can be obtained by solving
the equivalent unconstrained optimization problem,

{La}}
an

Ro—T(s,qu, = ar min
0 (5, us 4n) g{T:R”T(stqun)e(Rf*T(SYQMAIw»
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Fig. 10. Relief-spacing function for Ry — T'(s. qu. qn )-

by applying the more efficient value iteration algorithm with
a cost defined in terms of number of cells lost at the network
premises over a decision interval.

B. Numerical Results

Fig. 9 presents the relief-spacing function for Ry —
T(s, qu, qn) for C, = 40,C,, = 50, A = 0.09,7 = 0.8, \g =
0.6 and B = 10. Notice that as ¢,, increases, the optimal relief-
spacing 1" approaches its limit B = 10 while guaranteeing no
losses at the user premises; for instance, when ¢, = C,, then
T = 1 to guarantee no losses.

Fig. 10 presents the relief-spacing function for R; —
T(s,qu, qn)for C,, = 40,C,, = 50, X = 0.09,v = 0.8, A\ =
0.6 and B = 10. The optimal tradeoff between L, and L,, that
R; — T(s, qu, gn) achieves, leads to a maximum relief-spacing
when ¢, is small and g, moderate or large, and minimum
relief-spacing when ¢, is large and ¢, is small or moderate.
It is also observed that for large values of g, or g,, the relief-
spacing is larger when the source is off, compared to that
when the source is on, since more losses are more likely to
occur in the immediate future when the source is on.
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Fig. 11. Ly + Lp versus C, under Rg — T(s.qu.qn) and
g

Ry — T(s, qu.qn).

-6 Loss-free Ry-T(s,q,)
— Ro-T(s.q.% )

10 15 20 25 b 3 a0 a5 50
G
Fig. 12. Ly versus Cy, for the optimal open- and closed-loop TR’s.

In both Figs. 9 and 10, it may be observed that the optimal
policies tend to operate under low value of relief-spacing
for small values of both ¢, and g,, keeping the steady-state
probability that the system operates in the region of larger
values of ¢, and g, small. That is, as expected, the optimal
policies tend to operate less in the critical (loss inducing)
region, by providing faster relief when in noncritical regions
(small buffer occupancies).

In Fig. 11, the relative performance of Ry — T'(s, qu, gr)
and R, — T(s,qu,gn) is presented, as a function of C,. As
expected, R;—T(s, qu, ¢ ) outperforms Ry—T(s, ¢y, g») since
it is the optimal element in a class containing the subclass
whose optimal element is Ry — T(s, qu,gn). This becomes
clear by replacing L, by L, + L,(L, = 0) in (8) and
comparing to (9). In addition to improving performance, the
global minimization formulation leading to R, — T'(s, gy, qn)
may also be more fair, in the sense that multiplexed traffic
at the network premises is not over-penalized to guarantee
L, =0.

In Fig. 12, the performance of the optimal open- and closed-
loop, user-state-dependent relief-spacing TR’s inducing zero
cell loss at the user premises is presented in terms of L,
versus C,, plots. As expected, the employment of additional

Fig. 13. Relief-spacing function for R; —T(s, qu,qn) Ag = 0.9, 7 = 0.8,
and A = 0.09.

(that is, network state) information in the closed-loop scheme,
improves the performance achieved by the optimal open-loop
scheme, for any value of C,. It should be noted that the
difference in performance increases as C, increases since a
more effective utilization of the network-queue information
can be achieved increasing the advantage of the closed-loop
scheme. In Figs. 13-15, some relief-spacing functions for
Ry — T(s,qu.¢n) obtained under various background traffic
rates Ap and source burstiness coefficients -y, are presented.
These figures illustrate the adaptation of the optimal TR,
Ry — T(s,qu, gn), to the change in service requirements of
both the regulated traffic and the background traffic. From
Figs. 13 and 14, it can be seen that as the arrival rate of the
background process (Ag) decreases while the regulated traf-
fic’s parameters are held constant, the optimal relief- spacing
TR provides lower relief-spacing for smaller values of ¢,, thus
taking advantage of the reduction in service demand by the
background process and offering this available capacity to the
regulated process. Similar results can be observed with regard
to the burstiness of the Markovian source + in Figs. 14 and 15;
for a given system state, the optimal TR under a higher value of
7y provides smaller (or equal at most) relief-spacing compared
to that under a lower value of + (Fig. 15); a faster service
to the queue is expected to alleviate the increased queueing
problems under a higher value of ~. Similar results were
also observed with respect to the arrival rate of the regulated
traffic.

V. CONCLUSION

In this paper, some new traffic regulation schemes are de-
fined in terms of a relief-spacing (or spacing of the allowance
for cell delivery to the network) function. This function may
depend only on some user-state (open-loop relief-spacing
traffic regulator (TR)) or on both some user and network-state
(closed-loop relief-spacing traffic regulator).

Meaningful criteria for optimizing the performance of the
proposed classes are defined and a queueing model is pre-
sented to analyze their performance. The developed analysis is
based on the representation of a relief-spacing traffic regulator
in terms of decisions taken upon visiting the states of the
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Fig. 14. Relief-spacing function for R¢ —T'(s, gu,qn) Ap = 0.8, 7 = 0.8,
and A = 0.09.

10
Ay 9n

Fig. 15. Relief-spacing function for Rt ~T'(s, qu,gn) Ag = 0.8, v = 0.6,
and A = 0.09.

Markovian process describing the evolution of the system. By
associating an appropriate cost with each decision, different
cost functions, such as cell loss probability, can be defined.
Then Markov decision theory approaches can be followed to
determine the optimal TR in a given class according to the
predetermined criteria. Thus the computationally intractable
exhaustive search for the optimal TR is avoided.

When the distance between the user and the network
premises is large, purely preventive (open-loop) congestion
control should be considered. The optimal open-loop TR
derived in this work could be adopted in this case; numerical
results have illustrated its improved performance compared to
that of the (fixed) Spacer-Controller. When the user and the
relevant network premises (that is, the first multiplexing stage
within the network) are co-located the optimal closed-loop
TR derived in this work could be adopted. Numerical results
have shown its improved performance compared to that of the
optimal open-loop TR. In addition to its potential applicability
for the improved traffic regulation when relevant propagation
delays are negligible, the optimal closed-loop traffic regulator
can serve as a scheduler for the optimal traffic load distribution
in a cascade of two queues with external inputs.
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APPENDIX A

The probabilities f™ (i, j, k) are computed recursively as
follows.

e For m = 1, clearly:

Fi,4,k) = Pr(i 5 j,a1 = k) = p(4, 5)g(s, k),
€S, jeS, ke[0,1]

where:
g(%, k) = Pr{k cells are generated from state }.

e For m > 1:

1

F™M65,00 =Y 7L L0) (1L 4, 0).

1=0
e Form > 1,1 <k <m:

1
FrGagk) =Y 161 E) £ (1 5,0)
=0

+ fm—l(i: l7 k- l)fl(lvjv 1)}

APPENDIX B

In this Appendix, the cell loss probabilities at the network
queue shown in Fig. 4, are computed. The presented
analysis is similar to the one presented in Section II-A
for the cell loss probability at the user premises and the
notation used in that section is adopted. In the following,
let {L}i>0,{Q}}i>0,{Q}i>0 denote the state of the
source, user-queue-occupancy process and the network-queue-
occupancy process at the beginning of the I/th departure slot,
respectively. It may be easily established that {I;, Q}', Q7 }1>0
is a Markov chain embedded at the beginning of the cell
departure slots.

Let A = [a(i1,n1,m1,52,n2, m2)] denote the tran-
sition probability matrix of {I;, @}, Q7 }i> 0,41,142€Ss,
n1,n2eSy, m1, meeS, where S, = {0,1,..,C,} denotes
the state of the network-queue-occupancy process; let b (k)
be the probability that & background arrivals occur in 7' time
slots. The following expressions for the transition probabilities
a(iy, n1,my, iz, N2, M3a),41,926Ss, N1, N2€Sy, M1, M2eSy,, of
{11, Q}, Q7 }i>0 can be easily obtained.

For i1€S5,%2¢5,7 = T(3,n) > my > 0:

a(z’l,nl,ml,ig,nz,mg) =
P18, m2 — ng + 1) (ma ~my + T — 1),
{m2>2,n -1<ny <Cy -1},
{n1 =1,2§n2 SCu— 1},
{1 <mp <Gy — 1}
a(il,nl,ml,ig,Cu,mz) =
Z{:Cu—n1+1 fT(ilvi%k)
~bT(m2 -mi+T - 1),'",1 > 1,
1<m2<C,—-1.
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For 41¢5,,i2¢Se,m1 > T,T = T(i,n):

a(ihnla 77L1,i2,712,m2) =
fT(il,iz,ng —ni+ l)bT(mg -mi+ T — l)7
{r122,n-1<ny, <C, —1},
{fmm=12<n, <0, ~1},
mi—T+1<m2<C, -1,
a(iy,ny,my, iy, Cy,ma) =
T T . T p
2ok=Cy—ny 1 S (i1, )BT (Mg — my + T — 1),
m2lm —T+1<my <C, -1

For i]GSs,iQCSS,Cn Z my Z O,T = T(il,nl):

a(ihﬂl,;nhizynz,cn) =
Zk=Cn—m1+T~l fT(i17i27n2 —ni+ l)bT(k)v
{71122’n1*1$71250u—1}7
{fmi=12<ny<C, - 1}
a(i%ynlamlvi?'c%vcn) =
2k =Cy—ni+1 Ekgzcn—m1+T+1
FT (1, 2, k1 )b (k2),
nl > 1.

For ’(:16531'L.2€S',,T(7:1,’ﬂ1) -1> my 2> 0:

a(il,nl,ml,ig,ng,O) =
kot T T (i gy mg — g + b7 (k),
{m >2mn-1<n,<C, — 1},
{n1 = 1,2 S ng S Ou— 1},
T= T(il,nl)
a(iy, n1,my,i2,C,,0) =
S h=Cumt Lo
T (01,59, k1)bT (k2),
ny > 1,
T = T(il,nl).

For i1€S;,42¢5,,C,, > mq > 0:

a(iy, 1,my, iy, 1,mg) =
-fT(il,ig, l)bT(mg —-m; + T~ l)
+f7(i1,1,0)p(1,i2)bT+ (mg — my + T)
+ 220:2 fT(ilz 07 0)pk—2(07 0)p(0= 1)p(1, 7:2)
BT+ (my —my +T + & — 1),
0 S mo S Cn,
T =T(i,1)
a(il, 1, my, iz, 1, Cn) =
ko= my 471 I T (i1, i2, BT (k)
+ Sk, ST 00, L 0L i)V (k)
+ 2212 Z::;C"—m1+T—1-{-k fT(ili 0, 0)
PF72(0,0)p(0, 1)p(1, i2)bT o4k (k)
T = T(iy,1)
u(z‘l, 1, my, 22, 1, 0) =
Fomo ! ST (2, 1)BT (k)
+ ke T (i1, 1,0)p(L, i2)bT+ (ky)
+ 0 Yte T £ (62,0,0)p4=2(0,0)p(0, 1)
p(L,i2)bT* (ky),

The steady-state probabilities (i, n, m), i€Sy, neSy, meSy,
are obtained from the matrix equation I = AIL I =
[7(é,n,m)] with the normalizing condition I’e = 1 where

e is a unity vector. The cell loss probability L,, at the network
premises can then be obtained from the expression:

L. = Ziess Enesu Zmesn L"(i’ n, m)r(iz , m’)
n - ! TN/ - f
A Ziess Znesu ZmES,, ID(ZT n)7r(z,n)
where )’ denotes the effective total arrival rate at the network
queue and where L, (i,n) denotes the expected number of

cells lost at the network-queue over the interval [ D(i,n) and
is given by

(12)

L,(3,n,m) =
E::fnfm+77:(_'l(]§ —Cn+m+T - 1)bT(k),
n>1,1=1T0n
Ln(’i7 11 m) = T
T el
Z;iz 2ka=1 TZkbzcn_m+T_1(kb ~Ch+m+7T-1)
FH(E, 5, ku )bT (ky)
+ 5%, 0, merlhs = Gt = )17, 1.0)
1, )Ttk
p(1,7) - ( b)T+k
+20; s 2 ke —mt T k-1
'(]E'b —)CEL + S?ZTilT(Lf)T(i’ 0,0)p*~2(0,0)
‘P 071 ¥4 17] b/
T =T(,1). (13)

APPENDIX C

In this Appendix, the linear programming approach is
applied for the derivation of the optimal element in the
class R, — T(s,q,) defined in (7). First let A(i,n) =
{Tmin('l:ly nl); sreey Tmax(ils nl)}v Tmin(ils nl) (Tmax(ilv nl))
is the min (max) allowable relief-spacing from state (i1,m1).
let w(i1,m1, T') be the steady-state probability of being in state
(41,m1) and taking the action TeA(iy, ). Let u(iy,ny,T) =
%%, where 7(i1,n1,T) = TD(i1,n;) is the expected
time till the next decision epoch if action (relief-spacing) T
is taken from state (i1,n;). Based on the above, the linear
programming formulation of the optimization problem is as
follows:

minimize Z z Z (i1, n1, Tu(ir, ny, T).
i1€S, n1€S, TeA(i,n)

Subject to:
u(tiy,ng, T) >0

ZTEA(i,n) u(i27n27 T) - Ziless Enlesu ZTeA(i,n)
‘a(it, n, 12,2, TVu(i,n1, T) = 0,i2¢8, naeS,

ZilcS, anesu ETeA(il,nl) 7(i1,n1, Tulin,n, T) = 1

Dires, Donyese Y reatis [T, n1, T) Ly (iv, 11, T)
~w/\7'2(z'1,nl,T)]u(il,nl,T) <0.

If u*(i1,n1,T) is an optimal basic solution for the above
linear program, then for each state (¢;,n) there will be at
most one action 7" such that w*(¢3,n1, T) > 0, implying that
T*(i,n) = T. If for some state (i1,n,), vw*(i,n1,T) = 0
for all T, T*(%3,ny) is chosen arbitrarly as some T such that
{L(il,nl,ig,ng,T) > () and ’U,*(iz,nz,Tz) > 0.



518

In the above linear program, 7(iy,n1,T)u(i,n1,7)
Jepresents the steady-state probability of being in state
(¢1,m1) and taking the action 7'. Note that only stationary
policies are considered, i.e, policies where the same action
T'(i1,n1) is taken at every visit to the state (¢1, n; ). Therefore,
7(i1, 1, T)uliy, n1, T) represents the steady-state probability
7 (i1, m1).

The first set of constraints represent the balance equations
requiring that for any state (iz,m2)eS, x S, the long-run
average number of transitions from state (i3, n,) per unit time
be equal to the long-run average number of transitions into
state (i2,7n2) per unit time. The second constraint requires
that the sum of the steady-state probabilities be equal to 1 and
finally the last constraint represents the cell loss QoS; as in (5),
that must be met at the user premises and which is obtained
through a simple manipulation of the expression for the cell
loss probability (3) presented in Section II-A.

IX. APPENDIX D

In the following, the value iteration algorithm used in the
derivation of the optimal closed-loop, relief-spacing TR’s (8)
and (11), is outlined. This algorithm computes recursively a
sequence of value functions Vi(¢1,7n1,m) associated with
each state (é1,m1,m1)eSs X S, x Sy, approximating the
minimal average cost per unit time (slot), (starting with an
arbitrarily chosen function V,(41,n1,m1), (1,71, m1)eSs X
S, x Sp). as follows:

Vi(é1, n1,mq) :1minTeA(£1,n1,m1)
Uy X [l nayma, T)
+T X0 2ony 2om, i1, 01, M, d2,n2, M2, T)
Vie1(iz, n2,mo)l + (1= s
‘Vl—l(llqnlam'l)}

where  a(i1,n1,m1.42,1n2,m2,T) denote the transition
probabilities of {I;. @}, Q7 }i>o, from state (iy,ni,mq) at
the beginning of a departure slot (decision epoch) to state
(42, m2,m2) at the beginning of the following departure slot,
if the relief-spacing function is such that T'(1,n1,my) = T}
these probabilities are equal to those found in appendix B
when T(i1,n1,m1) = T. 7(¢1,n1,m;,T) is the expected
time till the next decision epoch if action 7 is taken in the
state (z1,n1,m1) and is equal to m(il,nl) given by (2) in
Section 1I-A, when T'(31,n1) = T. A(i1,n1,mq) is the set of
possible actions from state (é;,71.m;); defined in Appendix
C. 7 is a number chosen for aperiodicity purposes such
that 0 < 7 < Min;, pn, m,TeS, xS xSn xSp 701,11, 11, T).
c(i1,n1,my,T) represents the cost associated with state
(i1,n1,my) when the relief-spacing function is such that
T(i,n,m) = T. For the class (R, — T(8,¢u,qn)), w = 0,
c(iz,n1,my,T) is set equal to the expected number of
cells lost at the network buffer over a decision interval, if
T(i1,n1,m1) = T, and is obtained from the expression (13)
for L, (i1,n1,my) with T(i;,n1) = T (appendix B). For the
class (Ry — T'(8,qu,qn)), ¢(iz,n1,m1,T) is set equal to the
sum of the expected losses over a decision interval at both the
user premises (4) and the network premises (11).

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 5, OCTOBER 1994

Notice that Vj(iy,n1,m1) represents a long-term minimal
cost rate per unit time (slot) induced by observing the system
following a visit to state (41, n1, 7). For large [, the difference
Vi(iy,my,my) — Vi_1(41,n1,m,) approaches the average cost
rate and the policy 1" minimizing the above value function
induces a cost arbitrarily close to that of the optimal policy
[15].
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