IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 2/3/4, FEBRUARY/MARCH/APRIL 1994 615

Delay Bounds on a Queueing System with
Consistent Priorities

loannis Stavrakakis, Senior Member, IEEE

Abstract— A discrete-time queueing system operating under
a two-level, consistent priority service policy is studied in
this paper. The consistency of the policy guarantees that no
low priority customer will be served before a previously (or
simultaneously) arrived high priority one. Unlike the well
known head of the line priority policy (which is consistent),
the considered policy provides for limited service to low pri-
ority customers, even in the presence of high priority ones.
The proposed policy may be viewed as a consistent version
of the straightforward gated/limited service priority policy.
It may also be viewed as a compromise between the head
of the line priority policy and the straightforward gated/
limited priority service policy. The customer service time
is assumed to be deterministic and equal to one time unit,
which makes the queueing model applicable to a packetized
communication network environment; potential relevant ap-
plications are presented. Based on renewal arguments, the
theory of infinite dimensional linear equations and a work-
conservation law, a general methodology is developed for
the derivation of arbitrarily tight bounds on the induced
mean packet delay.

1. INTRODUCTION

Queueing systems are naturally formulated in commu-
nication networks, due to the statistical behavior of the
information traffic and the sharing of the resources for
increased efficiency. Discrete-time queueing models have
been widely adopted for the analysis of packet commu-
nication networks, where packet processes are described
by discrete time stochastic point processes [1-6]. Priority
queueing systems have also been studied extensively in the
past [6-12].

A queue supporting two classes of customers with dif-
ferent priorities may be described in terms of two distinct
queues. Let H-Q and £-Q denote the high and the low
priority queues, respectively. A priority service policy will
be considered to be consistent if it does not allow for the
service of low priority customers in the presence of earlier
(or simultaneously) arrived high priority customers. The
well known Head of the Line (HoL) priority policy is an
example of a consistent policy. According to this policy,
the server moves to £-Q only if H-Q is empty; it switches
back to H-Q as soon as this queue becomes non-empty.

Consistency may be a strongly desired property of a pri-
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ority service policy. In certain applications, it may be inef-
ficient or meaningless or even impossible to provide service
to low priority customers arrived after (or simultaneously
with) high priority ones, which are still in the queue. Such
cases may appear in production lines, job schedulers in
computer systems and in high speed Asynchronous Trans-
fer Mode/Broadband-Integrated Services Digital Networks
(ATM/B-ISDNs) regarding the transmission of real time
traffic requiring preservation of the information cell se-
quence.

A potential problem with the HoL priority policy is that
it might be penalizing unacceptably the low priority cus-
tomers. A well known policy which is more considerate
to the low priority customers is the straightforward gated/
limited service (s-G/L) priority policy. According to this
policy, only the customers found in H-Q at the switching
instant of the server to that queue, are served (gated ser-
vice). Then, the server switches to £-Q and provides for
some limited service to that queue. Although this policy
does favor the high priority customers it is not consistent,
since high priority customers may be served after simulta-
neously (or at a later time) arrived low priority ones, even
if only one customer limited service is provided to £-Q at
each server visit. For instance, if £-Q is left empty upon
switching to 7-Q and both a low and a high priority cus-
tomers arrive after the switching instant and before the
completion of the gated service to H-Q, then the low pri-
ority customer will be served before the high priority one,
even if the latter had arrived before the former.

The queueing system considered in this paper is a mod-
ified version of the s-G/L policy, which makes this policy
consistent. The new policy will be referred to as the con-
sistent gated/limited priority policy (c-G/L). It will be as-
sumed that the limited service provided to £-Q does not
distinguish among simultaneously arrived low priority cus-
tomers. In a slotted, discrete-time environment the previ-
ous implies that all low priority customer arrivals within
the same time unit (slot) are served, before the server leaves
L£-Q. As it is outlined in the conclusions of this work,
the latter assumption may be modified to some extent and
the developed approach still be applicable. The proposed
queueing system is a discrete-time version of that formu-
lated in [13] as a queueing model for a station in the DQDB
(IEEE 802.6) Metropolitan Area Network [14]. Exact anal-
ysis of the continuous-time system in {13] and the one pro-
posed here have not been carried out in the past. Details
regarding this application are presented in the next section.
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Fig. 1. The queueing system.

Finally, the proposed priority service policy can be applied
to establish fairness (consistency) to a gated/limited type
of service discipline and improve the performance of the
high priority class. Thus, it may serve as a compromise
between the Hol. and the straightforward gated/limited
service priority policies.

II. DESCRIPTION OF THE SERVICE PovrICY

The proposed ¢-G/L policy is described in this section.
Time 1s assumed to be slotted and customer service time
deterministic and equal to one slot. Customers will be
referred to as packets (of information). Let H (L) de-
note the high (low) priority class of packets. To facili-
tate the description of the adopted service policy, it is as-
sumed that new arrivals from a certain class join the corre-
sponding queue (buffer) assigned to that class. As a result,
two queues are formed (Fig. 1); let H-Q and £-Q denote
the high and the low priority queues, respectively; infinite
queue capacities are assumed.

The packet arrival processes associated with the two
classes are assumed to be mutually independent discrete-
time arrival processes. For each priority class, the number
of packet arrivals over a slot follows a general distribution.
Packet arrivals over consecutive slots are assumed to be
independent. A group of L-packets (H-packets) is defined
to be the set of all £-packets (H-packets) arriving over the
same slot. Events (packet arrivals and service completions)
are assumed to occur at the slot boundaries. The server
switching time between the queues is assumed to be zero.

The Service Policy

The system is work conserving { WC'). That is, the server
is never idle in the presence of a packet in the system and
the service policy does not affect the amount of service time
or the arrival time of any customer. When the system is
empty the server is considered to be in a neutral position. If
an H-packet (L-packet) arrives to a previously empty sys-
tem, the server visits and starts serving H-Q (£-Q) at the
beginning of the next slot. If both H-packets and L-packets
arrive to a previously empty system, the server starts serv-
ing H-Q; then, it operates as the policy indicates. Packets
within each queue are served according to a FIFO (First in-
First Out) service policy. The server switches from £-Q to
H-Q after serving the group of packets which contains the
packet at the head of the £-Q (limited one-group service).

If upon switching to H-Q, £-Q is left non-empty, then the
server serves all H-packets present in H-Q at the switching
instant. Then it switches back to £-Q. If upon switching
to H-Q, £-Q is left empty, then the server remains at H-Q
and serves all the H-packets which arrived prior to or over
the same slot with the next L-packet. Then, the server
switches back to £-Q. Note that the priority service policy
described above is consistent and a compromise between
the (consistent) HoL and the (inconsistent) corresponding
s-G /1, policies.

A continuous time version of the consistent G/L prior-
ity policy described above has been originally introduced
in {13} as a queueing model for the DQDB MAN. A ver-
sion of this policy has been adopted for the development
of the simple DQDB simulator in [15]. A description of
the DQDB MAN may be found in [14; 15; 16] or in the
references in [17]. The consistent G/L priority policy cap-
tures basic functions of the queueing systems formulated
at a DQDB station, as explained below. The limited one-
group service policy may be easily modified to a one-packet
limited service one (section V). Additional approximations

. may be required, though, to accommodate various depen-

dencies present in the complex DQDB network. Neverthe-
less, the simulator in [15] seems to perform satisfactorily.

Let £-@ model the queue of a tagged DQDB station.
After the service (transmission) of a group of L-packets is
completed (say at t), the next (if any) group of L-packets
is forwarded to the head of £-Q. Before this group of £-
packets is served, all pending requests for service—that is,
requests coming from the downstream users which have
been registered and passed by the tagged station by ¢ but
not served yet—will have to be served (by allowing for
empty slots to come by the tagged station), before the
group of L-packets is served. Additional requests, which
may pass by the tagged station while waiting for the ser-
vice of the pending (at t) requests, will not be considered
before the service of the group of L-packets waiting at the
head of £-Q. The previous establishes the gated nature
of the queueing model for the DQDB station. The inter-
fering upstream traffic (busy slots passing by the tagged
station) may be seen as additional pending requests which
should be served before the next group of H-packets. Thus,
the interfering busy slots and the pending requests may be
associated with a high priority traffic feeding H-Q. The
input traffic to this queue may be modeled as consisted
of two Bernoulli streams with rates equal to those of the
cumulative upstream and downstream user traffic. The
consistency of the queueing behavior may be established
by noting that all requests passing by the tagged station
by t (defined as the arrival time of a group of L-packets
to the head of £-Q) must be served before that group of
L-packets. Although the consistent G/L priority policy an-
alyzed in this paper may be capable of capturing the basic
functions of the queueing behavior of a DQDB station, the
fine tuning of the model and the achievable accuracy are
beyond the scope of this paper.
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III. ANALYSIS OF THE CONSISTENT G/L PRIORITY
Poricy

HI.A. The Proposed Methodology for the Study of
Priority Policies

The analysis of the proposed ¢-G/L policy will be based
on arguments from renewal theory, the theory of infi-
nite dimensional linear systems of equations and a work-
conservation law. Renewal arguments and solutions of in-
finite dimensional equations have been considered in the
past for the study of distributed queueing systems, as for-
mulated in random-access multi-user communication net-
works [18; 19; 20]. This is the first time that such a method-
ology is applied for the analysis of priority queueing sys-
tems. The most difficult part in applying this methodol-
ogy to the analysis of random-access multi-user protocols
is related to the establishment of the system stability re-
gion and the conditions for the existence of a non-negative
and finite solution to an infinite dimensional system of lin-
ear equations. This is trivially carried out in the case of
priority queueing systems, as long as the service policy is
non-preemptive and work-conserving (NP-WC'). The sup-
porting theory and the general methodology are presented
in this sub-section.

Let the equivalent FIFO system be defined as the infi-
nite capacity, FIFO queueing system whose arrival process
is identical to the cumulative arrival process of the priority
queueing system under consideration. Quantities associ-
ated with the equivalent FIFO system will be marked with
the superscript FIFO. Greek letters denote real constants;
letters ¢, 7, and k (with or without subscripts) denote non-
negative integer numbers. Random variables are denoted
by a lower case letter and their expected values by the cor-
responding upper case letter.

Basic theory for WC queueing systems [8; 9; 21] asserts
that the busy and idle period processes of a WC system and
its equivalent FIFO system are identical for all realizations.
Let x be the random variable which describes the length (in
slots) of the time interval between two consecutive instants
when the WC system is empty. Then, the following lemma
1s obvious.

Lemma 1: For a WC system z = «F7FO for all realiza-
tions and thus X = XFIFO,

Let A denote the arrival rate to the equivalent FIFO
system; let the random variable s denote the service time of
an arbitrary arrival; let p = AE{s} denote the utilization of
the system; Then, under the condition p < 1 and E{s?} <
oo and assuming finite second moment for the batch size
of the arrival process (stability conditions) [8], the queue
is stable, the induced delay in the system is finite and p is
equal to the fraction of time that the server is busy; 1 — p
is equal to the fraction of time that the server is idle or
the system is empty. The latter is also given by 1/XF1¥O,
Since the stability of a WC queueing system is not affected
by the order of service, the following lemma can be easily
proven, in view of the above.

Lemma 2: For a stable WC queueing system, X is given

by

1
X—-l—:_'—p<00 (1)

and the operation of the system induces renewal points
with finite mean cycle length.

Lemma 2 will be used for the establishment of the exis-
tence and the actual calculation of lower bounds on the de-
lay associated with each of the priority classes of a NP-W(C
priority system. Then, upper bounds will be derived by us-
ing the corollary to the next theorem.

Theorem 1: Consider a NP-WC priority queueing sys-
tem supporting K priority classes. Let A! (D) denote the
arrival rate (mean delay) of the ith priority customers. Un-
der the assumption that the customer service requirements
do not depend on their priority class [8; 9; 21],

K K
ADFIFO = ZA‘Di , Wwhere A= Z/\i (2)
i=1 i=1
Let Di, , 1< i< K, denote a lower bound on the mean
delay of the ith priority customers in a priority queueing
system, as described in Theorem 1. The following corollary
provides for an upper bound on D}, 1 < i < K; its proof
is evident in view of Theorem 1.

Corollary 1: An upper bound, DZP, on D), 1<i<K,
for the priority queueing system described in Theoreml, is
given by

K
_;T A DF IFO _ Z /\k leo
k=1,k#i

Note that the above theory is valid for a NP-WC queue-
ing system supporting fixed length packets with different
priorities. From now on, the customers will be considered
to be fixed length packets whose service time is equal to
one slot, independently of their priority class.

Let {zj};>1 denote the sequence of slot boundaries at
which the queueing system is empty; {2;};>1 is a renewal
sequence with mean cycle length given by (1), under the
stability conditions (1). Let {z;};>1 denote the sequence
of the lengths of these cycles. Let c; denote the cumula-
tive delay of the ith priority packets which arrived (were
transmitted) over the jth cycle. Under stability conditions,
{c;'-}jzo is a regenerative process with respect to the re-
newal process {z; };>0 with E{ci} = C* < co. Note that
under the stability conditions (see above Lemma 2), the
second moment of the renewal cycle is finite. Notice that
the packet delay cannot exceed the length of a cycle. More
precisely, the delay of a packet cannot exceed the time in-
terval between the packet arrival instant and the end of the
current cycle (excess time). Since the mean excess time is
finite if the first two moments of the cycle length are fi-
nite [8], the mean packet delay—and thus the cumulative
packet delay as well—will be finite. The mean delay of an
ith priority packet can then be obtained from [19; 20],

i _ c _1=p
D=sx=%¢ @

Dy = (3)
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Fig. 2. Time axes for the definition of the state of the system.

Notice that A*X is equal to the average number of ith
priority packet arrivals over a cycle.

To compute the expected value of the cumulative delay
of the sth priority packets, the specific priority discipline
has to be taken into consideration. This is carried out in
the sequel for the queueing system under the ¢-G/L policy.
The approach is potentially applicable to queueing systems
under other priority policies. It turns out that the compu-
tation of C* requires the solution of an infinite number of
linear equations. A lower bound on C?, C?, is obtained by
solving a truncated, finite set of these equations; then, a
lower bound on D¢, Di | is obtained by substituting C}_ in
(4). Finally, Corollary 1 is invoked for the computation of
an upper bound on D?, Df‘p, by utilizing the lower bounds
- on D', for 0 < i < K. By considering a sufficiently large
number of equations in the truncated version, arbitrarily
tight bounds may be obtained. The approach is illustrated
in the next subsection, where lower bounds on the mean £-
packet and H-packet delays are obtained for the queueing
system under the ¢-G/L policy.

III.B. Mean Delay Bounds for the Consistent G/L
Priority Policy

Consider the two-priority NP-WC queueing system de-
scribed in Section II. The slot boundaries determine a
discrete-time axis, referred to as the system axis, which is
the time reference for all processes involved in the analysis
of the system. To facilitate the description of the operation
of the system—through the introduction of axes on which
single category of events are marked—arrivals of H-packets
(L-packets) are marked on a fictitious time axis referred to
as H-axis {L-axis); these axes are otherwise identical to
the system axis. For reasons which become clear later, the
mean cycle length X, given by (1), is computed first.

Let {tx}r>o denote the sequence of time instants at
which the service of the M-packets found upon the kth
visit to the H-Q is completed. At a time instant iz, let
Jr, 0 < jx < 00, be a random variable denoting the length
(in slots) of the unexamined interval on the H-axis; that
is, H-packets which arrived over the interval j; have not
been considered for service by t; (Fig. 2). Let i + 7 ,
0 < i < o0, be a random variable describing the distance
from t3 of the group of the £-packets which contains the
packet at the head of the £-Q at time {5, that is, the oldest
_group of L-packets in the £-Q. Let {rg}r>¢ be a stochastic
process embedded at {t;}z>0 with state space S = {(¢, 5):
0<i<o00,0<j< oo}, where ¢ and j are the values of
ix and ji at the current instant xe{tz}r>0. Since packet

arrivals over consecutive slots are independent, it is easily
established that {rg}r>o is a Markov chain embedded at
{tr}r>0. The following_quantities are used in the analysis.

Let_y(i,j) be a random variable (r.v.) describing the
length of the time interval (in slots) between some time
instant 5 (as defined above) when the system is in state
(7,7), and the first time in the future (including ¢z) when
the system becomes empty, ¢ > 0, 7 > 0, and ¢ + 5 #
0. Let y(0,0) be a r.v. describing the length of the time
interval between two consecutive instants when the system
is empty. Notice that y(0,0) is the same as @, defined
earlier, and not equal to y(7, §), as defined above, evaluated
at ¢ = 0, j = 0; the latter is equal to 0 since the system
is empty, while y(0,0) = = is always greater than zero
since the interval between consecutive slots at which the
system is empty can not be less than one. Let I be a riv.
describing the number of L-packets arrived over a slot; let
g'(k), 0 < k < M' < oo, and X denote its probability
mass function and its expected value, respectively. Let hq
be the same as ! applied to H-packets with corresponding
parameters g"(k), 0 < k < M" < co, and A*. Let I, be
a r.v. describing the number of L-packets arrived over a
slot, given a group of L-packets has arrived over this slot;
let gl(k), 1 <k < M', and p' denote its probability mass
function and its expected value, respectively. Let h. be
the same as [, applied to H-packets with corresponding
parameters gP(k), 1 < k < M", and p*. Let hj be a
r.v. describing the number of H-packets arrived over k
slots. Let h(k,j), 0 < j < EM", denote its probability
mass function which is given by the k-fold convolution of
g"(). Let a [bx] be a r.v. indicating the location—time
instant {—of the first H-packet [£-packet] arrived- over an
unexamined interval of length k; the value of ay, [b;] is equal
to the number of slots between ¢ and the current time. Let
(i, 7) [¢"(i, 7)] be ar.v. describing the cumulative delay of
all L-packets [H-packets] which are transmitted (arrived)
over y(i,7), i > 0, j > 0. Let C'(4,7), C*(4,7) and Y (4, )
denote expected values of the quantities denoted by the
corresponding lower case letter.

At this point a procedure is developed for the computa-
tion of Y(0,0) = X. Although the latter quantity may be
computed from (1), an alternative computation approach
is followed for two reasons. First, the bounds to be com-
puted through this approach are required for the derivation
of tight bounds on the mean packet delay, as explained in
section IV. Second, it is conceptually easier to present this
approach by applying it for the computation of the quan-
tities y(7,7), ¢ > 0, j > 0. Based on this approach and
some of the derived results, C* and C* will then be com-
puted in a straightforward manner. The latter quantities
are required for the mean delay calculation in (4).

It is easy to establish that y(0,0) is given by (see
Fig. 3(a)).

1 Hay+b;=0

y(0,0):Z‘:{ L4 hi+y(br,h1) far+b; #0 52)
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Fig. 3. Tllustration of the derivation of the equations in (6); mark * indi-
cates a potential time instant in {t4};>0; mark o indicates the boundary
between the examined (on the left) and unexamined (on the right) inter-
vals on the corresponding axes; mark A indicates packet arrivals; system
axis is the real time axis.

where (see Fig. 3(b)) fori> 1,5 >0,

l.
le + hjyi,+
Y(bi—14j41., hj41,) otherwise

if bi14j41. + hjgr. =0
y(l’J) =

(5b)
and (see Fig. 3(c)) fori =0, j > 1,

0 V ifaj+bj:0

y(l,bj—l) ifbj>aj,bj>0

he+y(bi,a; — 1+ h,) ifa; > bj,a; >0
(5¢)

y(i,5) =

Equation (5a) is easily explained by considering
Fig. 3(a). Let ¢ be a discrete-time instant (slot boundary)
at which the buffer is empty. The next such time instant
will be #' (the next slot) if no arrivals take place over the
slot (¢,t'), that is, if a; + b; = 0; in this case z = 1. If
hy (k1 > 0) H-packets arrive over (¢,t’) then these packets
will be transmitted over the next hy time slots. The com-
pletion time, #”, of these transmissions (which coincides
with ¢’ if by = 0) corresponds to a time instant from the
sequence {tx}r>0, on which the Markov chain {ri}r>1 has
been defined. At time #” the unexamined interval on the
H-axis is h1. If a group of L-packets have arrived over the

examined interval of the H-axis (¢,%'), then b; = 1; b; = 0
if no such packets have arrived over that interval. Thus,
the state of the system can be defined to be (b1, h1). By
definition, y(b, h1) slots are required for the system to be-
come empty after ¢”. Thus, if h; + b; # 0 (or equivalently
a1 + by # 0), the time required for the system to reach an
empty buffer state, starting from an empty buffer state at
t,is given by 14 hy +y(b1, h1). The values of y(z, j), i > 0,
J 20, and i +j # 0 are given by the linear equations (5b)
and (5¢).

When ¢ > 0, there is always some L-packet to be served
after instant ¢ € {tx}r>0 (Fig. 3(b)). Let I, > 1 denote
the number of these packets. If no H-packet arrived over
the unexamined interval of length j + l.(h; 4, = 0) and no
L-packet arrived over the unexamined interval i — 1+ j +
le(bi—14j+1, = 0) then the system is empty at ¢ and thus,
y(i,4) = l.. If, on the other hand, hj4;_ # 0, then the M-
packets which arrived over the interval of length j 4 I, are
served. The time instant of the completion of this service,
¢/, corresponds to a point in {¢;}r31. Thus, in this case,
y(i,7) equals le+hjpi, +y(bim14j41., hjpr,). When hjpq, =
0 but b;—14;41, # 0 then t” € {tz}x>1 and y(3, j) is equal
to lc + y(bi-145+1.,0).

When ¢ = 0 and j > 1, then no £-packet which arrived
over the examined interval on the H-axis is in £-Q. Since
t € {ti}, the server will serve the oldest group of packets in-
dependently of the class in which they belong. If no packet
arrived over the interval of length j, then ¢ corresponds
to an empty buffer time instant and thus, y(0,5) = 0. If
a group of L-packets have arrived first over that interval,
that is, if b; > a;, b; > 0 (Fig. 3(c.1)), then the server
moves to £-Q at ¢ and the state at that instant can be de-
scribed as (1,b; —1). Thus, (0, j) = y(1,b; —1). If a group
consisting of h. H-packets have arrived first (or simultane-
ously with some group of L-packets) over the interval of
length j, that is, if a; > b;, a; > 0 (Fig. 3(c.2)), then the
server serves the group of the H-packets and then is ready
to move to £-Q. Thus, ¥(0,7) = h. + y(by, a; — 14 h),
where b; = 1 if a group of L-packets arrived simultaneously
with that group of H-packets and b; = 0 otherwise.

By applying the expectation operator to (5), the follow-
ing equations are obtained.

o o0
Y(i,5) = e(i, ) + Y, Y b(i, 4, 1,82)Y (i1,42),  (6)
31=04,=0
where 0 < ¢ < 00, 0 < § < oco. The constants e(4,5) > 0
and b(3,,41,4i2) > 0 for 4,j,41,i3 > 0, may be found in
[22]. The following lemma provides for the existence of a
nonnegative and finite solution to the system in (6); Its
proof is evident in view of the fact that the solutions of
(6) are nonnegative and finite, under stability conditions
[23]. Then Theorem 2 provides for a lower bound on X =

Y (0,0).
Lemma 3: If Al + A\* < 1, then the system in (6) has a

unique nonnegative and finite solution.

Theorem 2: For \» + )\ < 1, alower boundon Y = X =
Y(0,0) is given by ¥i, = ¥1,(0,0), where Yi,(0,0) is the
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solution for Y (0, 0) of the finite system of linear equations

Ny Na

Y(i,5) = e(i, )+ > 3 b(i, i1, i2)Y (i1,i2)  (7)

11=0142=0

for 0 < i < N1 < 00,0 <7< Ny < oo, where ¥7,(0,0)
increases monotonically to Y(0,0) as Ny, N2 — oo.
Proof: For A* 4+ X < 1, the infinite dimensional system
in (6) has a unique nonnegative finite solution (Lemma 3).
Thus, the truncated version of (6) shown in (7) has solu-
tions, ¥j,(%, 7), which satisfy

Yio(i,5) <Y(i,5) and  lim  Yie(¢,5) =Y (4, ),
Nyp,Ny—+o0

for 0 <i < N1, 0 <7 < Ny [23]. Numerical results verify
that for sufficiently large N1, N2, Y1,(0,0) is very close to
X given by (1).

The previous approach can be applied directly for the
calculation of lower bounds on C* and C', which are un-
known. These quantities are computed by formuléting
equations with respect to ¢/ and ¢* similar to those in (5);
these equations, may be found in [22]. By applying the
expectation operator to these equations, two sets of infi-
nite dimensional systems of linear equations are obtained,
which are of the form of that shown in (6). In fact, the
coefficients of the unknowns are identical to those in (6).
It is only the constants which are different from e(3, §), 1,
j > 0; these constants are denoted by €'(4,5) and e”(3, 5)
and they mdy be found in [22]. _

Tight lower bounds on G' = C'(0,0) and C* = C?(0,0),
denoted by C,’o and C{g, respectively, can be obtained by
solving truncated versions of the corresponding infinite di-
mensional systems of linear equations (Theorem 2). Under
the stability conditions for the queue, C*(i, j) and C*(i, )
are finite since Y (¢, j) are finite, for all finite ¢ and j. Then,
lower bounds on the mean packet delay can be obtained for
each priority class from (see (4)):

Di = 1—Ai‘h—’—’c{1‘, and Di, = %c{o .®)
Finally, upper bounds on the mean delay for each class can
be obtained from (3), provided that the mean delay for
the equivalent FIFO queueing system is known. The latter
quantity is given by,

—A

pFIFO _ 4 d 9

i 9)

where o denotes the second moment of the cumulative

number of packet arrivals per slot. Equation (9) is a known

result Which can be obtained, for instance, by applying the
analysis in [25].

IV. NUMERICAL RESULTS

In this section the performance of the proposed priority
policy is evaluated, in terms of the induced mean packet
delay for each priority class. Since the derivation of exact

i2 2
* 1 - ©°
R :
o o
R 2 e
N o
2 - 3
[ s =)
R 4
D
N i

Fig. 4. The solution region R and its boundary ID.
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Fig. 5. Upper (1) and lower (2) bounds on the low priority packets; Upper
(8) and lower (4) bounds on the high priority packets.

results requires the solution of infinite dimensional systems
of linear equations, upper and lower bounds on the induced
mean packet delay are computed. To improve the accuracy
of the computed results, some techniques are developed for
the derivation of tight bounds. The new developments will
be presented with respect to quantities associated with the
L-packets, but they hold for the corresponding quantities
associated with the H-packets, as well. The following def-
initions are useful for the discussion of this section (see
Flg 4) Let R = {(il,i2) =0 S ’il S Nl, 0 S iz S Nz} de-
note the solution region for the system of linear equations
in (7); let R denotes its complement. Let D = {(i1, é3)
: 41 = Ny and/or iy = Ny} denote the boundary of the
solution region R. ,

When the traffic load A = A" + A is small or moderate
(e.g, A < .6), then the computed lower bounds C! and
G}, are very close to the exact values of C* = C*(0,0)
and C' = C'(0,0). This is justified in view of the ob-
served tightness of the resulting lower and upper bounds
on D* and D', computed from (8) and (3). CE and C},
are computed by solving (7) for some finite N; and Ns,
where e(, j) is replaced by e*(4, j) and €'(4,7), 0 < i < Ny
and 0 < j < Nj, respectively. The results for N; = 100,
N3 = 15 and symmetric packet traffic, defined by g*(1) =
5, g5(2) = .25, g¥(3) = .25 (k =1 or k = h), are shown
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Fig. 6. Upper (5) and lower ((1),(2),(8),(4)) bounds on the low priority
packets (see section IV).

mean packet delay (high priority)
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total packet rate

Fig. 7. Upper ((1),(2),(3),(4)) and lower (5) bounds on the high priority
packets (see section IV).

in Fig. 5. Notice that the bounds become loose for total
packet rate greater than .95. The latter is shown in more
detail on Fig. 6 for D' and Fig. 7 for D* (curve (4)). The
observed (erroneous) decrement of the lower bounds, as the
load increases beyond .95, is due to the truncation effect
on the infinite dimensional system in (7). This behavior of
D!, is explained in the next paragraph. The behavior of
the bounds on D" can be similarly explained.

From the definition of C!(3, j) it is evident that the fol-
lowing monotone behavior is expected: for some fixed io
and jo, C'(do, j1) < C'(ig, j2) for j1 < j2 and C'(i1, jo) <
C'(ig, Jo) for i1 < . This behavior is clearly not present
in the results computed by (7). For instance, a typical
behavior of C},(ig,J) for 0 < j < N, is shown in Fig. 8
(curve (1)), for 49 = 0, Ny = 60 and Ny = 20. The
values of C} (ig,j) for j close to the truncation bound-
ary D (j = N3) decrease, as j increases. This is easily
explained in view of the fact that the values of C'(ip, j)
for (i0,7) € R (j > N,), which affect the computation of
the values of C} (ip,j) close to the boundary D, are set

621

2500,
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1000

Cumulative packet delay (low priority)

500,

20 25

Fig. 8. Lower bounds on C!(0,5), 0 < j < 20. The three curves are
explained in section IV.

equal to zero in (7). When the traffic load is low or mod-
erate, and N; and N, are sufficiently large, then the states
(4,7) which are close to the boundary D are visited very
rarely. As a result, their (inaccurate) contribution to the
computed value C/,(0,0) is insignificant and the resulting
bounds on D' are tight.

For large traffic loads (e.g., A > .9) the boundary ef-
fect becomes significant and the bounds become very loose,
unless Ny and Ny are very large. Under such traffic con-
ditions, the values of C'(i,j) for (i,5) € R are set to
be equal to the value C'(3,}), instead of zero; (3,3) de-
notes the state on D with the minimum distance from
(3,7). The latter is implemented by increasing the val-
ues of b(4, j, i1, i3) for (i1, 42) € D, to include the weight of
the coefficients b(i,j, i1,13) for (¢1,42) € R. The approach
is briefly described in Appendix A; the resulting new co-
efficients b(i, , 41, 42) may be found in [22]. The values of
Gl (s, J) computed from (7), by incorporating the new coef-
ficients b(i, 4, 41, i3), present the monotone behavior of the
exact values C'(7, j) obtained from the solution of (6). A
typical behavior is shown in Fig. 8 (curve (2)). The smaller
the solution region R of (7), the larger the improvement
on the tightness of the bounds on D' achieved by utilizing
the increased values of the coefficients on the boundary D.
The values C, I (i, 9) computed from this approach are lower
bounds on the true values C'(4, §), since lower bounds on
C’(zl, i5) have been used for (41,4s) € R. This is formally
proven in Appendix A. The resulting improvement on the
bounds on the delay is shown in Fig. 6 (curve (3)).

Further improvement on C,o(z Jj) can be achieved by
boosting the values of C!(i,j) for (i,j) € R. This is
achieved by setting the values of C'(4,5) for (i,5) € R
to be equal to the value of C'(4, ), plus a term which in-
creases with i and/or j; this term is a lower bound on the
difference between the true value C’(z j) and the repre-
sentmg value C'(3,7). This approach is briefly described
in Appendix B; the values of the resulting increased con-
stants & (4, §), 0 < i< Ny, 0 <j < Ns, may be found
in [22]. Again, the values C} (i, j) computed from this ap-
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Fig. 9. Results obtained by incorporating the dominant system (section
IV). Upper (1) and lower (2) bounds on the low priority packets; Upper
(8) and lower (4) bounds on the high priority packets.

proach are lower bounds on C'(i, §), since lower bounds
on C'(iy,i2) for (i1,i2) € R are used. Curve (3) in Fig. 8
shows the improved values of C'(0, j) for 0 < j < 20. Curve
(2) in Fig. 6 shows the resulting lower bound on D*.
Finally, tight bound on ~D’ can_be obtained from
DYy = C},/(A'Y1,) where C!, and Vi, are computed by
using constant (nonzero) values for C'(i, j) and Y (3, j) for
(3,75) € R, as explained above. In the following it is shown
that D, isindeed a lower bound on D' which is tighter
than D} . Let D), denote the mean delay of the £-packets
induced by a stochastically dominant system which rejects
all packets appearing over unexamined intervals outside the
region R. Assuming otherwise identical systems, it is easily
established that A}, < A" and D!, < D'. Furthermore,

1 ~ CII0~ Czl’o
o N Ve T AT,

dom

AY

i i
:Ddom—z :Dlo

Thus, D;o <D

dom—

< D'. Similarly, a tight upper bound

~h ~
on D" is given by Dh = A_fll?t’ where C}! is the equiv-

alent to é‘}o for H-packets.

Curve (1) in Figs. 6 and 7 presents the obtained results
for Dfiom_ and Dé‘om_, respectively. These bounds on D!
and D" turned out to be the tightest obtained by any of
the bounding approaches applied for the case considered
here. These bounds on the mean delay results for each
priority class are shown in Fig. 9, for 0 < X < .90, and
Fig. 10 for 0 < A < 1. Notice that the upper and lower
bounds coincide for A < .90, in this case.

V. CONCLUDING REMARKS

The main contributions of this work may be summarized
as follows:

1. A general methodology has been developed for the
analysis of queueing systems with priorities, based on
renewal arguments, the theory of infinite dimensional
linear equations and a work conservation law.

50

40

30

mean packet delay

20

o

() 01 02 03 04 - 05 06 07 08 09 1
total packet rate

Fig. 10. Results as those in Fig. 9 over larger range of A.

2. The consistency property associated with a queueing
system has been introduced and the first consistent
gated/limited service priority policy (c-G/L) has been
studied analytically. Co

In addition, the potential applicability of the studied pri-
ority policy to approximately model the queueing behavior
of a DQDB station has been discussed in this paper.

Some comments regarding the comparison of the ¢-G/L
policy with some other relevant policies follow. Let Q}’,
(Q;}) denote the mean occupancy (queue length) of £-Q
(H-Q) when some policy p is in effect. The following in-
equalities are easily shown to hold regarding ¢-G/L, the
Head of the Line (HoL) and the Exhaustive/Limited one-
group (E/Lg) priority policies:

QI’}IOL S Qg/Lg S Q(I:I—G/L and
QZHOL z Q%}/Lg z Q‘I:—G/L (10)

The above inequalities can be proved by noting that they
bold for. all realizations of the buffer occupancy processes
(under identical arrivals for all policies) and thus they hold
for the expected values as indicated in (10). From (10) the
following may be easily established.

Diior, < Diyyrg < D)o/, and
!
Dior, > DIZ-E‘,/Lg > De_q/L

(11)

Notice that all the policies considered above are consis-
tent. The exhaustive/limited policy is consistent only if
limited one-group service is provided to £-Q; otherwise,
the same inconsistency problem arises as for the straight-
forward gated/limited priority policy (see Introduction).

Regarding the performance of the developed ¢-G/L pol-
icy relatively to the comparable non-consistent s-G /L one-
group (s-G/Lg) policy, the following may be established as
before.

QZ—G/L < QZ—G/Lg) QIC_G/L > Q;_G/Lg and thus

(12)

D?—G/L < D?—G/Lg) Di—G/L < Di—G/Lg
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Notice that priority policies ¢-G/L and s-G/Lg become
identical if the completion of the service of a group of £-

packets leaves £-Q always non-empty. Thus, DF_ /L

D:—G/Lg’ k € {I,h}, as the total traffic load, ), increases
to one, since L-Q will always be left non-empty in the limit.

The developed analysis technique is directly applicable
to a queueing system under a service policy which provides
limited one-packet service to £-Q and which is otherwise
identical to ¢-G/L policy. An additional assumption in this
case will be that the number of £-packet arrivals per slot
is geometrically distributed. In this case, similar equations
may be written. For instance, equation (5a) will still be
valid, while equations (5b) and (5¢) will need to be slightly
modified to account for the fact that the arrival slot of
the L-packets which has just been served will have to be
reexamined for possible additional packet arrivals, since
one packet and not one group is served at each visit to
L-Q. Due to the geometric distribution of the number of
L-packets arrivals per slot, no information will be required
regarding the number of £-packets from the same arrival
slot (group) already served.

Finally it should be noted that the developed methodol-
ogy for the study of priority policies (section I11.A) is valid
when the service time distributions of the customers are
identical without being necessarily constant and equal to
one. The latter is true since Theorem 1 is valid as long as
the customer service requirements do not depend on their
priority class. On the other hand, the mean delay bound
calculation procedure (section III.B) is based on the fact
that the service time is constant and equal to one. This
service requirement determines systems which may serve as
models of queueing systems appearing in slotted packetized
communication networks. When the service requirement is
other than one time unit, some other approach will need to
be followed for the mean bound calculation. The analysis
presented in section III.A will still be applicable provided
that the service time distributions of all types of customers
be identical.

A, CONSTANT BOUNDARY

The derivation of the increased coefficients b(i, 5, i1, iz) is
outlined in this Appendix. Let (i1,32) € D denote the point
on D which has the minimum distance from (iy,4,) for
(i1,12) € R (Fig. 4). Since i1 < i; and 4, < i3, the mono-
tonicity of C'(iy,i3) implies that €(é1,i3) = C'(i1,4s) —
C'(1,43) is non-negative. The system in (7) associated
with C'(4, j) can be written as follows.

N; N
Cl(i,g) = (i, 5) + 3. > bli, dyi1,i2)C' (61, 62)
i1=o iz:O
+ Z Z b(l, j, il, 12) [Cl(il, iz + E(i], 22)]
(ix,ia)Eﬁ
=6, )+ Y. Y. b(i,d i1, iz)e(in, iz)
(il,iQ)EE

Nl Ng .
+ D0 D b0, 4, i1, 82)C (i1, in)
11=04,=0
Nl Nz .
=800+ Y Y b6 d,i1,02)C (i, 62)  (13)
il=0 i2=0
where
) =N +Y, D b,4,i1,12)e(i, i2).
(i1,i2)eR

The coeflicients E(z, 4,11, 1) within the solution region R
are given by b(i,j,41,12) = b(4,J,%1,42), where 0 < i <
Ny, 0 < j < Ny, and (#1,73) € R — D. The coefficients
Z)(i,j, i1,4) for (i1,43) € D may be found in [22]. Note
that the above system of equations is equivalent to system
(6) with respect to the unknowns C'(i,j) for (4,5) € R.
Thus, system (13) has a non-negative solution if system
(6) has a nonnegative solution; the latter is the case under
stability conditions. Since & (i, j) > €'(i, j), system (13) is
a majorant for the one with constants equal to &'(,j) =
e'(4, 7) (call it system A). Thus, under stability conditions,
system A has a non-negative solution C_, which is upper
bounded by the solution C! of system (13) [23].

lo)

B. Boosting C'(i,j) For (i,5) € R

The derivation of the increased constants é(z, J) is out-
lined in this Appendix. Further improvement on C{o(i, 7)
can be achieved by boosting the values of C'(iy,43) for
(i1,42) € R. This is achieved by setting the values of
C'(iy,i3) for (i1,i2) € R to be equal to the value of
C'(31,42), plus 8' (i1, 32); (i, i) denotes the point on D with
the minimum distance from (1,4;); the additional term
6'(31,42) is a lower bound on the difference between the
true value C'(41,42) and the representing value C*(iy,i3).
That is,

C(i1,82) > C'(h1,52) + 6' (i, 52) (14)
where the nonzero values of §'(i1,32) may be found in [22].
The exact value of C'(i1, i2) is greater than the right hand
side of (14), since the additional cumulative delay §' (i1, 3,),
in excess of C’(il,iz), 1s a lower bound on the difference
between C'(iy,45) and C'(41,2). This bound represents, in
general, the delay contribution of the £-packet arrivals over
the initial unexamined intervals in Y (i1,4,) which are not
present in Y (31, 33). The cumulative delay of the additional
packets due to the longer length of Y (i1,42) compared to
that of Y'(i1,%2) is not contained in §' (i1, i5).

By substituting the above lower bounds on C'(4y,43) for
(f1,42) € R in the infinite dimensional system in (6)—with
e(4, §) replaced by €!(i, j)—an (N;+1)(Ny41)-dimensional
system of linear equations is obtained. Its coefficients
I;(i,j, i1,42) are identical to those derived in Appendix A;
its constants are increased due to the additional terms
8'(31,12). The new constants & (i, §) are given by

i—1+j+ M (G+MYME

6,9 =€G5+ > >

;=0 i2=0

b(z)j) ila iZ)al(il) 52))

(15)
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where 0 <1< Ny, 0<j < Ns.

Finally, it is easily justified that the solutions of the
system in (7) with constants as derived above and coef-
ficients b(4, j, i1, 43) as computed in Appendix A, are upper
bounded by the exact solutions computed from (6). The
latter can be shown by writing

C'(i,5) = C'(4,3) + 6'(3,9) + €(i, 5)

for (i,5) € R and applying the approach presented in Ap-
pendix A. A similar approach may be followed for the
derivation of the increased constants é" (4, §) [22].
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