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Channel Assignment Under a Conflict-Free
Allocation Policy

loannis Stavrakakis, Senior Member, IEEE

Abstract— In this paper, a random, conflict-free slot assign-
ment policy is adopted for the allocation of a common chan-
nel between two (non-communicating) stations. Although
this policy is inferior to the optimal periodic, fixed slot
assignment policy, it is shown than it achieves the perfor-
mance of that optimal policy as the variance of the packet
arrival process increases. The main advantage of the ran-
dom, conflict-free slot assignment policy is that it is simple
and always feasible unlike the optimal, periodic, fixed slot
assignment policy. Furthermore, the proposed policy is eas-
ily implemented in a dynamically changing environment; the
optimal such policy is derived and a simple strategy based
on a threshold test is developed for the identification of the
optimal such policy, when estimates of the traffic parame-
ters are available. No such strategy is known for the adap-
tation of the parameters of the optimal periodic, fixed slot
assignment policy. The developed analysis approach can be
applied, to a great extent, to a system with more than two
stations.

I, INTRODUCTION

The allocation of a common resource among a num-
ber of users is the central problem in a multi-user com-
munication network. Depending on a number of factors,
such as the user traffic characteristics, the packet deliv-
ery requirements and the topology, certain resource alloca-
tion schemes perform better than others. Random access
schemes, such as those in ALOHA and Ethernet networks,
generate packet collisions whose intensity increases as the
number of users decreases and the per user traffic increases.
As aresult, random access schemes are efficient under light
or moderate traffic generated by a large number of bursty
users. On the other hand, when the number of users is
small and the per user traffic significant and regular (as op-
posed to bursty), conflict-free resource allocation schemes,
such as polling and time division multiplexing, have been
shown to be superior. The literature regarding the previ-
ously mentioned schemes is large [1].

In this paper a common channel is shared by two dis-
tributed stations on a time slot assignment basis. The
stations are assumed to have no knowledge of the other
station’s state. Information regarding the common chan-
nel activity 1s assumed to be available to the stations, if an
adaptive channel allocation scheme is to be implemented.
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In this case, the channel activity information is utilized for
the estimation of the traffic in each station.

The stations are assumed to be synchronized and are
allowed to transmit only at the slot boundaries. A random
number z (0 < z < 1) generated at every slot boundary
is used for the determination of the channel allocation. If
z < B, for some 0 € # < 1, then the slot is assigned to
station 2: otherwise, it is assigned to station 1. According
to this policy, a slot is assigned to station 1 with probability
1— B and it is assigned to station 2 with probability 5. The
previously described random, conflict-free slot assignment
policy will be denoted by R(8) for station 1 and by R{1—23)
for station 2. The standard TDM policy which assigns
every other slot to a station will be defined as the fixed
slot assignment policy F [2], [3].

The implementation of the random, conflict-free slot as-
signment policy requires that the random number z be
available to all the stations in every slot. This can be
implemented in a number of ways, without establishing a
special communication link between the stations. For in-
stance, all stations could be equipped with identical and
synchronized random number generators. The slot bound-
aries may serve as the clocking times for the number gener-
ation process. Maintaining the synchronization of the slot
boundaries (and thus the random number generators) is re-
quired for the implementation of any distributed time divi-
sion multiplexing scheme. Thus, provided that the number
generators are simultaneously initialized, maintaining their
synchronization is easily achieved. When the allocation pa-
rameter 3 is updated based on traffic estimates, all stations
must determine the same value of § in every slot. This is
possible if all stations can obtain the channel activity infor-
mation, which is necessary for the determination of 3, and

‘the same algorithm is utilized. The random, conflict-free

slot assignment policy can also be implemented by using
one random number generator and one mechanism to up-
date [ located at the entity (one of the stations or a third
party) that provides for the slot synchronization. This en-
tity would generate z, update @ and take a decision as to
which station. should be permitted to access the current
slot. This permission could then be communicated to the
stations by setting certain flag(s) at the beginning of each
slot. , ‘

The random, conflict-free slot assignment policy has been
briefly considered in [4] for the purpose of demonstrating
the merit of the fixed slot assignment policy. It has been
shown in [4] that the optimal periodic, fixed slot assign-
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ment policy is superior to the random, conflict-free one,
under independent packet arrival processes; the optimal
policy is defined to be the policy which induces the mini-
mum mean packet delay. Then effort was concentrated on
the derivation of a feasible periodic, fixed slot assignment
policy which would achieve the optimal capacity alloca-
tion. The golden ratio policy was proposed in [4] as a policy
which could achieve the optimal channel allocation, at least
under certain traffic conditions. The difficulty in achieving
the theoretical optimal allocation is discussed in [4]. In ad-
dition to the latter problem, it is not clear how a feasible
periodic, fixed slot assignment policy would become adap-
tive to a dynamically changing packet traffic environment
and what the resulting performance would be.

In view of the above comments, the superiority of a feasi-
ble periodic, fixed slot assignment policy over the random,
conflict-free one becomes questionable, particularly when
a simple policy which is adaptive to packet traffic changes
is desirable. Furthermore, it is shown in the next section
(Corollary 1) that the (easily and accurately implemented)
random, conflict-free slot assignment policy achieves the
performance of the optimal periodic, fixed slot assignment
policy asymptotically, as the variance of the traffic ap-
proaches infinity! As a consequence, when the variance
of the traffic is large, the deviation of the random, conflict-
free slot assignment policy from the optimal periodic, fixed
one could be smaller than that of a feasible near-optimal
periodic, fixed slot assignment policy!

Under identical packet traffic conditions at both stations,
policy F (defined above) is the optimal periodie, fixed slot
assighment policy for the system of two stations. Before
policies F and R(3) are applied to the system of two sta-
tions (section III), their performance in terms of the in-
duced mean packet delay to a single station is investigated
in section II. Although the expressions for the mean packet
delay induced by policies F and R(8) may be found in [4]
or elsewhere for policy F, [2], [3], they are derived in this
paper (Theorems 1 and 2) by following a new, simple and
unified approach for both policies. This approach is di-
rectly applicable to the case when the system consists of
an arbitrary number of users, as well. Furthermore, al-
though the closed form expression for the induced mean
packet delay is obtained for an independent packet arrival
process 1n each station, the derivation approach is also ap-
plicable under Markov modulated packet arrival processes.
The resulting queueing models under policies F' and R(8)
have not been analyzed in the past under Markov mod-
ulated packet arrival processes. The optimal policy for a
single station in P = {F, R(8) for 0 < 8 < 1} is derived
and the excess capacity 1/2 — § required for policy R(f)
to achieve the optimal performance of policy F is estab-
lished. Numerical results (Figs. 4 and 5) show that the
excess capacity is insignificant for large variance, which is
a manifestation of the result (Corollary 1) that policy R(3)
becomes optimal as the variance of the packet arrival pro-
cess approaches infinity.

Notice that, unlike policy F, policy R(f) assigns a vari-
able portion of the channel capacity to a station, according
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to the value of 1 — 3. In the system of two stations, a larger
capacity assignment to one station will result in smaller
available capacity to the other station and, thus, the in-
tensity of the queueing problems in the latter station will
be increased. The performance of the system of two sta-
tions under policy R.(8) is investigated in section III; policy
ﬁ(ﬂ) is defined as the system policy which applies policy
R(p) to station 1 and policy R(1—43) to station 2. The op-
timal policy R(8;) (defined as the one which minimizes the
induced mean delay of a random packet) is derived and it
is compared with the fixed policy F; under policy F, policy
F is applied to each of the two stations. From this compar-
ison, the optimal policy in P = {F, R(g) for 0 < g < 1}
is established.

Although - policy F is optimal under completely sym-
metric traffic conditions, the performance of the optimal
policy ﬁ(ﬂo) is practically the same for large variance of
the packet arrival process. Thus, when the variance of
the packet arrival process is significant, both (easily imple-
mented) policies perform similarly. It is under asymmetric
traffic load that policy F looses its optimality and the op-
timal periodic, fixed slot assignment policy is, in general;
only approximately and non-easily implemented. Such a
near-optimal policy becomes more complicated if, in addi-
tion to the traffic asymmetry, the parameters of the traffic
vary in time. In this case, the slot assignment policy needs
to become adaptive. While an adaptive policy R(,B) is eas-
ily implemented through the adaptation of the probability
f (and a strategy is developed for this purpose, Corollary
4), an adaptive optimal or near-optimal feasible, periodic,
fixed slot assignment policy would be very complicated and
such a policy, to our knowledge, has not been proposed any-
where. For this reason, only the easily implemented policy
F is consider here for comparison to the optimal policy
R(f); under asymmetric and/or time varying traffic con-
ditions the optimal policy R(f) is shown to outperform
policy F in most cases. It should be pointed out that the
objective in this paper is not to show that the random,
conflict-free slot assignment policy is better than the peri-
odic, fixed one, but to study a simple, feasible and poten-
tially adaptive slot assignment policy which is also compa-
rable in performance to the theoretically optimal fixed slot
assignment policy whose practical implementation is not
always possible (especially under time varying traffic con-
ditions), or which may be only approximately implemented
at the expense of increased complexity and a possibly large
deviation from the optimal (theoretical) performance.

In section IV numerical results are presented and useful
conclusions regarding the relative performance of the poli-
cies are drawn. The effect of the asymmetry of the traffic
with respect to both the rate and the structure is also il-
lustrated. Finally, the conclusions of this work and some
extensions are presented in section V.

II. OPTIMAL POLICY IN P FOR A SINGLE STATION

In this section, the performance of the policies in P =
{F, R(B) for 0 < B < 1} is investigated and the optimal
policy in P is determined. No constraint on the available
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Fig. 1. The queueing system with service interruptions.
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Fig. 2. The equivalent queueing system.

capacity 1 — £ under policy R{f) is imposed; note that
under policy F the available capacity is always equal to .5.
This way, the capabilities of policy R(3), 0 < 8 < 1, are
fully investigated. An optimal policy in P determines the
best slot allocation policy for a particular station without
taking into consideration its possible negative effect on the
resulting policy which is applied to the other station of the
system. The policy in P = {f‘, ﬁ([)’) for 0 < 8 < 1}, under
which optimality is achieved for the 2-station system, is
investigated in section III.

Each station is assumed to be equipped with a buffer
of infinite capacity. The performance of a policy is evalu-
ated in terms of the behavior of the buffer associated with
a station operating under that policy. The packet arrival
process, {al};>o0, associated with station j, j = 1,2, is
assumed to be an idependent and identically distributed
discrete-time process, defined at the slot boundaries. This
process may deliver k packets at any discrete-time instant
with some probability g;(k), 0 < k < K for K > 1 (gener-
alized Bernoulli process). Let p;, 07 denote the mean and
the variance of this probability distribution. When the
buffer is non-empty, a packet leaves the buffer (is trans-
mitted) at the end of a slot assigned to the station by the
policy. Thus, the buffer behavior can be studied by consid-
ering a discrete-time queueing system with interruptions.
The following two thearems provide for the induced mean
packet delay under policies F and R(8), 0 < <1.

Theorem 1: Under stability (p; < 3, j = 1,2), the mean
packet delay induced by policy F is given by

L, % i=1,2 1)
— ] —
pi (1= 2p5)" ’
Proof: The queueing system formulated in the buffer of
station j operating under policy F is depicted in Fig. 1.
The server (which is capable of serving one packet per slot)
is assumed to be unavailable every other slot, giving rise to
a discrete time queueing system with periodic service inter-
ruptions. This queueing system can be studied by consid-
ering the equivalent statistical multiplexer shown in Fig. 2

o
Df =3

and applying the analysis presented in [5]. Let {al}i>o
denote a packet arrival process which delivers one packet
every other slot; let fi; = .5 denote the resulting packet
arrival rate. The packets delivered by {&f }i>o are assumed
to have priority over those delivered by {a] }i>q. Thus, the
delay of the packets from {@};»¢ is equal to one. The
two queueing systems are equivalent with respect to the
induced delay for the packets delivered by {a}}i>o. When-
ever the server is unavailable in the queueing system of
Fig. 1, the server serves packets from {a] }s>¢ in the queue-
ing system of Fig. 2. The packet arrival process {a]}i>o
together with the adopted priority policy in the queueing
system of Fig. 2 completely represent the interruption pol-
icy in the queueing system of Fig. 1. Let Dypiro denote the
mean packet delay in the queueing system of Fig. 2 oper-
ating under the FIFO (First-In First-Out) service policy.
The work conservation law [6], [7], [8] implies that
fii + Df g )

fi =+ 14

A simple proof of (2) is presented in the Appendix. The
FIFO queueing system of Fig. 2 has been analyzed in [5] un-
der Markov modulated generalized Bernoulli packet arrival
processes. According to this process, the state of an un-
derlying Markov chain determines the distribution of the
number of packet arrivals over a slot. It is easy to see
that the packet arrival process {@}};>0 can be described
in terms of an underlying Markov chain with state space
Sj = {0,1} and steady state and transition probabilities
given by 7(0) = #(1) = 1/2, p(0,0) = 0, p(1,1) = 0 and
distribution qz(x,k) of the number of packet arrivals, k,
given a certain state, z, given by (Z(O, 0) =1, %(1, 1) =1
When the number of stations is N, then the corresponding
Markov chain would have N states, N — 1 of which would
deliver one packet, representing the visits of the server to
the other stations in the original queueing system with ser-
vice interruptions.

The Markov modulated generalized Bernoulli model de-
scribing the independent per slot packet arrival process
{al}i>o (generalized Bernoulli) is based on a single state
underlying Markov chain with state space S; = {s} and
parameters m;(s) = 1, p;j(s,5) = 1 and ¢;(s, k) = g;(k).
By applying the analysis presented in [5] the mean buffer
occupancy, QEro, can be computed from the following ex-
pression

F —
DFIFO -

Qtrro = w(0) + w(l) (3)
where w(0) and w(1) are the two solutions of the following
linear equations

w(0) = w(0)p;(0,0) + w(1)p; (1,0)

+(1j + A(0) = 1)p; (0, 0)m; (0)

+(p + (1) = 1)p; (1, 0)m; (1)

+(1 — p)p;(0,0)p;(0,0) ,

+(1 = p)p; (0, 1)p;(1,0) 4)
and

0 = 2(y1; + i(0) — 1)w(0)
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+2(pj + 1(0) — 1)(1 — p)p;(0,0)

+7;(0)(2 + 5(0) — 3(u; + /1(0))

+2(p; + (1) — Dw(l)

+2(p + (1) — (1 ~ p)p; (0, 1)

(D@ + s(1) = 34 + (1)) (5)
where ji(k) is the mean packet arrivals delivered by {&5}221
under state k, k = 0, 1; s(k) is the second moment of the
cumulative packet arrival process under state k, k = 0, 1; u

is the mean value of the cumulative packet arrival process.
They are given by

A0)=0, =1, p=p+i,
s(0) = ch? + /LJZ-, s(1) = UJ‘? + (5 + 1)? (6)
By using (3)-(6) it can be found that

T4 p Uf
2 1 —2p;

QFro = (7)
Finally, (1) can be obtained from (7) by using (2) and
applying Little’s theorem (Dfpo = Qfiro/(1i + fi5))-
Theorem 2: Under stability (p; < 1—/), the mean packet
delay induced by policy R(f), is given by

L, _ o +ub

R —
D) =5 2pi (1~ p5 = B)’

=12 0<p<1

(8)
Proof: The queueing system formulated in the buffer of
station j operating under policy R(f) is depicted in Fig. 1,
where the service interruptions are now random. By fol-
lowing the approach used in the proof of Theorem 1, the
equivalent queueing system shown in Fig. 2 can be derived.
Under policy R(8), the packet arrival process {@] }i>0, de-
scribing the service interruption policy, is a Bernoulli pro-
cess with rate 3. The server is absent in a slot with proba-
bility 8 (Fig. 1) or a priority packet is delivered by {a] }i>o
with probability 8 (Fig.'2). Assuming that {af}i»¢ is an
independent process, both input processes to the queue-
ing systermn in Fig. 2 are independent processes. The mean
buffer occupancy, Qriro, is easily found to be equal to, [5],

s —
2(1 — p)

where p and s are the first and the second moments at the
cumulative packet arrival process given by p = p; + fi; =
i+ 8, s=p(1-0)+ 0']2 + (p; + B)2. Finally, (8) can be
obtained by applying Little’s theorem to (9).

QFiro = 1+

(9)

It 1s of interest to see how policy F compares with a pol-
icy R(f) for 0 < g < 1. Let P(B3) = {F, R(8)}. The fol-
lowing theorem provides for the optimal policy in P(1/2).

Theorem 3: Policy F is optimal in P(1/2) for p; < 1/2.
That is, it is the optimal among those policies in P which
assign half of the available capacity to the station under
consideration.

Proof: By setting 8 = 1/2 in (8), it is easy to show that

DF(1/2) = DT + g and thus D"(1/2) > D"
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Corollary 1: For fixed packet arrival rate p;(p; < 1/2),
the normalized deviation D of policy R(1/2) from the op-
timal policy in P(1/2) decreases monotonically as UJ2 in-
creases. Policy R(1/2) is asymptotically optimal for o7 —
Q.

Proof: From Theorem 3,
_ D®(1/2) - D¥ 1

D =
Dr 2(nj — 243 + 07)

and thus lim,, .o, D = 0.

Corollary 1 implies that, for sufficiently large a'Jz, policy
R(1/2) can be arbitrarily close to the optimal policy F.
The latter is intuitively expected since for very large 0'?
and p; < %, packet arrivals will occur mostly in bursts
of very large length [. The delay of the packets in the
burst will be approximately the same under both policies
since the law of large number implies that, on the average,
there will be needed approximately 2{ slots to transmit the
! packets under policy R(1/2) which is equal to the time
required by policy F.

Corollary 2: DE() is a monotonically increasing func-
tion of 3.

Proof: The above statement is easily justified by inspec-
tion (Theorem 2). Note that as 3 increases, the capacity
1 — 3 assigned to the station decreases and, thus, an in-
crease in the induced mean packet delay is expected.

Theorem 1 implies that policy F is optimal in P(1/2).
The latter, in view of Corollary 2, implies that F is optimal
in P4(1/2), where P4 (1/2) = {F,R(F) for § > 1/2} . The
following Theorem provides for the set of policies P_(85) =
{F, R(B) for 0 < f < 3§} in which policy R(f) is optimal.

Theorem 4: Policy R(8) is optimal in P_(5]). Policy F
is optimal in P4 (8g) where 83 is the optimality threshold
given by
o;
0< fy = - -
¢ (L= 2p)p + 207

1
<3 (10)
Proof: The existence of a threshold G as above is guar-
anteed in view of the monotonicity of DF(8) (Corollary 2)
and the fact that R(0) is optimal in P(0). The latter is
true since a policy which never makes the server unavail-
able (8 = 0) induces smaller delay than that under a policy
which makes the server unavailable every other slot. Let
53§ be the value of B which makes both policies in P(35)
optimal, that is D®(8;) = DT. By using (1) and (8) and
solving the previous equation with respect to 8} we obtain
the result.

From (10) it can be seen that G5 — 1/2 as 67 — oo.
That is, both policies become optimal in P(1/2) as 07 —
oo, which was shown before (Corollary 1). The following

corollary is evident in view of the previous theorem.

Corollary 3: The minimum excess capacity ¢ required in
order for policy R(f) to become optimal in P is given by
1

. 1 .
c:'é_/@()) /‘LJ<§
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2

Notice that ¢ — 0 as o7 — oo, which implies the additional

capacity is insignificant for large variance of the traffic.

I1I. OpTIMAL PoLICY IN P FOR THE COMMUNICATION
SYSTEM.

The developments of the previous section imply that the
random, conflict-free slot assignment policy R(8) can be
optimal in P at the expense of an additional capacity ¢
compared to that under policy F (Corollary 3). In a 2-
station communication system, the latter implies that an
optimal policy R(8) for one station could cause increased
queueing problems to the other station or even instability if
its packet arrival rate is larger than the assigned capacity.

In the case of an asymmetric system, the reduction in
the mean packet delay due to the adoption of an optimal
policy R(3) by one station may compensate for the in-
creased mean packet delay of the other station. Policy F
cannot be adjusted to asymmetric packet load conditions.
Under such conditions, the optimal periodic, fixed slot as-
signment policy is not policy F and it can be, in general,
only approximately implemented, [4]. Even if the traffic
par‘ameters were such that an implementation as suggested
1n [4] is possible and well performing, its complexity is sig-
nificantly larger than that of policies R{f) and F and its
adaptation to a dynamically changing traffic environment
For these reasons only policies R(ﬂ)
and F are considered as candidate policies which are easily
implemented. Furthermore, policy R(8) can easily become

probably more so.

adaptive through the appropriate selection of the parame-
ter 3. A strategy for the identification of the optimal capac-
ity allocation under policy R(8) is developed. By properly
adjusting g, policy R(f) is capable of handling temporary
severe queuneing problems or temporary queueing instabili-
ties and outperforming the (easily implemented) policy F.
These issues are investigated in this section.

Let P = {ﬁ‘, R(f) for 0 < B < 1}, where f‘Mand R(f) are
as defined in section [. An optimal policy in P is defined to
be the policy which minimizes the mean delay of a random
packet. The next theorem identifies the optimal policy in
{R(B) for 0 < B < 1}. The following lemma is useful for
the proof of that theorem.

Lemma 1: Let p = py +pe < land py < f < 1 — py.
Then,

(a) fi(B) is strictly increasing for 0 < 8 < 1 — y1 and
convex U

(b) f2(B) is strictly decreasing for ps < 8 < 1 and convex
U and k

(¢) G()is convex U for py < B < 1~ pq

where
 mp+oi
f1 (B) = =5
fo(B) = (—(ﬁ@ﬁ% (11)
and :
G(B) = fi(B) + f2(8) (12)

Proof: It is easy to show that the first and second deriva-
tives of f1(f) with respect to § are strictly positive for
0 < B8 < 1—p and, thus, f1(f) is strictly increasing
and convex U. Similarly, the first and second derivatives
of fo(B) are strictly negative and strictly positive, respec-
tively, for py < 8 < 1 and, thus, f5(0) is strictly decreasing
and convex U. Part (c) is true in view of the fact that both
functions f1(83) and fy(B3) are convex U, [9].

Theorem 5: Let u = p1 + ps < 1. The optimal policy in
{R(B) for 0 < B < 1} is policy R(f,), where

fo = arg{ min G(H)} |
and G(B) is given in Lemma 1. It turns out that fy is the
root in [0,1] of the second order equation

(c1—02)ﬁ2 +(2(1 = p1)ea — Zpgcl)ﬁ—f—pzcl——(l ;Ll) cg =0

(13)
where ¢1 = pi(1 = p1) + 0%, ca = po(l — pz) + 0.
Proof: The optimal policy in {R{8), 0 < 2 < 1} is the
policy R(ﬁ) which minimizes the induced mean packet de-
lay

DR(g) = £ -DE(B) +

1+ g

By substituting (8) and manipulating the resulting expres-
sion we obtain

#D( —B)

Dﬂm:%+miMme+ﬁwn
1
:§+M1+H2 )

Thus, minimizing DR([)’) with respect to § is equivalent to
minimizing G(f) with respect to 3. The existence of fo
is guaranteed since (3(f) is a convex U function (Lemma
1). By setting the first derivative of G(f) equal to zero
and manipulating the resulting equation, equation (13) is
obtained. . k

The above theorem provides for the optimal policy R(5,)
in {R(ﬂ) for 0 < B < 1} by identifying the optimal value
Bo. In a real, dynamically changing environment, it is of
interest to develop a simple mechanism capable of testing
whether a certain current policy R(f) is optimal or not
and, more 1mportant, to develop a strategy which brings
the system close to the currently optimal point of opera-
tion. The following theorem sets the ground for the devel-
opment of such a strategy.

Theorem 6: Let £ be the operation point (adopted policy
R(,@) ) of a system. The optimal point Sy (policy R(,Bg))
is such that

Bo < Bif R(B) > -1,
Bo > Bif h(B) < -1,
Bo=Bif h(B) = —1

where

pa<B<1l—py
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h(B)

Fig. 3. A typical function h(g).

and f{(0), f5(B) are the first derivatives of fi(8), f2(B)
given by (11). A typical function h(f) is shown in Fig. 3.

Proof: It is easy to show that f{(8) > 0, f/'(8) > 0,
F5(8) < 0 and fy(8) > 0 (see proof of Lemma 1). Then,

F(B)B) ~ FB)F(B)
VAG)R

Thus, h(B) is a strictly increasing function of 8 for uy <
B < 1— pi. Theorem 5 implies that G'(Bo) = f{(Bo) +
F5(Bo) = 0; therefore, fi(8o)/f1(Be) = —1. The latter
equation together with the monotonicity property of h(3)
complete the proof.

B'(3) =

>0, pe<f<l—p.

The following Corollary is obvious in view of the above
theorem.

Corollary 4: Let R(,B) be the currently adopted policy.
The optimal point 8y (policy R(8o)) can be reached by
the following strategy: S = { increase 8 if h(8) < —1,
decrease 3 if h(f) > —1, maintain 8 if A(8) = —1 }.

The above strategy generates a sequence of policies
{R(B;)}; which converges to the optimal policy in {R(f)
for 0 < 8 < 1}, ft(ﬂq)‘ Strategy S can be used for the
adaptation of policy R(f8) to the varying optimal policy
R(f), in a dynamically changing environment. For in-
stance, if the rates py and ps change, strategy S is capable
of adjusting the operation of the system so that optimal-
ity can be achieved, provided that some estimates of pi
and i be available. The mechanism for the generation of
such estimates, its goodness and the detailed implementa-

tion of strategy S are beyond the scope of this paper. The -

common channel is assumed to be capable of providing the
information necessary for the derivation of the estimates
and the identical update of the random number generators
(8). The following Corollary provides for some intuitively
expected results.

Corollary 5: Let p = py +po < 1 and 6 = (1 — py —
p2)(p1 — p2).

(a) If pt1 > pa, then Fy < —12- — #2282 if and only if o2 >

02 —0. If s > p1, then Bo > %— 1582 if and only if
02 > ¢? + 6. Equalities hold when the corresponding

conditions hold with equality as well.
_ 1

(b) If f = i then fo = 5 or fy < % or By > % de-
pending on whether ¢? = o3 or 0% > ¢ or 0% < 0%,
respectively.

Proof:

(a) The function h{3), defined in Theorem 6, takes the
following form for g = § — #1242,
p (L _pi—p A+od— 13
| = — =
2 2 A—I—a’%—;4%+;t1—;42

where A = (1 — p1 + p2)® + gt pto. Theorem 5 implies
that Bo < f = & — az#2 if p(L — Bazi2) 5 ] A
necessary and sufficient condition for the latter is that
02 — 13 < o} — p2+ py ~ po, or a? > 0% — 6 where
8 = (w1 — p2)(1 — p1 — p2). Clearly, if 02 = 0% — 6
then h(} — £5#2) = —1 and thus By = § — £342,
The case for pg > g1 can be studied in a similar way.
If gy = po then § = 0 and the result follows by apply-
ing part (a). This result can also be derived by noting
that 8 = 1/2 satisfies the second order equation in
(13), or by observing that, under these conditions, the
convex function G(8) in (12) is symmetric about 1/2
since G(B8) = G(1 — ) for s < B < 1 — puy.

Corollary 5-(b) implies that under symmetric load (u; =
g2, 07 = o2) the optimal policy R(f;) assigns the same
amount of channel capacity to each of the stations, which
is intuitively expected. Corollary 5-(a) implies that for
41 = pio the optimal policy R(y) assigns more channel ca-
pacity to the station with the largest variance. This is also

intuitively expected since a larger variance results in more
intense queueing problems (see (8)). Under equal packet
arrival rates, the optimal policy will try to equate the in-
tensity of the queueing problems (mean packet delay) in
the two stations by assigning more capacity to the station
with the largest variance. When gy > po and o = 03, at
least half of the remaining capacity 1 — p; — po (after the
capacity necessary for the stability of each of the queues
has been allocated) will be assigned to the heavier station
1 by the optimal policy, resulting in a capacity equal to
1—52u1+1—_£‘%@ or B < & — #1242 for station I, as
indicated by Corollary 5-(a). Notice that even if o = o2,
equality in the condition of Corollary 5-(a) is not achieved
since 6 > 0 (for 1 > p2 ) and thus fo < 3 — 1252 (strict
inequality). That is, even if the arrival processes have simi-
lar structure as far as the mean queueing delay is concerned
(07 = 02) and the stability of the associated queueing sys-
tems has been guaranteed, the remaining capacity is not
equally assigned since the latter would result in unequal
offered load to each queue, as determined by

1= A 12 =3
py + Ami=se Ty, doiimie

Given the identical structure of the two packet processes,
(1 > (2 implies that most of the packets (since g1 > 3 )
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will undergo larger mean delay (since (3 > (2 ) and clearl
an optimal policy should assign more capacity to statio
1. The more intense queueing problems associated wit
station 1 under equal allocation of the remaining capacit
I — p41 — ptg (since (4 > (3 ) can be reduced by a better be
having structure of the packet arrival process of station .
regarding the induced mean packet delay, compared to tha
of station 2 (67 < ¢3 ). Under the latter conditions, th
difference between the intensity of the queueing problerr
in the two stations will be decreased. When 67 = 02 — ¢
the structure of the packet arrival process of station 1 ha
become sufficiently better than that of station 2 to be pos
sible to balance the increase in the intensity of the queue
ing problems of station 1 due to the larger offered load
(1 > (2 ). Under the latter condition, the optimal polic
assigns equally the remaining capacity (6o = % — o),
If the structure of the packet arrival process of station 1
improves further (¢ < 02 —4), then more of the remaining
capacity will be assigned to station 2 despite the fact that
the corresponding offered load ({3) is smaller than that of
station 1 (8y > 3 — £5#2). Under the latter conditions
the structure of the packet arrival processes, rather than
their intensities, is the dominating factor for the optimal
allocation of the remaining capacity.

So far the optimal policy in {R(3) for 0 < 8 < 1} has

been studied and the optimal value By has been derived.
The optimal policy in P = {F, R(g) for 0 < 8 < 1} is
given by the next theorem.
Theorem 7: Let y1 + pz < 1. The optimal policy in P is
the optimal policy in {R(fF), 0 < 8 <1}, R(H), given by
Theorem 5, if and only if one of the following conditions is
satisfied:

(a)
1> 1/2 01 py > 1/2

(b)

2 2
Ul =0
> G ,
1—=2u  1—2pu, (Bo)
where (G(#) is given in Theorem 5.

Proof:

(a) If either py > 1/2 or pg > 1/2 is satisfied, then one
of the two queues would be unstable under policy F
and, thus, the optimal policy in P will be R(8), since
F would induce infinite mean packet delay to at least
one of the stations.

(b) The mean packet delay under policy F is given by

pF = M
B1 -+ pa

\Df’ + _“Z_DE ,
1+ po

where Df is given by (1), j = 1,2. The mean packet
delay under the optimal policy R(g) in {R(8),0 <
B < 1} is given by

= 22! R Ho
DR(B) = D +
(Po) H1+ o (fo) 1+ po

where Df(ﬁo) is given by (8), 7 =1,2. R(ﬂo) is opti-
mal in ' if and only if ER(,@o) < DF: By substituting

DZR(I —/(30))

w

@

T
L1 |

0.1 02 03 0.4 05 0.6 07
B

Fig. 4. Mean packet delay for a single station under policies R(8) and ¥
for g = 0.25; 1:02 = 2.5; 2:0% = 0.5; D :constant; DE(BY):convex U.

for DE(By) and D¥ and manipulating the resulting
expression we obtain the desired result.

Corollary 6: Policy F is optimal in P if p1 = pz, 08 = o2

and p1 + po < 1
Proof: The above statement can be proven in two ways.

(a) It is easy to show by direct substitution that the nec-
essary condition (b) of Theorem 7 is not satisfied.

(b) Corollary 5-(b) implies that the optimal policy in
{R(B), 0 < B < 1} for g = py and o} = 0% is
policy R(1/2). Under policy R(1/2), each station of
the system operates under policy R(1/2). The latter
policy is inferior to policy F, as proven in Theorem
3. Thus, the optimal policy in {R(8), 0 < f§ < 1},
R/(1/2), is inferior to policy F.

IV. NUMERICAL RESULTS

In this section, the theory developed before is applied
and some numerical results are obtained. These results il-
lustrate the relative performance of the fixed and the ran-
dom slot assignment policies and their dependence on the
traffic characteristics. In Fig. 4 the mean packet delay in-
duced under policies R(f£), 0 < g <1 and F is plotted for
mean packet arrival rate u = .25 packets/slot and variance
0% = 2p and 0? = 10p. Notice that DF(1/2) is always
greater than DY, as shown in Theorem 3. Notice also that
a small increase in the allocated capacity is sufficient for
policy R(8) to become optimal (.056 for 0 = 2u). As o
increases both DF(8) and DT increase as expected (see (1)
and (8)). Notice that as 02 increases the additional capac-
ity required for policy R(8) to become optimal decreases,
as implied by Corollary 1 ( .013 for 2 = 10u). Also, no-
tice that the optimality threshold 8§ is as computed by
(10) and it is always less than .5, which illustrates the op-
timality of policy F for g = .5; for § < g§ policy R(9) is
optimal as implied by Theorem 4.

In Fig. b similar results are shown for heavier traffic load
(4 = .45). Notice that the additional capacity required for
policy R(f) to be optimal is even smaller (.0025) since
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Fig. 5. Mean packet delay for a single station under policies R(8) and F
for pu = 0.43; 1:e? = 4.5; 2:02 = 0.9; DT :constant; Dﬂ(ﬁ):convex u.
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Fig. 6. Mean packet delay for the two symmetric stations under policies
R(F) and F 1:p = 0.43, 02 = 0.9; 2:u = 0.25, 02 = 0.5 DF .constant;
DR(B):convex U.

2 = 4.5 is large. Practically, both policies R(1/2) and
F are optimal for large variance. Notice also that if 55%
(for 0% = 4.5) of the channel capacity (as opposed to 50%
under policy F) can be allocated to the station, then the
induced mean packet delay under R(.45) is about half the
one induced under policy F (52 versus 100 slots). The lat-
ter observation implies that the theoretical advantage (op-
timality) of policy F over policy R(1/2) may disappear in
practical cases, if some additional capacity is offered to the
station. The performance improvement may be tremen-
dous at the cost of utilizing slightly larger capacity. This
cost may be insignificant when the rest of the capacity is
under-utilized (for instance, under asymmetric traffic situ-
ation). The latter issue is discussed later (Fig. 7 and 8).

In Fig. 6, the mean packet delay in a 2-station commu-
nication system under policies R(#), 0 < 8 < 1 and F is
plotted, for the case of symmetric traffic load. Notice that
the optimal policy in {ﬁ(ﬂ), 0 < B < 1} is policy R(1/2),
as implied by Corollary 5-(b). The optimal policy in P is

1

ff:\ ///_

)
2
= 401
a
30f J
201 J
10} 4
9 r -
0.4 0.45 05 0.55 0.6 0.65

Fig. 7. Mean packet delay for the two stations under policies R(A) and
Ffor;q: ,;42_4101-602_8201_302_430f-3
0% =4 401 = 10, 02 = .1; D¥:constant; DR(B):convex U.

policy F, as implied by Corollary 6.

In Fig. 7 similar results under asymmetric traﬂic load
are shown. For y; = .3, ¢ = .6 and p2 = 4, 02 = .8, the
asymimetry in the rate and structure of the packft arrival
processes is not strong enough to render policy R() op-
timal. For 07 = 3 and 03 = 4, policy R(Bo) has clearly
become the optimal policy. This is due mostly to the
structure (variance) of the packet arrival processes rather
than the difference in the rates. The favoring effect of the
structure on policy ﬁ(ﬂo) is due, first, to the larger vari-
ance of the traffics, which under symmetry would bring
policy R(f;) very close to the optimal policy F (Corol-
lary 1) and, second, to the larger difference in the vari-
ances which further emphasizes the asymmetry of the traf-
fic (since 02 > o% and pp > 1 ) and certainly results in
the inequality /condition (b) of Theorem 7. For ¢? = 3 and
02 = 4, the asymmetry in the packet arrival processes, due
to the asymmetry in the packet arrival rates, is balanced by
the non-coherent (i.e., if 7 < po then o2 > 02 ) asymme-
try in their structure (variance). As a result, the two packet
arrival processes behave as being almost symmetric, with
respect to the intensity of the resulting queueing problems,
and policy F becomes optimal. For ¢? = 10 and o2 = .1,
the non-coherent asymmetry in the structure of the pro-
cesses is strong and dominates the asymmetry in the packet
arrival rates. Thus, the packet arrival processes behave as
being asymmetric in a direction opposite to that implied by
the packet arrival rates. As a result policy R(8;) becomes
optimal again due to this strong asymmetry. Notice that
Bo = .44 which implies that more capacity (.56) is assigned
to station 1 despite the significantly smaller packet arrival
rate (.3 versus .4).

In Fig. 8 similar results are presented. The packet arrival
rates are assumed to be asymmetric with gy = .1 and pg =
45 . The large asymmetry in the rates together with the
coherent asymmetry (i.e. if 41 < po then o7 < ¢ ) in the
structure of the packet arrival processes (¢? = 1, 0% = 4.5)
render policy f\’,(ﬁo) optimal. The asymmetry in the rates
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Fig. 8. Mean packet delay for the two stations under policies fl([j) and F
for u1 = .1, ug = .45; lza% =1, a% = 4.5; 2:0% =1, a% =1 3:0? =12,
a% = .45; D¥ :constant; DF(8):convex U.

H DF
2 1 24936.0 H D¥
4 6.2 418365
6 69.1 6 | 984.0
8| 1064.0 8| 10.6
10 6.4 10| 16.8
20 5.7 201 197
30 6.5 30 | 31.0
40 6.7 40 | 41.3
50 7.6 50 | 39.5
100 10.8 100 | 103.0
150 14.3 150 | 124.9

(a) (b)

Table I. Mean delay results under the periodic, fixed slot assignment pol-
icy (DF) for various values of the desired implementation horizon H: (a)
under fixed traffic conditions (the mean delay under the random policy is
equal to 9.9); (b) under varying traffic conditions (the mean delay under
the random policy is equal to 8.2).

is capable of rendering policy R(f) optimal even if the
structure of the two processes is symmetric (62 = o2 = 1).
When the asymmetry in the structure is non-coherent (i.e.,
if g1 < pg then ¢? > o2 ) and sufficiently large then its
counter-effect will have a balancing effect on the two queues
which will show a symmetric behavior and render policy F
optimal (¢f = 12, o2 = .45).

The following discussion! (along with the results shown
in Table I) is presented to illustrate the complexity in the
implementation of the periodic, fixed slot assignment pol-
icy, its dependence on the implementation horizon and
its potential inefficiency when traffic conditions change.
The optimal capacity allocation determined by the ran-
dom, conflict-free slot assignment policy can be implemented
within a horizon of one slot, by simply setting properly the
value of #. This is not the case with the optimal periodic,
fixed slot assignment policy, except from special cases as

!Recommended during the reviewing process
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such as when F is the optimal policy. Suppose that r;
(0 < r; < 1) of the total available capacity needs to be
allocated to station 1, as determined by the optimal pe-
riodic, fixed slot assignment policy, [4]. One simple way
to implement (approximately, in general) this allocation
is by selecting a desired implementation horizon H (in
slots) and allocate ny = Int{r;H} slots to station 1 and
ny = Int{(1 — r1)H} slots to station 2, where Int{z} de-
notes the largest integer which is smaller than z. After
H' = ny + n, slots the implementation of the next horizon
is initiated. Thus, the actual implementation horizon H’
is in general smaller than the desired one (H). The n; and
Ny slots are provided in an alternating fashion. In general,
Py =n1/H' #ry and v, = ny/H' # ro. That is, the actual
allocated capacity within a finite actual implementation
horizon H' is different from the optimal. In general, it is
impossible to achieve the theoretical allocations under the
periodic, fixed slot assignment policy [4]. Table I-(a) illus-
trates the impact of the desired implementation horizon H
on the induced mean delay. The results are based on sim-
ulations run for 100,000 slots; results remained unchanged
for larger simulation time. The packet arrival processes to
the stations are assumed to be Bernoulli with rates p; = .3
and pg = .6. Notice that when H is sufficiently small, the
large deviation of the actual capacity allocated to a sta-
tion from the optimal, may result in an allocation which is
below that required for the queue stability. In such cases,
the mean delay results will become unbounded (H = 2 and
H = 8 in Table I-(a)).

For sufficiently large H, the allocated capacity approaches
the optimal one. The average delay increases, though, due
to the fact that after the slot alternation period is over,
the remaining of the actual implementation horizon is al-
located to the heaviest station. As a result, packets of the
lightest station may have to wait for an increasingly (as
H’ increases) large sequence of slots, before the slot alter-
nation period is initiated in the horizon that follows and
these packets be given a chance. The induced mean delay
under the random slot assignment policy is equal to 9.9
slots. Notice that it is higher than the lowest ones shown
in Table I-(a) (for H = 20 and H = 4), obtained under
the periodic, fixed slot assignment policy. This difference
decreases as the variance of the arrival process increases,
as it has been proven.

In Table I-(b), similar results are presented when the
rate of the arrival processes changes in the next slot with
probability p = .8. When 1t changes, it takes the value .8
with probability ¢ and the value .1 with probability 1-q;
q is selected so that the long term packet arrival rate for
stations 1 and 2 be equal to u3 = .3 and py = .6, same with
those considered for the results shown in Table I-(a). To
avold introducing the rate estimation error, it is assumed
that the new rates are known to both stations under both
policies. Notice that the random slot assignment policy
can implement the optimal capacity allocation in the next
slot based on the current rates. This is not the case with
the periodic, fixed slot assignment policy which requires
an actual implementation horizon H’. As a result, the lat-
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ter policy does not seem to be capable of responding as
efficiently to fast rate changes. According to the results
shown in Table I-(b), the random slot assignment policy
induces the lowest mean packet delay, which is equal to
8.2 slots. Furthermore, notice that for the desired imple-
mentation horizon H which induces the lowest mean delay
under constant packet arrival rates (H = 20 and H = 4
in Table [-(a)), the resulting mean delay is far from the
minimum under traffic changing conditions (H = 8 in Ta-

ble I-(b)).

V. CONCLUSIONS

In this paper, a random, conflict-free slot assignment
policy, R(5), has been considered for the allocation of a
common resource (channel) between two distributed enti-
ties. This policy has been analyzed and its performance un-
der both symmetric and asymmetric traffic conditions has
been investigated. The effect of both the rate and structure
(variance) of the packet arrival process on the performance
of policy R(3) has been fully investigated. Although the
standard TDM policy, F, which would assign the slots to
the stations in a deterministic and periodic fashion, per-
forms better under symmetric traffic load, it is inferior to
policy R(ﬂ) in most practical cases. The latter has been
shown to be usually the case under asymmetric (regarding
the rate or the structure) packet traffic load. Furthermore,
even if the traffic load is considered to be symmetric, policy
F fails to adjust the capacity assignment to temporary traf-
fic fluctuations which are present in most practical cases.
Policy R(8) can easily adjust the capacity allocation to
the current traffic conditions. A very simple strategy has
been developed for this purpose which achieves the optimal
capacity allocation under policy R(#). When more than
two stations share the common channel the performance
of the corresponding policies F and R(8) can be evaluated
by following the same approach. The mean packet delay
for a single station under the corresponding policy R(f) is
given by Theorem 2, where the capacity 1 — § assigned to
the station is properly adjusted. Under policy F the mean
packet delay can be obtained by following the approach
shown in the proof of Theorem 1 (or can be found in [4]).
Notice also that the proof of Theorems 1 and 2 provide for
a method for the derivation of the mean packet delay under
both policies when packets arrive to the stations according
to a Markov modulated process.

To summarize, the major contributions of this paper are
the following:

(a) A simple unified method for the calculation of the
mean packet delay induced by the fixed (TDMA) and
the random, conflict-free slot assignment policies has
"been developed which, unlike other methodologies, is
applicable to similar system under dependent packet
arrival processes described by a Markov Modulated
model (see proofs of Theorems 1 and 2).

Although policy F outperforms policy R.(3) under sym-
metric traffic conditions, it has been shown that the
difference in performance is insignificant in most prac-

(b)
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tical cases when the variance of the traffic is signifi-
cant; the two policies are asymptotically the same as
the variance of the traffic approaches infinity. Thus,
the superiority of the periodic, fixed slot assignment
policy over the random, conflict-free slot assignment
policy, shown in [4]; could be only of theoretical inter- -
est, in view of the asymptotic optimality of the ran-
dom, conflict-free slot assignment policy shown here
and the fact that the optimal random, conflict-free
slot assignment policy is always feasible (as opposed
to the optimal periodic, fixed élot assignment one [4]),
and 1t is easily become an adaptive one.

A simple strategy, based on a threshold test, has been
developed for the adjustment of the optimal random,
conflict-free slot assignment policy to dynamically chang-
ing traffic conditions. Under such conditions, it has
been illustrated that the random slot assignment pol-
icy may outperform the periodic, fixed slot assignment
policy, due to its fast adaptability to the changing traf-
fic conditions.

The impact of the structure (variance) of the arrival
processes on the performance of hoth policies has been
investigated in detail. Numerical results have illus-
trated that the structure of the arrival process can be
the major factor for the determination of the optimal
capacity allocation, which may turn out to be against
expectations based on the rates.

(¢)

(d)

APPENDIX

A very simple proof of equation (2) can be obtained
based on the observation that the packet service time
(or the work associated with one packet) is determinis-
tic and equal to 1 slot. Since the queueing system is
work-conserving E{L°} = E{L}o} where E{L*} de-
notes the expected value of the work in the system and
E{L{mo)} denotes the corresponding quantity associated
with the equivalent system operating under the FIFO ser-
vice discipline. Since each unit of work in the system cor-
responds to one customer, the previous equation implies
that E{Q°} = E{Qfpo} where E{Q°} denotes the aver-
age number of customers in the system and Qfro denotes
the corresponding quantity associated with the equivalent
system operating under the FIFO service discipline. From
Little’s theorem it is obtained that E{Q"} = fi; 1 + p; Df,
E{Q¥wo} = (5 + u;)Driro. Equation (2) is easily ob-
tained from the above.
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