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Abstract

This paper presents a flexible traffic model which is capable of describing traffic dynamics on a variety of time-scales
associated with broadband packet networks such as ATM. The model is applied to the study of Non-Deterministic Periodic
(NDP) sources as well as Variable Bit Rate (VBR) video sources in which cells are delivered at a sub-frame level referred to
as a slice. An efficient numerical technique is presented for the study of a finite-capacity multiplexer under an input process
determined by the superposition of N of the proposed traffic models. Numerical results support the assertion that the
time-scales at which variations in a cell arrival stream occur have a significant impact on multiplexer performance, thereby
illustrating the relevance of the proposed modeling and analytical techniques.
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1. Introduction

The desire to accommodate a diverse mixture of user traffic in a Broadband Integrated Services Digital
Network (B-ISDN) has led to an intense concentration of research efforts on technologies which allow for
traffic multiplexing, such as the Asynchronous Transfer Mode (ATM). Performance evaluation of statistical
mutltiplexers under a variety of input processes and/or service policies (see [1-6] and the references therein) has
been essential in determining the achievable effectiveness of statistical multiplexing.

The development of efficient congestion control and call admission procedures is an area in which
multiplexing analysis and network traffic characterization continue to play an important role. Consequently, the
formulation of accurate traffic models which lend themselves to analytical studies is a topic of ongoing research.
In a high-speed integrated services networking environment, accurate traffic models should have the ability to
model variations in the input cell arrival process on a variety of different time-scales. These time-scales may
represent time-intervals (in network time slots) over which logical information blocks are delivered to the
network.
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For instance, consider a Variable Bit Rate (VBR) video coder [7-9]. Bits generated over a frame form a
logical block of information which could provide a basis for the description of the generated traffic as well as
the desirable QoS. Notice that if the VBR video coder pre-buffers and uniformly distributes cells in each frame,
then the cell activity over a frame can be described in terms of a fixed cell-arrival rate [9], and a relevant
time-scale may be that of a video frame. If pre-buffering at the frame level is not feasible (or desirable), due to
the induced frame delay, pre-buffering and uniform spreading over a shorter time-scale (referred to as a slice)
may be necessary. In this case, the cell arrival rate over a slice will be constant and changes in the cell arrival
rate process will occur within the frame at slice boundaries. Note that the absence of frame-level pre-buffering
has been shown [10-13] to give rise to cell arrival autocorrelation functions which are pseudo-periodic, as
opposed to the monotonic autocorrelation functions arising from frame-level pre-buffering schemes [7].
Packetized voice provides yet another example of a common traffic source time-scale when one considers the
duration of time required to generate enough bits to form a cell. The resulting time-scale is then representative
of the minimum cell inter-arrival time associated with the source.

When traffic sources such as those mentioned above are multiplexed onto a network link of capacity C, the
time-scale T' associated with each source can be seen as the one at which the network perceives events of
interest (i.e. frame, slice, cell arrivals) to occur, and can be easily expressed in units of slots. For instance, when
a voice source generating information at a peak rate of r bits/sec is multiplexed onto an ATM link with
capacity C bits/sec, a relevant time-scale for the source is given by the ratio C/r.

In this paper, a stochastic traffic model is presented which is capable of capturing the cell arrival dynamics
associated with a wide range of deterministic time-scales. The model is based on an underlying m-state periodic
Markov chain in which state transitions occur every T, > 1 time slots. While in a given state, cells are generated
independently from slot to slot according to an arbitrary distribution. Two time-scales of length 7, and mT, may
be easily identified in this traffic model. A computationally tractable performance analysis of a finite-capacity
multiplexer is developed under input traffic determined by the superposition of N such traffic sources. The
technique involves the decomposition of a potentially large irreducible Markov chain into smaller irreducible
Markov chains whose dimensionality is independent of m and T,. Since the time-scales T, and mT, are expected
to increase as the network speed increases, this decomposition is central to the tractability of the analysis
approach in a high-speed networking environment. The model is applied to the study of Non-Deterministic
Periodic (NDP) cell streams as well as to VBR video which is multiplexed at slice level.

In the following section, the proposed traffic model is described in detail in terms of a generalized periodic
Markov chain and the finite capacity multiplexer is analyzed in discrete time. Subsequent sections will present
the applications mentioned above, as well as a discussion of relevant past work.,

2. Source characterization and queueing analysis

In the next subsection the proposed traffic model is described in terms of a generalized periodic Markovian
source and the generated traffic is characterized. The resulting sub-period-level autocorrelation function for a
source is derived in Section 2.2. In Section 2.3, the superposition of N such traffic sources is considered, and
the aggregate traffic is described. Finally, a finite-capacity multiplexer fed by N generalized periodic Markovian
sources is studied in the last subsection. The fundamental time unit is taken to be the transmission time of the
fixed size cell, or the duration of a time slot on the output link as denoted by A (in seconds).

2.1. Description of the proposed traffic model

Let {m*, T¥, ff(-)|1 < j < m"} denote a set of parameters associated with the kth traffic source, 1 <k <N,
where N denotes the total number of traffic sources to be multiplexed and the parameters are defined as follows:
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Fig. 1. The relevant time-scales associated with the GPM source.

m*:  The number of states in an underlying periodic Markov chain associated with the kth source. Let 7/
denote the stationary probability that this periodic chain is in state i, and p{") denote the n-step
transition probability from state i to state j.

T':  An integer constant (called sub-period) which represents the sojourn time (in slots) for each state in the
periodic Markov chain. In other words, a transition occurs every T* time slots (or %A seconds), and the
kth source has a period of length T* = m*T* slots.

f#(-) : The probability mass function (PMF) for the number of cells generated in each slot by the kth source
when that source is in state j, 1 < j< m*. A¥j will denote the mean number of cell arrivals per slot for
source k in state j, and N} will denote the maximum number of such arrivals. N} takes values from Z°,
where Z° denotes the set of non-negative integers.

A traffic source described in terms of {m*, T*, f]"( M1 < j< m*} will be referred to here as a Generalized

Periodic Markov (GPM) source. It may easily be established that the mean arrival rate for source & is given by

)\k='—,: mZ/\f (1)

For the remainder of the paper, it will be assumed that all sources have the same sub-periods; hence, T will
be denoted simply by T,. In addition to the parameters defined above, let c* (referred to as the initialization
time) denote the time instant, deﬁned at the beginning of a sub-period, at which the kth source was activated
(from state 1), assuming that 1 < c* < m*.

Let A% denote the number of cells arrived over sub-period n, n> 1 (interval [(n — 1) , nTD); yf will
denote the mean arrival rate over this interval. Arrivals are assumed to be declared at the end of the time slot
over which they occur and the mean arrival rate over the nth sub-period is given by

yE £ E{A*} = A* where j=nmod (m*+1)—c¥+1, 2)

and n is assumed to be greater than or equal to c*. Clearly, if n < c*, then the source has not yet been activated,
and y}=0.

Note that the proposed source is capable of modeling the cell arrival dynamics of integrated services traffic
sources at time-scales of one, T,* (sub-period) and T* (period) slots (see Fig. 1). Since T, can be greater than or
equal to 1, the proposed traffic model is capable of capturing variations in the input process on many different
time-scales. When T, = 1, for instance, the proposed source model reduces to the periodic Markov chain model
considered in [14], where the first and second moments of the queue length process are determined for an
infinite-capacity queue in discrete time.

2.2. The sub-period-level autocorrelation function

In this section, the cell arrival autocorrelation function for a GPM source will be considered. In order to
simplify notation, the source index k will be dropped for all quantities associated with the GPM model. The
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normalized autocorrelation function R(n), sometimes referred to as the correlation coefficient at lag n, where n
is indexed at sub-period boundaries, is defined as

E{A; A ..} —E{A,}
E{A2} -E*{A,)

R(n) £ (3)

This function is derived in Appendix A for the case of Bernoulli arrival processes within each sub-period,
and is given by the expression

; T, ;
R(n) = - 7 1';1 , (4)
}:A,?+—(A—— ):A,?) - A
T, m

i=]

where j= (i +n— 1) mod(m) + 1, and 8, is the Kronecker delta.

The autocorrelation function for cells/sub-period will not be used to characterize the GPM sources until
Section 3.2, where the arrival PMF f(-) for each sub-period is assumed to be Bernoulli. For arrival processes
other than Bernoulli, the expression for &2 given in (25) will be different and Eq. (4) will require slight
modifications.

2.3. The superposition of N GPM traffic sources

Before considering a statistical multiplexer fed by a number of the proposed GPM sources, the aggregate
input traffic, which is given by the superposition of the individual sources, will be characterized. A useful
property of the GPM traffic model is that it is closed under superposition. That is, the superposition of N GPM
sources, of equal sub-periods 7;, is also a GPM source with an underlying periodic Markov chain of some
period M. Note that since the initialization time c* is defined at sub-period boundaries, it is implicitly assumed
that the sub-period boundaries are synchronized among all N sources. The sources are said to be completely
synchronized when ¢' = --- =¢".

It is easy to show that the period, M, of the GPM source associated with the aggregate source is given by

M=LCM{m', m*,...,m"}, (5)

where LCM (-} denotes the least common multiple of its argument.
The PMF fj(-) associated with state j of the aggregate GPM source, 1 < j < M, is easily evaluated through
the N-fold convolution

fi=fhieflnoxflh, (6)
The quantities a* are functions of both j and the initialization constant c*, and are given by
jtct—1 if 1 <j<ct,
ak=(j-ct+1 if c*<j<ct+m*, (N
j—mt=ck+1 if ck+m<j<M.

2.4. Multiplexer performance analysis

In this section a First-Come First-Served (FCFS) multiplexer fed by N GPM sources (Fig. 2) is analyzed in
discrete time; its buffer capacity is assumed to be finite and is denoted by B.
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Fig. 2. The finite-capacity queueing system.

It is assumed that cell departures occur before new arrivals are counted at the end of each time slot. The
system state is defined at sub-period boundaries in terms of the quantities (g,, x,), where g, represents the
queue length (multiplexer occupancy) at the end of sub-period k (time instant £T,), and x, denotes the state of
the aggregate source at that time. It is easy to establish that the stochastic process {g,. x;}, 5 is a Markov chain
with state space {(i, /)10 <i < B, 1 <j< M}, where i (j) denotes the current state of g, (x,). The probability
that the Markov chain {g,, x,},,, moves from state (i, ;) at time k (defined at sub-period boundaries) to state
(i', ) at time k + 1 will be denoted by p(i, j, i, j). The corresponding transition matrix is sparse due to the
simple periodic structure of the input process {x,}, . , and, in fact, a fraction of (M — 1)/M of the total number
of elements are zero.

By mapping p(i, j, 7, j), for 0<i, ¥ <B and 1<, f <M, into p(l, I') through the transformation,
I=(j—1XB+1D+iand I'=(7 —1XB+ 1)+, the resulting transition matrix, P, with elements p(J, I'),
takes the canonical form of an irreducible periodic Markov chain of period M [15], given by

[0 P, 0O .- 0
0o o0 P, - 0
Pol i (8)
0 0 0 - P,
P, 0 0 - 0

The following proposition allows for the easy determination of the square matrices P, 1 <j< M, which are
of order (B + 1).

Proposition 1. Given some initial value for q, at the beginning of the (k + 1)st sub-period (system state is
(‘Ik i, x, = J)), the finite queue will evolve exactly as an Geo/D/1/B queue, with i.i.d. batch arrivals given
by f;, over the (k + 1)st sub-period (interval [kT,, kT, + T,). O

In view of Proposition 1, it is easy to see that the matrices P; are simply the 7.-step transition probability
matrices for a finite queue, under the ii.d. batch arrival process specified by f; ( ), where 1 <j< M. The
one-step transition probabilities p,(i, i "), 0<1i, i’ <B, are given below.

ForO0<i<B and max(0, i—1)<i<B—1,

Pj(i’ ‘)=fj(l —i+1) +fj(0)' Livizop (9)
where 1 ¢ ) denotes the indicator function.
ForOgig<Band i =

)= T (), (10)

I=B—i+1
where NJ denotes the maximum number of arrivals, as determined by (6), when the source is in state j. The
elements of P;, denoted p}’s)(i, i), can now be calculated by using the recursion

P, ) = X pT (i, 1) - py(L, 7). (11)
i
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It is important to note that the dimensionality of the transition matrix P, which is M(B + 1) X M(B + 1),
prohibits the solution of systems with input processes having large periods, and consequently, large values of
M. The following theorem, however, provides for the exact stationary solution of {g,, x;},,, by solving M
Markov chains with transition matrices of order (B+ 1) and thus, significantly reduces the numerical
complexity involved in calculating the stationary probability vector of the transition matrix in (8). Its proof can
be found in [16].

Theorem 2. The finite irreducible periodic Markov chain, with transition matrix given by (8), has a unique

stationary probability vector, w= (1o, - -+ 7y ), given by
7
= (i) Sk (12)
M o
my
where 7, is the unique stationary probability vector for A,=P,---P,,-P, ---P,_ (i=2,...,M), and

A,=P,---P,. O

Upon solving for &= (g, -+ 75, ) using Theorem 2, the queue length probability distribution at
sub-period boundaries is easily evaluated as

q(k) = hm Pr{q 277,”, =0,...,B. (13)
j=1
Let 7, ; denote the stationary probability that the system is in state (k, j) at an arbitrary time instant (slot
boundary). These quantities are derived in Appendix B through the use of a renewal /regenerative theory-based
approach. The queue length distribution (k) at arbitrary time instants can now be computed as in (13). Note
that when T, = 1 (sub-period is equivalent to the slot), the queue length distribution at arbitrary times is simply
§(k) = q(k) for 0 < k< B.
The cell-loss probability L is also derived in Appendix B using the same approach followed for the
derivation of 7, ;, and is given by

L2 Pr{ arriving cell is dropped}
T Z 2 Z ): Z k(1 ) f(B+H1—i+k)m, ;, (14)
S =0 f=1n=1i=l k=K,

where I, = max(0, B+2~N), K,=max(0, / —B—~1), K,=N—B—1+i and A denotes the total offered
load, which is given by

A= i A (15)
k=1

3. Application 1: Non-Deterministic Periodic (NDP) sources

An important characteristic of high-speed packet networks such as ATM, which is not considered in the
relevant performance studies of [1-6] is the potentially large disparity in the relative speeds of an output link
and an input source. This disparity, or speed-up factor — commonly appearing at the network edges where a
number of sources are being multiplexed onto an output link — results in successive cells from an active source
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being spaced by the interval of time required to generate enough bits to form a cell. The speed-up factor
m* = C/r*, where C is the link speed (in slots/sec) and r* is the source speed is also relevant in
inter-networking, where a number of slower packet networks of various speeds are connected to the B-ISDN
through a common gateway. In addition, it has been shown in [17] that, in a networking environment where
input and output lines are of the same speed, source periodicities like those mentioned above give rise to cell
arrival streams within the network which also exhibit significant periodicities. This observation has been used in
[18] to justify the adoption of periodic input cell arrival streams for the simulation study of an ATM switch.

One way to study the speed-up factor analytically is by considering the multiplexing of deterministic periodic
sources [19,20], which implies that all of the input sources are Constant Bit Rate (CBR). A more realistic traffic
model for high-speed packet networks such as ATM would be a Non-Deterministic Periodic (NDP) model in
which cells are generated every m* slots according to a stochastic process, thereby allowing for a potential
statistical multiplexing gain.

A relevant question that arises when considering the multiplexing of NDP sources is whether or not the
aggregation of such sources can be approximated by any of the commonly used traffic models. For instance, it is
widely accepted that the superposition of a large number of uncorrelated cell arrival streams can be
approximated by a Poisson process, which allows for a simple analytical solution to many queueing problems.
However, this limiting assumption may not be valid when the cell arrival processes have a periodic structure. In
fact, it will be shown that for the superposition of NDP sources, the Poisson assumption can be either
pessimistic or optimistic, depending upon the operating conditions.

A correlated traffic model in which cells are generated at a minimum spacing of s* slots is considered in [21]
and [22]), where the cell arrival process is governed by an underlying 2-state Markov chain. The speed-up factor
s¥, which is equal to the unit step transition time of the Markov chain for source k, is shown to have a
significant impact on multiplexer performance. Specifically, as s* increases, the inter-cell correlations present at
the source become less dominant and the multiplexer’s performance improves accordingly. These observations
suggest that, for sufficiently large values of s*, it may be possible to drop the correlated source model in favor
of a simpler, uncorrelated model without significantly impacting on the model’s accuracy.

3.1 GPM traffic model for NDP sources

The proposed GPM source can be easily adopted to model such an uncorrelated source with speed-up factor
m* by setting 7, equal to 1 slot; the kth source is then described by the parameters {m*, 1, fj"( -)}. Note that this
is equivalent to setting T* = m*. Source & is assumed to deliver cells every m* time slots according to a
Bernoulli PMF with rate A*. This is captured through the model by setting, for j = c*,

. A¥ fori=1
k(i) = ’ 16
) {1-—)\" for i=0, (16)
and for j+# c*,
iy JO fori=1,
£ {1 for i = 0. (17)

Note that the analysis presented in Section 2 provides results for a given vector of source start times, while
the analyses of [19] and [20] assume random starting times among the sources. For the deterministic (periodic)
source models assumed in [19] and [20], random starting times represent the only stochastic element of the
resulting queueing system, without which the analysis would be trivial. A more meaningful treatment of the
problem, which is adopted here, may be one in which specific — perhaps worst-case — starting times can be
assumed. A stochastic cell generation process can then be considered at the deterministic time-scales m*, which
is more representative of realistic traffic generators such as packetized voice and network uplinks with speed
mismatches.
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3.2. Numerical results for NDP input processes

Although the analysis described in Section 2.4 allows for the superposition of input sources having different
periods, the presentation and discussion of the numerical results will be facilitated by considering sources with
identical periods denoted by m. Each source is also assumed to deliver cells according to a Bernoulli PMF with
rate «, which results in 2 mean rate per source of a/m; the total offered load is then given by A = Na/m.

Fig. 3 illustrates the effect that the source period has on cell-loss probabilities as a function of the buffer
capacity B when N = 40 sources are multiplexed at an offered load of p = 0.9 and the sources are assumed to
be synchronized (¢! = - - - = ¢*®), Clearly, the source period m has a significant impact on queue performance
when the total offered load is held constant. Note, however, that this impact is not necessarily negative as has
been suggested in the past [18]. In fact, for ‘‘acceptable’” loss probabilities on the order of 10~° and smaller, the
impact that increasing values of m have on the queue performance is positive. The curves for m = 10, 20, and
30 are also compared with the corresponding M/D/1/B approximation, and the results are quite enlightening.
Fig. 3 reveals that the Poisson assumption can either overestimate or underestimate loss probabilities depending
upon buffer capacity and the source period m, which implies that the solution to the M/D /1 /B queue should
not be used for bounding purposes when considering such periodic input streams. For a loss probability of 107,
the M/D/1/B approximation is extremely pessimistic, requiring a buffer capacity of B = 90, compared to a
required buffer capacity of B = 50 when m = 30. In fact, the negative slope of the M/D/1 /B curve is always
smaller than the cases for m > 1, which implies that, beyond some value of B (which varies with m), the loss
probabilities for the limiting Poisson traffic assumption upper bounds the actual loss probabilities for the
superposition of non-deterministic periodic sources.

Fig. 4 demonstrates the relationship between cell-loss probabilities and offered load for a case in which the
Poisson assumption is optimistic (B = 30) as well as a case in which the assumption is overly pessimistic
(B =50). The N =40 NDP sources are assumed to have speed-up factors of m = 30 associated with them.
When B = 30, the superposition of NDP input sources results in loss probabilities larger than 107> for the range
of loads between 0.7 and 0.99. The corresponding M /D /1 /30 queue, however, is overly optimistic and results
in loss probabilities smaller than 10~° for loads as high as 0.72. On the other hand, when B =50, the
M/D/1/50 approximation overestimates the loss probabilities for all loads. It is clear from Fig. 4 that the
Poisson assumption performs poorly for low to moderate loads, and even for offered loads of 0.99 there is a
substantial difference between the M/D/1/B queue performance and the corresponding case of NDP input
sources.

Cell-loss probability L

80 90

0
Butler capacity B (cslis)

Fig. 3. Loss probability versus buffer capacity B for various m. The number of sources are N = 40, and the total load A = 0.9.
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Fig. 4. Loss probability versus offered load for various B. The number of sources are N = 40, and speedup factors are set to m = 30.

Note that for the results presented in Figs. 3 and 4, it is assumed that the NDP sources are synchronized
(c'= --- =c"), which represents a worst-case scenario in terms of queue performance. Although it is difficult
to define a meaningful distribution of initialization times ¢* (1 < k < M) for the NDP sources, it is reasonable
to expect that uniformly distributing these times will improve the queueing performance. This is illustrated in
Fig. 5, where loss probabilities are plotted versus the number of multiplexed sources with m = 20 and p=0.9
for synchronized and unsynchronized (initialization times uniformly distributed) sources. The uppermost curves
represent results for a buffer capacity of B = 20, and the lower curves for B = 50. Similarly, the upper star on
the right hand vertical axis denotes the M/D /1 /20 result while the lower star denotes the M/D /1 /50 result.
For both cases (B =20 and B = 50), the queue performance, in terms of cell-loss probabilities, approaches a
limit for large values of N. However, even when the NDP sources are unsynchronized, the limiting results are
significantly different than the M/D/1 /B results.

The results presented thus far indicate that all of the parameters (B, m, N and A) affect significantly the
queue performance, and consequently, the validity of the M/D /1 /B approximation. For each set of numerical
results there seem to be two distinct regions of operation; one in which the source periodicities have a negative

)
I S SN
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[}
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[=]

Cell-loss probability L
o

|
10 1, 8BS0 .- - -~ synchronized 1
10~ ) T e unsynchronized

10 l... L A, A e "
30 40 50 60 70 80 90 100
Number of multiplexed sources N

Fig. 5. Loss probability versus N for various B. The total offered load is A = 0.9, and speedup factors are set to m = 20.
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Fig. 6. Lp / Lypp versus B for different values of m. The total offered load is A= 0.9, and N = 75 sources are multiplexed.

influence on the queueing behavior, relative to a Poisson input source, and one in which the periodicities have a
favorable impact. These operating regions are examined more closely in Fig. 6, where the ratio of the loss
probability for the Poisson traffic source (L) to the loss probability for the NDP sources (Lypp) is plotted
versus buffer capacity B. When the ratio L, /Lypp is less than (greater than) 1, the M/D /1 /B approximation
underestimates (overestimates) the actual loss probability. In Fig. 6, N = 75 non-deterministic periodic sources
are multiplexed at a total offered load of 0.9 for source periods of 1, 10 and 50. When m = 1, the input to the
multiplexer consists of N =75 Bernoulli sources, and the ratio Lp/Lypp is close to 1 for all values of B. This
result supports the assertion that the superposition of a large number of Bernoulli traffic streams can be
approximated by a Poisson process (asymptotic behavior of the Binomial distribution), regardless of the buffer
capacity. However, as the source periods increase, the two regions become more distinct. When m = 10 and
B =10, Lypp is 5 times greater than L, for the M/D/1/10 queue, and when B =100, Lypp is 5 times
smaller than L. For this case, the M/D/1 /B results are overly pessimistic for B > 50. When m = 50, the two
regions are even more well-defined, and the Poisson assumption does not perform well in either region. It is
interesting to note that, as was the case in Fig. 3, the region of operating conditions which produces loss

probabilities considered acceptable in ATM (less than 107°) is the one in which the M/D /1/B queue provides
overly pessimistic results (L, > Lypp).

4. Application 2: Multiplexing VBR video at slice-level

While the modeling of VBR video sources has recently received significant attention, there presently exists
no widely accepted model which lends itself to mathematical analysis. Most existing models, like those in [7]
and [8], assume that video is pre-buffered at the frame level. The purpose of pre-buffering is simply to provide

Video Source

i

VBR
encoder

-

Pre - buffer

smooth traffic

e

il

to ATM multiplexer

Fig. 7. Pre-buffering a VBR video source.
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Fig. 8. Slice-level sample of a VBR video sequence.

the network with a cell stream which is as smooth as possible; this can be accomplished by simply storing data
temporarily in a pre-buffer as in Fig. 7.

In [11], a flexible simulation model is developed which captures the behavior of VBR video traffic at both
the frame and slice level. There are 30 equal-sized slices in every frame, and the inter-frame as well as the
inter-slice autocorrelation functions are matched to those from experimental data provided by [12]. The cell
generation rate is considered to be constant throughout the slice, modeling the VBR video traffic scheme
delivered to the multiplexer under a slice-level pre-buffering scheme. Through a simulation study driven by a
number of source models which match the characteristics of a full-motion video movie, [12], the authors show
that the impact of inter-frame correlation is negligible while the impact of inter-slice correlation is significant.

These simulation results suggest that if pre-buffering at the frame level is not practical, and transmission
takes place at the slice level, then an effective traffic model should capture the time-scales associated with both
the frame and the slice. The former will determine the time-scale at which inter-frame correlations exist, while
the latter will determine the horizon of the constant-rate cell delivery to the multiplexer (slice). Note that under
pre-buffering at the frame level a single rate of the resulting traffic over a frame is generated. Under
pre-buffering at the slice level, and for a selected average cell rate over a frame, 30 potentially different and
correlated rates of the resulting traffic over a frame are produced; each rate remains fixed over a slice.

Due to the high positive autocorrelations in the number of cells generated in a frame, the cell arrival process
(at slice level) over a frame can be considered to remain virtually unchanged over a sequence of consecutive
frame horizons. This is in agreement with the experimental data from [12] (Fig. 8) in which the slice-level
arrival rate is shown to have a periodic behavior (with period 30 slices), and the frame-level arrival process
remains relatively constant over many frames (or periods). Assuming that the time horizon associated with
changes in the frame-level arrival rate is sufficiently long to induce the steady-state behavior of the multiplexer,
a quasi-static approximation similar to that in [9] can be used to study the multiplexing of VBR traffic which is
pre-buffered at the slice level as described above. However, a constant-rate arrival process over a frame, such as
the Poisson process considered in [9], will clearly not be applicable here to approximate the arrival process over
a number of video frames. Instead, assuming a frame-level arrival rate which remains constant over many
frames, a periodic cell arrival process (with a period equal to the frame length) within each frame could be

considered.

4.1. GPM traffic model for the periodic slice-level arrival process

The periodic cell arrival process described above can be easily captured through the proposed GPM traffic
model by setting the period of each GPM source (m*) to be 30 and the sub-period (7,) equal to the number of
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Fig. 9. Sub-period-level autocorrelation function for A* = 0.2, b= 0.2 and various values of ..

slots in a slice; 7, varies with the link speed, the frame rate (in frames/sec) and the slot capacity. Assuming a

frame rate of 24 per second, as in [11] and [12], and a slot capacity of 53 bytes (48 bytes of payload and 5 bytes
of header) for ATM,

C bits 1byte 1 slot 1 frame 1 sec
T sec 8 bits 53 bytes 30 slices 24 frames

s

3035280 slots /slice, (18)
where C is the link capacity in units of bits /sec. To capture the uniform distribution of cells within a slice, the
PMF fj"(-) for the number of cells generated in each slot when source % is in state j {1 <j<30) will be
Bernoulli with rate )\f. Note that this can be seen as statistically smoothing the source at the slice level. It is
believed that an assumption of statistical smoothing should provide for a conservative (or pessimistic)
estimation of delivered QoS if the VBR source were deterministically smoothed (cells are delivered to the
network equi-spaced within each slice). This has been shown to be the case in [23] when the VBR source is
pre-buffered and smoothed on a frame by frame basis.

As was the case with the slice-level arrival rate process, the slice-level autocorrelation function for a VBR
video source has been shown [10,12,13] to possess a periodic structure with a period of 30 slices. The GPM
traffic model also has a periodic sub-period-level autocorrelation function R*(n), as given in Eq. (4). In fact, for
a given frame-level cell arrival rate for source %, denoted by A* in Eq. (1), the slice-level autocorrelation
function for the kth video source can be approximated by R*(n) through an appropriate selection of the arrival
rates A}, 1<j<30.

In order to produce a first approximation for the autocorrelation function for cells/slice which is similar to
the functions found in [24], for example, the following distribution of the rates )\f will be considered *:

A=k =ae U =12, 15, (19)

? Note that there exist many possible choices for the rate distribution function A*. The distribution given in Eq. (19) is intended only to
serve as an example, and is not intended to closely match any experimental data set.
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Upon choosing a value of b to produce the desired profile for the autocorrelation function, the constant a is
calculated using the expression

a 15
A=— Y e (20)
155
which is derived from (1) by requiring that the mean rate over states 1 through 15 (which equals the mean rate
over states 16 through 30) be equal to the frame cell rate A* for the source. Note that according to (4), the
autocorrelation function for cells/sub-period is dependent upon both 7, and the sub-period rates )\f. Fig. 9
shows the resulting sub-period-level autocorrelation functions for a source with frame cell rate A* = 0.2, b= 0.2
and different values of 7, ranging from 1 to 327. The latter corresponds to a video source being multiplexed
onto a 100 Mbps ATM link (see Eq. (18)).

Similarly, Fig. 10 presents sub-period-level autocorrelation functions for the source with T,=327 and
different sub-period rate distributions resulting by varying b from 0.01 to 0.20. Note that as b approaches 0, the
GPM source looks more and more like an i.i.d. cell arrival process. In fact, when b = 0, the GPM source is
simply a binomially distributed batch arrival process. It is clear from Figs. 9 and 10 that similar sub-period-level
autocorrelation functions can be produced by either fixing b and varying T,, or fixing 7, and varying b.

4.2. Numerical results and discussion for the VBR application

In this section some numerical results are presented for the analysis of the finite capacity multiplexer with an
input process consisting of the superposition of N GPM traffic sources, which are adopted as explained in the
previous section to model VBR video sources pre-buffered at the slice level. The stationary queue distributions
computed using the techniques presented in Section 2.4 yield queueing results for video sources generating
traffic according to a single average frame rate. In order to compute the queue length distributions over all
possible frame rates, a frame rate histogram can be derived as described in [9), and the quasi-static
approximation presented there can be applied. Application of the quasi-static approximation is beyond the scope
of this paper. The primary objective here is to determine the impact of periodic slice-level autocorrelations on
queue response.

To address the effectiveness of the slice-level autocorrelation function in describing a VBR input source,
consider the functions pictured in Fig. 11. Although the two autocorrelation functions are almost identical, one
is produced by an underlying periodic Markov chain which makes transitions every time slot (T, = 1), while the
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Fig. 11. Sub-period-level autocorrelation functions for sources with A* = 0.2, and different values of T,.

other is produced by a source making transitions every 20 slots (7, = 20). The autocorrelation functions are
matched by simply varying the distribution of sub-period rates through the parameter b; the total rate for each
GPM source is A* = 0.2. The queue response to these sources is examined by considering a multiplexer of
capacity B = 30 cells with an input of 4 of the GPM sources. The input sources with 7, = 20 slots have a much
more negative impact on the multiplexer than those with T, = 1, which is illustrated in Fig. 12 through tail
distributions for buffer occupancy as well as loss probabilities L. It is clear that simply matching the
autocorrelation function for cells/slice is not sufficient to estimate multiplexer performance. The actual
time-scale associated with the slice needs to be considered carefully.

In fact, by adopting different source time-scales 7, performance studies can lead to contrasting conclusions
about the feasibility of multiplexing VBR video which is not pre-buffered at the frame level. For instance, based
on numerical results for input sources with periodic autocorrelations which make transitions every time slot, the
author in [25] concludes that loss probabilities are higher when VBR video sources are pre-buffered and
smoothed on a frame by frame basis. A similar conclusion would be drawn using GPM sources with T, = 1. For

VAT IONY Jowry

10 [ —— Teat (L=1.72£-08)
t- 1820 (L1.10 E-03)

Queue length 1ail distribution

0 5 10 15 20 25 30
Queue length (celis)

Fig. 12. Tail distributions and loss probabilities for matching autocorrelation functions with 7, =1 and 20; total load is A = 0.8 in both
cases.
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GPM input sources, a frame-level pre-buffering scheme is modeled by setting constant arrival rates over all 30
sub-periods (or slices), which is the case when b = 0 under the rate distribution strategy of Eq. (19). Note that
this eliminates the periodic nature of the slice-level autocorrelation function.

In Fig. 13 cell loss probabilities are plotted versus b for N = 4 input sources, each with rate 0.22, at a
multiplexer of capacity B =40 for T,=1 and T, = 20. As expected, when b =0 (which models frame-level
pre-buffering) the rates do not change from slice to slice and the loss probability does not depend upon 7.
When T, = 1, notice that loss probabilities decrease as the periodic fluctuations in arrival rate increase with b.
Therefore, use of this model would lead to the false conclusion, as in [25], that the periodic autocorrelations
provide for improved statistical multiplexing gain over frame-level pre-buffering. As 7, is increased to as little
as 20 slots, which corresponds to an output link of capacity C = 6.1 Mbps (Eq. (18)) for the adopted GPM
model, numerical results for L lead to a completely different conclusion. In this case it would seem that
smoothing the periodic autocorrelations through frame-level pre-buffering provides greatly improved QoS.
These results illustrate the importance of incorporating time-scales into traffic models in order to accurately
assess the impact of the modeled traffic sources on network performance.

In order to investigate a more realistic multiplexing scenario, Table 1 depicts cell loss probabilities for a
buffer capacity of B = 50, an output link capacity of 100 Mbps, and an input consisting of 10 identical VBR
sources each transmitting at a rate of 8 Mbps. This scenario can be modeled with GPM sources through the
following choice of parameters: T, =327, Al= .-- = A1®=0.08 and of course m'= --- =m'®=30. As
explained in Section 4.1, each source generates cells according to the appropriate Bernoulli PMF to approximate
the smoothing of cells within a slice.

In Table 1, three different autocorrelation functions for cells/slice are considered. One set of results
represents the frame-level pre-buffering case (b = 0) while the others correspond to two of the autocorrelation

Table 1

Loss probabilities for different values of b under both synchronized and uniformly distributed frame boundaries

b L for synchronized frame boundaries L for uniformly distributed frame boundaries
0.00 6.57¢™ 2 6.57 ¢ "2

0.10 7437 6.54¢ 12

0.20 467¢77 6.45¢" 12
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curves pictured in Fig. 10 (b= 0.01 and b = 0.02). Clearly, the periodic autocorrelation function has a negative
impact on the queue, and increasing the positive and negative peaks in the autocorrelation function by increasing
b results in even worse performance. Note that the worst-case scenario in terms of possible starting times among
the input sources is achieved when the frame boundaries of all 10 sources are synchronized (¢! = --- = ¢!°),

The impact of frame-boundary synchronization can be minimized by uniformly distributing the frame starts
(boundaries) at intervals of |M/N|, as is the case in {11], which represents a best-case scenario in terms of
source starting times. While ensuring such a uniform distribution of frame starts in practice is highly unlikely,
the positive impact on the multiplexer is indisputable, as is seen in Table 1, where loss probabilities virtually
coincide for all values of b.

Recall that the results presented here are for one possible combination of frame cell rates, and that under a
quasi-static approximation, all combinations of the individual frame cell rates would be considered. However, it
should be noted that the averaging effect of the quasi-static approximation may mask the extreme queueing
conditions that occur over time horizons for which the offered load is high. Hence, it may be more reasonable,
when applying the quasi-static approximation, to consider only the ‘“high-rate’’ bins, which would yield a more
detailed account of the queueing behavior during the times in which the QoS requirements for the VBR sources
are most likely to be violated. It is possible that these QoS violations, which may be sufficiently rare when
considered over all possible combinations of frame cell rates, are severe enough during the high-load periods to
disrupt, or at least impair, service.

5. Conclusions

In this paper, the concept of source time-scales was applied to the discussion of traffic sources in broadband
packet networks such as ATM. A Generalized Periodic Markovian (GPM) traffic model was introduced to
capture the cell arrival dynamics associated with these time-scales, and a finite-capacity multiplexer with an
input process consisting of the superposition of N GPM sources was analyzed in discrete time. An efficient
numerical technique was presented for the solution of a potentially large irreducible Markov chain by solving
smaller chains with state space size independent of the number of states in the input process.

As expected, numerical results suggest that the time-scales at which variations in the cell arrival process
occur, impact significantly on the queué response. This fact seems to indicate that these relevant time-scales,
which change with the link speed, should be considered as important traffic descriptors, and incorporated into
source models in high-speed environments.

The proposed GPM traffic source model and developed analytical technique were applied to the study of
Non-Deterministic Periodic (NDP) traffic sources as well as to VBR video sources which deliver cells at the
slice level, as opposed to smoothing and delivering them on a frame by frame basis. Results from the NDP
source study indicate that, depending upon the operating conditions at the finite-capacity multiplexer, the period
of the NDP input streams may have either a positive or negative impact on queueing performance, relative to
that of a M/D/1/B queue. This implies that M/D/1/B results should not be used for bounding loss
probabilities when studying the queue response to NDP input processes. Furthermore, the asymptotic (large N)
behavior of NDP input sources was shown to be poorly approximated by the Poisson process when the potential
cell generation times occur periodically with period greater than 1 (i.e. m > 1).

Results from the VBR video application illustrate that the inter-slice autocorrelation function, which is
periodic in nature, has a major impact on the finite-capacity queue. The video application was based on the
assumption, first made in [9], that the system can be approximately analyzed by independently studying the
queue response to different frame cell rates and then conditioning over all rates. Numerical results, which were
derived for a single frame cell rate, indicate that frame-level pre-buffering provides improved QoS when
slice-level autocorrelations are periodic.
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Appendix A. Derivation of the sub-period-level autocorrelation function R(n)

This appendix is concerned with the derivation of R(n), defined as

E{A, 4.} —EX{A,)

n+n

E{Ai} - EZ{ An’}

R(n) &

The quantity E{A, A, ,,} will be derived by considering the cases n =0 and n > O separately.

For n=0,
E{43)} = T& Pr(4, = &)
k
= Z Zkl Pr{An'=k|Yn’= Al} Pr{‘)ln’::Ai}'
i k&

The second moment of A, given 7,, will be denoted by &,, where

£ = Zkz Pr{An'=k|'Yn'=)‘i}'
k

309

(A.1)

(A2)

(A3)

This quantity can be expressed in terms of the GPM parameters defined earlier once the cell arrival PMF
f(-), 1 i< m, is known. For instance, if f,(-) is a Bernoulli PMF with rate A, then Pr{A, =k|y, = A} is

simply a binomial distribution given by
T -
Pr{A,=kly,=A}= ( ks)()‘i)k(] )"

In this case, it is easy to show that &, is simply
& =TAT+TA(1- 1),

and (22) can be expressed as
E{Af{} = E [TSZA% +TA(1 - )‘i)] ;i

H
=T2Y Nm +TA-T, 3 A,
i i

For n> 0,
E{ A AL )= Z ZklkZ Pr{A, =k, A,,, =k}
kK,
= Z Z Z ZklkZ Pr{An' = kl lyn’ = Al} Pr{An'+n = k2|‘Yn'+n = A'J}
i ok ke

'PI'{’)’,{.,_,, = Aj I 7n'Ai} PI'{’Y": = Al}
= 7;22 ZAiAjpE.nj)ﬂi'
)

From (A.6) and (A.7), the quantity E{A A, }, for n >0, can be expressed as
E{ An’ An’+n} = T;Z Z E A'iAjp:('."j)ﬂ.i + T;(A - Z/\lzwl) 6:”
i i

where 8, is the Kronecker delta.

(A.4)

(A.5)

(A.6)

(A7)

(A.8)
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This expression can be further simplified by noting that, due to the periodic structure of the Markov chain
considered here, the stationary probability 7r; is simply 1/m, where m represents the number of states in the
periodic Markov chain. Also note that the one-step transition probabilities for this source are defined by

» _{1 if 1<i<mand j= (i) mod (m) +1,
ij =

: (A9)
0 otherwise.

From these quantities it is an easy computation to show that the n-step transition probabilities are given by

m_ |1 fl<i<mand j=(i+n—1)mod(m+1), (A.10)
™ 0 otherwise.
Eq. (A.8) can now be rewritten as
];2 m 1 m
E{An'An’+n}=_zAiAj+7;(/\—_EA?)6n’ (All)
m,. i=1
where j= (i +n— 1) mod(m) + 1.
Finally, E{ A} can be derived as follows:
E{A;} = Lk Pr{A,=k)
k
=Y Y kPr{A,=kly,=A)Pr{y, =4}
Pk
= ZT;AI‘WI‘
=TA. (A.12)

By substituting (A.11) and (A.12) into (A.1), the final expression for the autocorrelation function R(n) is
obtained:

1 m 1 m
—Z)\,/\J+——(A——E)\f)6n—)t2
m;_ s m;.
R(n) = im - 1'm , (A.13)
—Z,\,?+-(A——ZA§)—A2
m,_ T m;_,

where again j= (i + n — 1) mod(m) + 1.

Appendix B. Derivation of the quantities #; ; and L

Let X, denote the process {q,,, x,,}no, where n is indexed at slot boundaries. Recall that the process
{gx> XJx» 1, which has been considered for the analysis of the GPM sources at a finite-capacity multiplexer, is
indexed at sub-period boundaries; the length of a sub-period is equal to 7, slots. The Markov chain {g,, x,}, .,
has state-space §={(0, 1),...,(B, M)}. Note that {g,, x,},,, is embedded in the process {g,, x,},, . and
{X(k— 1)T,}k> 1= {ka xk}k> 1-

This appendix is concerned with the computation of the stationary probabilities for the process X,, denoted
by 7, ; where

#,;= lim Pr{q,=i, x,=j},

n—ow

as well as the cell loss probability L.
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Let ¢ denote some event of interest which can be observed at slot boundaries. Pr{¢} will denote the
probability of this event. Let N; j_(qb) denote the number of occurrences of ¢ when the Markov chain
{qi, x}i5 1 is in state (i, ) €S. N, () will denote the expected value of this quantity. If r; ; denotes the
stationary probability that the Markov chain {q,, x,},, , is in state (i, j) € S, then it can be shown [26] that

1 —
Pf{ 4’} = 7 E ZNi.j(‘ﬁ)"i,j' (B~1)

Computation of 7, . Let ¢ represent the event that the system is found in state (i, j) at an arbitrary time
instant, and let N;, f(i, J) denote the number of times the system is in state (i, j) over the current sub-period,
given that the sub-period began in state (', j/). Also denote by 17" ,(i, j) an indicator function which takes the
value 1 if the system is in state (i, j) after n time slots in the sub-period which began in state (i, j); the
quantity equals O otherwise. Clearly, N, f(i , j) can be expressed as

T
Ivl','(i’ J) = Z I?,f(i’ j)'
n=1
The expected value of N, ;(i, j) is given by

1,
ﬁi’,f(i’ J)= ;} E{Ir‘".i(i’ J)}

T,
= Y Pr{q, =i, x,=jlgo=1. xo=7j}
n=1

T
P i)y,

n=1

Finally, a direct application of Eq. (B.1) yields the result

1 5 B
== L LA iy, for(i, j) €. (B-2)

s a=1i=0

Computation of L. In this case, ¢ is the event of a cell being lost in an arbitrary time slot. By definition, the
loss rate, or cell loss probability L, is given by

,_Ple)
A

where A is the total offered load, or the probability that a cell arrives in an arbitrary time slot. N, , will denote
the total number of cells lost over the sub-period which began in state (¢, j); N; 7 will denote its expected
value. Let 17, denote the number of cells lost over the nth slot of this sub-period and let a, denote the number
of cell arrivals over the nth slot. It is easy to see that

I _{k if a,=B+1—gq,_, +k,

7700 otherwise.
Clearly,
T,
Nep= LI},

n=
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and
_ T
N.i= ¥ E{17)
n=1

T,
Y YkPr{a,=B+1-q,_ +klg="7, x,=71}
n=1 k

I, B

Y X XkPra,=B+1-i+klg=7, xo=7}Prlg,_,=ilgo="7, xo=J}
n=1i=0 k

I, B K,

Zs: Y X B, i) f(B+1—i+k),

n=1i=0 k=K,

where K| is the minimum number of losses which can occur over the given time slot, and X, is the maximum
number of such losses. It is easy to see that K, = max(0, i ~B—1)and K,=N—-B—-1+i.
Finally, applying Eq. (B.1) yields

1 8 M L B K _
Vs LY YL Y X N if(B+1—i+k)m,, (B.3)
s =0 j=1n=1i=1I k=K,

where I, = max(0, B+ 2 —N).

L=
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