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Abstract

A discrete-time system of two queues served according to distinct policies is studied in this paper: one queue receives
I-limited service; the other is served according to some policy from the introduced class of (state dependent) policies S.
Class S contains traditional service policies as well as ad hoc policies. A partial performance ordering of policies in S is
derived which can be useful in designing ad hoc policies with improved performance compared to that of traditional policies.
Some examples of ad hoc policies in S are presented and numerical results are derived to illustrate the potential for efficiency
provided by service policies in S.
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1. Introduction

Discrete-time queueing systems have widely been adopted for the study of packet communication net-
works, where packet processes are described in terms of discrete-time stochastic point processes. The
service policies associated with such systems model the protocols that govern the availability of network
resources to the packets, users or classes of users. The distributed nature of a networking system and/or
the diversified service requirements of the supported users necessitate the development of sophisticated
resource allocation protocols modeled in terms of queueing systems under various service policies. Exam-
ples are the exhaustive, gated and limited service policies which have been studied extensively, primarily in
continuous time, in the context of polling [1,2], and vacation systems [3], and the consistent gated/limited
policy [4] which has been applied for the study of the DQDB network [5,6].
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A discrete-time single server queueing system consisting of two queues is considered in this paper. One of
the queues receives 1-limited service, the other is served according to a policy contained in a versatile class
of state-dependent service policies S. This class contains some of the well-known service policies as well
as new ad hoc policies which may provide for improved performance compared to that under traditional
policies.

The system studied in this paper may be considered as a variant of a two-queue asymmetric polling system
with 1-limited service at one queue and service according to a policy in § at the other. When both queues
receive 1-limited service the system operates under an alternating service policy, which has been analyzed
in continuous time [7]. A continuous-time two-queue model with mixed exhaustive and limited services
has been studied in [8]. A discrete-time model with gated and 1-limited services has been analyzed in [4].

The system considered in this paper may also be described in terms of a GI/D/1 infinite queue with server
vacations. The vacation period distribution depends on the occupancy of the queue which is served during
the vacation. The queueing model and analysis developed in this paper are also applicable to a system with
vacation period distributions that depend on the state of a Markov process which evolves independently
of the system [9]. This state-dependent vacation model is different from most of those presented in the
past, for example [10,11], in the following aspect: the process whose state determines the occurrence and
distribution of vacation periods is external to the queue under study. The analysis is based on matrix analytic
techniques similar to those applied for the study of the vacation model in [12].

The detailed description of the queueing system and a unified representation of the class of service policies
S are presented in Section 2. In Section 3, a queueing model for the system is formulated and analyzed.
The joint probability distribution of the queue occupancies is derived by applying matrix analytic methods
and Markov renewal theory arguments. Section 4 presents a partial performance ordering for policies in S.
Some numerical results which illustrate the effect of various service disciplines on the performance of the
system are presented in Section 5. The work is summarized in Section 6.

2. Description of the queueing system
2.1. Introduction

Consider the discrete-time queueing system shown in Fig. 1. The packet service time is assumed to be
constant and equal to the system time unit (slot). Unless otherwise stated, a superscript I (F) will indicate a
quantity associated with queue Q! (QF). The capacities of queues QF and Q' are assumed to be N < oo
and infinite, respectively. Let {q} }i>0 and {g j-F} >0 denote the associated queue occupancy processes with
state spaces R' = {0,1,2,.. Jand RF ={0,1,..., N}.

The system service discipline is determined by the general rules presented in Section 2.2 and the adopted
service policy in S presented in Section 2.3. A brief introduction to the service discipline is presented
first.

The server never idles as long as there is service to be performed. Upon switching to QF, the server
serves a number of F-packets (packets in QF) which depends on the number of packets found in QF and
the number of packets left in Q'. If the number of F-packets served cannot exceed the number of F-packets
already present in QF at the switching instant, then this state-policy (see Section 2.3) will be called gated.
Otherwise, it will be called non-gated. If all state-policies of a service policy are gated (non-gated) the
service policy will also be called gated (non-gated). Following the service to QF the server switches to Q!
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Fig. 1. The queueing system.

and provides 1-limited service to that queue. Although a service policy other than the 1-limited could be
considered for Q!, the analysis developed in this work is applicable only under 1-limited service to Q.

2.2. The general service mechanism

The system is work conserving; that is, the server is never idle when the system is non-empty. The server
is assumed to be at QF when idle. Let a decision time-instant 19 be defined as the time instant at which a
packet is forwarded to the head of Q'; the collection of decision time-instants is denoted by A.

(i) Attd, 14 ¢ A, the server switches to QF; the amount of service provided to this queue is determined
by the adopted policy in S (Section 2.3). Upon completion of this service to QF—which can possibly
be equal to O—the server switches to Q! and serves one packet.

(i)) Upon completion of the 1-limited (packet) service to Q':
(a) If Q'is left non-empty, a packet is instantaneously forwarded to the head of Q' and, thus, a decision
time-instant 79 is reached.
(b) If Q' is left empty, QF is served uninterruptedly until the next decision time-instant 14, to be
determined by the first future packet arrival to Q'.

Notice that before service is provided to a packet forwarded to the head of QI, an amount of service
is provided to QF, as determined by a policy in S. In general, the amount of service provided to QF—
determined by the policy in S—will depend on the state (queue occupancy) of QF. Thus, in general, the
server behavior is ‘regulated’ by the state of QF. Since the server considers switching back to QF at any
(discrete) time instant at which it is away from this queue, OF may be viewed as the critical queue. Although
almost the entirety of the adopted service disciplines for QF would provide prioritized service to this queue,
there is at least one such service discipline under which the priority is reversed.

2.3. The class of service policies S

As will become clear, a number of traditional service disciplines, as well as ad hoc policies—potentially
improving the performance achieved by traditional ones—can be represented by selecting a proper service
discipline in S.

Leti,0 < i < N, denote the state of {qf}jzo at some decision time-instant 14, 19 € A. A state-policy
associated with state i, P;, is defined to be equal to the potential amount of service (in packets) provided
to QF by the server, immediately after 19,0 < P; < oc. This amount of service will be provided to QF
unless the queue becomes empty. In view of rule (i), the definition of P; and the work-conserving nature of
the service discipline, the server will switch to QI at 19 + 7(i), where (i) = min{P;, 1 (i)} and 19 + ¥ (i)
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Fig. 2. The space of state-policies SP (each dot marks a state-policy point).

denotes the first time-instant following 74 at which QF becomes empty; r(qtfj) will be referred to as the

service horizon following 19 or determined by 6[5.

A service policy in S will be defined in terms of the state-policies P; associated with all states i, 0 <
i < N. Since the service policies considered here are work-conserving, it is easily established that any
selection for Py will induce identical server behavior as Py = 0. Py = 0 will be assumed for any policy in
S and, thus, a policy in S will be defined in terms of P;, 1 <i < N. A service policy in S will be uniquely
represented by the N-dimensional vector P = (P, Pa, ..., Py), P € S = Z§ x Z{ x -+ x Z§, where
Zar denotes the set of non-negative integers. As will become clear below, this vector representation of a
service policy in terms of the state-policies {7;} IN: ; not only provides for a unified description (and study)
of many well known service policies, but also allows for the introduction of new ad hoc policies. The space
of state-policies SP is shown in Fig. 2. A service policy P € S may be graphically represented by the set
of state-policy points {(i, P): 1 <i < N}, or the lines connecting these points ( policy-lines) on SP.

The following definitions will provide for a classification of state-policies and service policies in S.

Definition 1. A state-policy P; will be called gated if only packets that are present in QF at some 19 € A at
which qﬁ, = i will be served over the service horizon following #¢; otherwise, it will be called non-gated.

It will be called unlimited (limited) gated if all (not all) packets that are present in QF at some 19 € A at
which q[lz = i will be served over the service horizon following 1. It will be called unlimited non-gated if

exhaustive service is provided to QF; otherwise, it will be called limited non-gated.

Definition 2. A service policy P = (Py, Pa, ..., Pn) € S will be called (limited or unlimited) gated if all
associated state-policies are (limited or unlimited) gated. It will be called (limited or unlimited) non-gated
if all associated state-policies are (limited or unlimited) non-gated.
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Based on Definition 1, it can be easily established that P; is gated if P; < i. In this case, P; packets will
be served over the service horizon 7 (i), and thus, Pr{z (i) = P;} = 1. P; is unlimited gated if 7; = { and
limited gated if P; < i. Similarly, P; is non-gated if P; > i. In this case, at least i packets will be served
over the service horizon (i) and Pr{t (i) = P;} < 1. P; is unlimited non-gated if P; = oo and limited
non-gated if P; < co.

If Pis gated, the amount of service provided to QF over any service horizon (i) is equal to P;, for all
i,1 <i < N, thus; Pr{r (i) = P;} = 1. The subclass of gated service policies Sg is defined on the subspace
SPg={(i,P;):0<P; <1, 0<i <N}of SP.

If P is non-gated, the amount of service provided to QF over a service horizon 7 (i) is at least equal to P;
and depends on the evolution of {g jl.: }j>0 over that service horizon; thus, Pr{z (i) = 7;} < 1. The subclass
of non-gated service policies Sng 1s defined on the subspace SPng = {(i, Pi): P > i,0 <i < N} of SP.

Based on the above definitions, the space of state-policies SP can be divided into the subspaces of gated,
SPg, and non-gated, SPNg, state-policies; a policy-line in SPg (SPng) defines a gated (non-gated)
service policy in S. The boundary between the two subspaces identifies the diagonal policy-line (g) (Fig. 2)
which represents the unlimited gated service policy. The following definition provides for another classifi-
cation of service policies in S.

Definition 3. A service policy P is k-limited, if P; = k, 1 <i < N, for some k, 0 < k < 0o. Note that a
k-limited service policy is not state-dependent. This is also indicated by the graphical representation of the
k-limited service policies in SP; each k-limited service policy, 0 < k < oo, is represented by a horizontal
policy-line (/;) (Fig. 2).

The state-policies P; associated with a k-limited service policy P may be gated (i > k) or non-gated
(i < k). For the extreme values of k, k = 0 and k = oo, the system service policy becomes HoL priority
for queues Q! and QF, respectively. For k = 1, the system operates under an alternating service policy; a
single packet is served at each queue, in a alternating manner, while both queues are non-empty.

2.4. An expansion of class S, Sexp

Based on the definition of a state-policy stated at the beginning of Section 2.3, the potential amount of
service over any service horizon (i), for any policy P € S described so far, is deterministic and equal
to P;. A generalized definition of a state-policy is introduced below to describe probabilistically limited
service policies [13] and expand the class of service policies in S. A probabilistically limited state-policy
associated with state i, | </ < N, may be defined in terms of the probability vector g; = [gio &1 &i2 - - JT,
where g;;. 1 <i < N, j > 0, denotes the probability that the potential amount of service provided to oF
over a service horizon 7(i) is equal to j. A service policy in the expanded class of service policies Sexp
may be represented by a matrix P: P = (g1 §2 &3 ... g~ 1.

Clearly, S C Sexp. A service policy P € S can be expressed in terms of a matrix P by assigning the
proper distributions to every (deterministic) state-policy i:

_ |1 forj="P. .
§i =10 otherwise, I=i=N.
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indicates the movement of a packet to (away from) the head of Q'.

A probabilistically limited service policy is gated if Z}:o gij = 1 and non-gated if Zfi,-H gij = 1,
1 <i < N.Examples of probabilistically limited service policies are the Bernoulli gated:

1—pi, j=0,
8ij = Pi» J=1 I <i<N,
0, otherwise,

and the binomial gated:

3

i j i—i .
(1 — p) 7, < j<i, .
gij = (J.)P,( piY ., 0<j<i l<i<N
otherwise,

where 0 < p; < 1,1 <i <N, and (J) is the binomial coefficient.

For py = p» = --- = py = 1 the Bernoulli gated policy becomes 1-limited and the binomial gated
service policy becomes unlimited gated. For p; = p» = - -- = px = 0 both policies become HoL priority
at Q. In the rest of this paper, only service policies in S will be considered.

3. Modeling and analysis of the queueing system

The queueing behavior of the system under the adopted service discipline is analyzed in this section
under i.i.d. and mutually independent arrival processes {aj]-:} >0 and {ajl. }jz0 to OF and QF, respectively.
The joint probability distribution of the occupancy at queues Q! and QF upon service completion of a
packet at Q! is derived first, based on a matrix analytic approach. The joint probability distribution of the
queue occupancies at arbitrary time instants is then obtained by applying Markov renewal theory arguments.
Consider the following time sequences defined at the end of slots:

{tx}k>=0 @ Defined to be the sequence of time instants at which the service of a packet is completed at
Q' (1o =0).
{t,?}kz 1 : Defined to be the sequence of decision time-instants, or time instants at which a packet is

forwarded to the head of QI({t,?}kZ] = A).



1. Stavrakakis, S. Tsakiridou/ Performance Evaluation 29 (1997) 15-33 21

According to the system service discipline rules described in Section 2.2, the server switches to QF at
tx—1 for an amount of time which depends on q,'k_l and qtﬁ:
k

1) If q,lk_ > 0, by rule (ii(a)), the kth packet is instantaneously forwarded to the head of Q', and thus,

- = tf (Fig. 3(1)). In this case, the server will remain at QF for r(qﬁi) slots.
k

() If q’IkAl = 0, by rule (ii(b)), QI will remain empty for a time interval Ay, until the first future packet
arrival to Ql; at #;_ + hy the decision time-instant t,f is reached (Fig. 3(ii)). In this case, the server
will remain at QF for Ay + r(qllf,) slots.

k
The service of the kth packet at Q' will be completed at time instant t; = t/? + t(qt}z‘) + 1 and, therefore,
k

the time interval d; between the successive service completions of the (k — 1)st and kth packets at Q' is
givenby dy =ty —tp = hy + r(q;) + 1 where A; = 0, for q,lk_I > 0 (Fig. 3). It will be shown in the
k

following that the process {q,lk’ Clti}kzo is a Markov chain embedded at service completion time instants
{tc}k>0. In order to proceed with the analysis the following random variables need to be defined:

a' (a¥): Denotes the number of packet arrivals to 0" (0% inan arbitrary slot. The probability distri-
bution of a! (aF) is denoted by p‘II(n) (pf(n)), n>0.

al! :  Denotes the number of packet arrivals to Ql over / slots. It is distributed according to p}{[ (n),
the /-fold convolution of pf,(n), n>0(p-tn) = pL(n)).
h . Denotes the generic random variable for Ay; it describes the time between the service com-

pletion of a packet that leaves Q! empty and the first packet arrival to the empty queue. The
distribution of random variable # is given by p,(n) = [ ptll O - p}, ®],n>1.

Proposition 1. The process {q,[k, q,i k>0 is a two-dimensional Markov chain embedded on packet service
completion time instants, {t}k>0.

Proof. It suffices to show that q,lk and q,i can probabilistically be determined from q,lk_1 and q[EA .- The

evolution of the occupancy process {g jF };j>0 is determined based on the server availability to QF: transitions

take place at the end of slots. If the server is at QF at the end of a slot, then process {q]‘.F }j>0 makes a transition
according to the probability matrix Py,

pe©® pi() py@) - pEN=1) 3 phn)
n=N
Pk pry pk@ - pRav-n Y plm
n=N
Pe=| 0o  pRo) pray - pEv-2 Y P |- (1)

3
Il
B

o0
o 0o 0 - pEo D pim
n=1 _
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If the server is absent from QF at the end of a slot, that is, at time instants {tx }k>0 transitions take place
according to the probability matrix Py,

) . )
i pfay pf@ o pEfov—1n 3 pEm
n=N
[e @]
0 phOy pEy - pRN=-2) Y plm)
n=N-—1
Py = F F o F 2)
0 0 pa@ - pr(N=3) > py(m
n:N—2
L0 0 0o - 0 1 i

Therefore, the /-step transition probability Pr{qji[ =] |qu = i} of the process over an interval (j, j + /]

of uninterrupted service to OF of length / (slots) is given by Pg(l) =[Ps]',1 > 1. Given (q,lk_1 , q,}L ), qﬁi
k

is determined by q[i_] and the transition matrix Pg(hk), where by = 0, if q,‘k~l > 0 and distributed as
random variable s otherwise; since #; = t,? + ‘E(([ﬁl) +1, q,i is determined by q; and the transition matrix
k k

Pg(f(q,pd))}’v- Since q}k = qzlk‘, +ald — L and dy = hy + r(q;) + 1, q}k is determined by (qzlk_, , q,';il),
k k

in view of the above discussion. O

By identifying q,]k and q}: as the level and phase of process {q}k, q,i}kzo, respectively, the transition
probability matrix P, 7% of this embedded Markov chain can be written as a stochastic matrix of M/G/1

type:

By By B B3z By
Ag Ay A>» A3 Ay -
P15y = 0 A A Ay A3 -+ (3)
' 0 0 Ag A A -

where A, and B,,;, n > 0, are the (N + 1)-dimensional matrices with elements A, (ji, j2) and B, (j1, j2), J1.
Jj2 € RY, given by
AnGir. ) =Prigl =i —1 F gl =i.qgf = i > 1 (4)
n(i2) =Priq, =ii—l+n.q, =jplg,  =i.q,_, =iy, =1
BaGir. o) =Prql =n.qf = jalal  =0.45 =il 5)

Note that B, (ji, j2) is the probability that the process {q,Ik, ‘lzIZ}kZO makes a transition from state (0, ji)

to state (n, j») over the time interval between two successive packet service completions at QI. An(Jj1, J2)
is the probability that over the time interval between two successive service completions at Q!, the phase
process {q,lz }x>0 makes a transition from state j; to state jo, and there are n packet arrivals to ol given that
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Q' is non-empty at the beginning of the transition. Let A, (j1. j2, 1) (Bn(j1. j2,[)) be defined similarly to
An(1. j2) (Bu(j1. j2)) but under the additional requirement that the duration of a transition dj is equal to
{slots, ! > 1:

AnGro D =Prlgl =i =1 +n.q5 = podi=1]q,_ =iqy_, =it} =1 (6)

BaGjr. 2D =Prlak =n.qk = b.de =1]q_ =0.qf =il %

Let pfi, j,n) = Pr{q}zﬂ = j.tlgy) = nlglh =i} i.j e RF, 0 < n < P, denote the transition
probabilities of {g; } j>0 over a service horizon of length n slots. These are determined by the adopted

service policy P and the associated state-policies P;, i € RF, and can be expressed in terms of the one-step
transition probabilities of {g jF }j>0 given by probability matrix Py [14]. The stochastic matrix with elements

pf(i , J»n) is denoted by Pf (n). It can be easily shown that

Anux,jz,l)—pa’m)zmm J Al =Dpu(j2), 121, (8)
Jj=0
n+1

Bu(jr. o ) = Z[pamn’" ‘qum Jom) > ph@pETM =i+ 1)

m= i=l

x pr(j,j’,l—m—l)pm’,jz), 1> 2, 9)

J'=0

Bn(j]’j2= 1):0

From (8) and (9) matrices A, (/) and B, (/),/ > 1, may be written as

An(D) = p},-’(n)PFu — )Py, (10)
n+1l

B, (1) = Z[paa» PPym) Y py(DAn—ix1(l—m),  Bu(1)=0. (1)
m=1 i=1

Application of the law of total probability yields

Ap = ZA,,a) = Z s (WPL(A — 1Py, (12)
n+1
B, = ZB,,(I) = [ - pLOPs) 'P Y ph(DAn_is1. (13)

=1 i=1

The stationary joint probabilities for the queue occupancies upon packet service completions at oL, v(, j),
i € RY, j € RF, as determined by the transition probability matrix P 1 4F), are derived by applying matrix
analytic techniques [14]. The stationary joint probabilities at arbitrary time instants, ¥ (i, j), i € R', j e RF
are then obtained in terms of y(i, j) by invoking Markov renewal theory arguments [14].
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4. Partial performance ordering of policies in S

In view of the structure of class & it is possible to establish a partial performance ordering of policies in
&, as shown below.

Definition 4. Consider service policies £ = {X), ..., Zn}and 2 = {2, ..., 2y} in S. Let q,f”s denote

the occupancy of QM at time slot k under policy 7? M e {LLF}, P € {2, X}. Policy £2 is said to outperform

policy X with respect to QM if and only if q,f“? < q,ﬁ”‘z, M e {I, F}, for all £ > 0. That is,

-M -
<2 = ¢ <q”. Me(LF). (14)

. . . o aF =
Notice that (14) implies that if 2'<$2, then
LF.Q S LF,'I3 and DI,Q Z DLI}B, (15)

where LF-? denotes the packet loss probability at QF under policy P and D7 denotes the average packet
delay at Q' under policy P, P € {£, 2}. The following proposition provides for a partial performance
ordering of policies in S; its proof may be found in Appendix A.

Proposition 2. Consider two policies ¥ = {X,..., Zy)and 2 = {§2),...,2x} in S. Then
X < min {§¢) foralli,1 <i <N, (16)
I<k<N

implies that

_F - 1 -

X< and £2<X. (17)
Corollary 1. Let Ly = {k, k., ..., k}denote the k-limited service policyin S, 0 < k < 00. Then Proposition
2 implies that

. . - F - 212

if k <j then Ly<L; and Lj<Lg. (18)

Under some conditions on the arrival process to QF a weaker than (16) sufficient condition for perfor-
mance ordering of policies in S may be obtained as described in Proposition 3.

Proposition 3. Consider two policies £ = (X, ..., Iy} and 2 = (21,...,Qn) in S. Let at (Ar)
denote the number of packet arrivals to QF over an interval of length At (slots). If

af (A1) < At (19)
forall At, At € {1,2, ...}, and

X < & foralli > kandk,1 <k <N, (20)
then

556 ad 9kE. 1)
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Fig. 4. Policy-line representation of the set of policies in Example 1.

The proof of Proposition 3 may be found in Appendix A.
When the arrrival process to QF is Bernoulli, condition (19) in Proposition 3 holds and thus, the following
corollary is evident in view of Proposition 3.

Corollary 2. Consider two policies ¥ = {X,..., En} and 2 = {821, ..., 2n} in S. Let the packet
arrival process to QF be a Bernoulli process. If

X < § Joralli > k.1 <k <N, (22)
then

_F - -1 -

X< and 2<X. 23)

5. Examples, numerical results and discussion

The HoL priority policy for QF (upper boundary of the state-policy space SP) minimizes packet
delay/loss for this queue. Similarly, the HoL priority policy for Q' (lower boundary of the state-policy
space SP) minimizes packet delay for this queue. A (state-dependent) service policy in S is expected to
provide greater flexibility in meeting performance requirements associated with each queue. The vector
representation of a service policy in S allows for the description of ad hoc, customized policies as illustrated
in the following examples.

Example 1. The service policy P defined by the following state-policies P;,

i l<i<M,
P = l<M<N,
M, M<i<N,

provides unlimited gated service to QY when the content (state) of OF is below some threshold M, 1 <
M < N, and M-limited service otherwise (Fig. 4). This policy provides increased service to Q! compared
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Fig. 5. Policy-line representation of the set of policies in Example 2.
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Fig. 6. Policy-line representation of the set of policies in Example 3.

to the unlimited gated policy when the content of QF exceeds the threshold M; it also provides increased
service to Q! compared to the M-limited policy for | < i < M. The policy becomes 1-limited for M = 1
and unlimited gated for M = N.

Example 2. Consider the policies L}("’ which are k-limited up to a certain state M, < M < N, and
then drop linearly with fixed slope, as shown in Fig. 5. If packet arrivals to QF satisfy the condition
in Proposition 3, for instance, Bernoulli arrivals, then the following performance ordering holds true:

F 5 1 .
LM< and L) <L)V it My < My,

Example 3. Consider the following policies (Fig. 6):

7§|: P; =oc, 1 <i < N (unlimited non-gated or oco-limited or HoL for QF);
Pr: P;=1i,1 <i < N (unlimited gated);

Py Pi=1,1<i < N (1-limited);
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Py P =0,1<i<TandP; =i—-T,T <i < N;according this service policy Ql receives HoL
priority service whenever the content of QF is less than a threshold T. If the content i of QF at a
decision time-instant exceeds the value of the ‘safety’ threshold 7', service is provided to i — T packets
at QF. Compared to the HoL priority service policy for Q', this ‘mixed’ policy provides increased
service to the finite queue when it is critically congested (/ > T) and is expected to decrease the loss
probability.

Ps: P; =0,1 <i < N (0-limited or HoL for Q').

In view of Proposition 1, the following performance ordering of the policies may be easily established:

A= A

F - F - - F - F -
5 1< Pa<Py and Ps<Py<P,
1 1
< P3<

Pi<Pa<P3<Ps and P L ”ﬁ4L?§5.

Notice that P; L 75L Ps and 7555 ’}55 P, for all service policies P € S, which implies that P, and Ps
determine bounds on the achievable performance by any service policy in S.

The performance of some service policies in S is evaluated in terms of the induced packet loss probability
at the finite queue, L, and the average packet delays D' and DF. These can be easily determined from
thel joint probability distribution of the queue occupancies. Let AF (A1) denote the packet arrival rate to QF
(QY). Then

JE_ M =
=

s

where p’ = 1 —%(0,0) = | — Pr{g! = 0, gF = 0} is the system utilization. The average packet delays D!
and DF are derived from the mean queue occupancies E[g'] and E[¢F] by applying Little’s theorem:

. Elg" F Elq)
- D' = ———— .
b Al AF(I — LF)

Some numerical results for LF and D! induced by service policies P; — Ps in Example 3 have been
derived and are shown in Figs. 7 and 8 under Bernoulli and in Figs. 9 and 10 under truncated Poisson packet
arrival processes to each of the queues. The finite queue capacity is N = 29. For P4, two different threshold
values are considered, 7 = 10 and T = 15. For each type of arrival processes the mean packet delay D'
and the packet loss probability LF are plotted versus: (i) the arrival rate A! for a fixed arrival rate 2.5 = 0.5
(packets/slot) and a range of offered traffic load between 0.8 and 0.925 (Figs. 7 and 9) and (ii) the arrival
rate AF for a fixed arrival rate A! = 0.5 (packets/slot) and the same total load range as in (i) (Figs. 8 and 10).

The results shown in Figs. 7-10 are in accordance with the performance ordering established by Propo-
sition 2. Furthermore, they illustrate the potential for improved performance provided by the ad hoc service
policies in S, such as P4. For instance, if upper bounds on LF equal to 10~'2 (under Bernoulli arrivals) or
1072 (under truncated Poisson arrivals) are necessary to meet quality of service requirements, then only
service policies P;, P> and Py (T = 10) are acceptable for all values of AVand AF considered in Figs. 7-10.
Among these policies, P4 (T = 10) induces significantly lower D! compared to that under P, and P, and,
thus, it is the most effective in the sense that it minimizes D' while satisfying the constraint on LF.

Results for finite capacity N = 50 and Poisson packet arrival processes are shown in Figs. 11 and 12.
For policy P, the thresholds 7 = 15 and 7 = 25 have been considered. Results for N = 50 and Bernoulli
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Fig. 7. Mean packet delay D' and loss probability Lf under Bernoulli packet arrivals (N = 29, ' = 0.5). Curve (i)
corresponds to policy 7_7,-; (4a) and (4b) correspond to Pswith T = 10and T = 15, respectively. (i) ~ () indicates that the
results under policies P; and P; are approximately the same.
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Fig. 8. Mean packet delay D" and loss probability Lf under Bernoulli packet arrivals (N = 29, Al = 0.5). Curve (i)
corresponds to policy P;; (4a) and (4b) correspond to P4 with T = 10 and T = 15, respectively. (i) ~ (j) indicates that the
results under policies P; and P; are approximately the same.

arrival processes have not been presented since most of policies P;—Ps—with the exception of P3 and Py
over certain ranges of traffic loads—induce very low loss probability at QF. In this case, the accuracy of
the derived loss probabilities depends on the numerical precision of the machine.

The queueing system introduced and studied in this work could model the queueing behavior of a
protocol which allocates a common resource to two traffic classes with different Quality-of-Service (QoS)
requirements. One class may be viewed as a best effort class [15] and the second as having more stringent
QoS requirements. A sufficiently large buffer (Q') can be assumed to be available to the best effort traffic—
called also Available Bit Rate (ABR)—for which a mean value of the induced queueing intensity (such
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Fig. 9. Mean packet delay D" and loss probability LF under Poisson packet arrivals (N = 29, AF = 0.5). Curve (/) corresponds
to policy 73,, (4a) and (4b) correspond to Py with T = 10 and T = 15, respectively.
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Fig. 10. Mean packet delay D' and loss probability LF under Poisson packet arrivals (N = 29, A! = 0.5). Curve (i)
corresponds to policy P;; (4a) and (4b) correspond to 'P4 with 7 = 10and T = 15, respectively.

as delay) would be meaningful. For the traffic with more stringent QoS requirements a finite buffer (QF)
could be considered to capture, for instance, a requirement associated with a maximum tolerable delay.
For example, if a packet delay exceeding N (slots) is unacceptable, then it is evident that a buffer capacity
larger than N is meaningless. Furthermore, the cell loss probability would serve as a lower bound on the
probability that a packet is delayed beyond N slots. Under the HoL priority policy for QF, the packet loss
probability and the probability that a packet is delayed by more than N slots will coincide, assuming that
such packets do not receive service.

Finally, the partial ordering of the proposed policies can provide for an efficient search for a policy which
delivers a desired performance. At first, the Head-of-Line (HoL.) priority for one class would establish if
there exists any policy in the class which would induce the target-performance (or desired Quality-of-
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Fig. 11. Mean packet delay D' and loss probability Z:F under Poisson packet arrivals (N = 50, AF = 0.5). Curve (i)
corresponds to policy P;; (4a) and (4b) correspond to Py with T = 15 and T = 25, respectively.
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Fig. 12. Mean packet delay D' and loss probability I:F under Poisson packet arrivals (N = 50, A' = 0.5). Curve (i)
corresponds to policy P;; (4a) and (4b) correspond to Py with 7 = 15 and T = 25, respectively.

Service) for this class. If it exists, then Proposition 2 could provide guidance in the search for an acceptable
policy. It may not identify the best policy or even find an existing acceptable policy, but it is one—possibly
effective—alternative to the exhaustive search. By considering different starting policies, the entire space
could be searched in a non-exhaustive manner by moving ‘toward’ the better policies as indicated by
Proposition 2.

6. Conclusions

The main contribution of this paper is the introduction and study of the versatile class of service policies S
based on the concept of the state-policy. Through the construction of service policies in terms of policy-lines
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on the space of state-policies SP (Fig. 2), the flexibility in designing policies in & is illustrated. Through
the introduced simple performance ordering of service policies a direction for the design of service policies
in S whose performance approach a desired level is presented. This indicates the policy design flexibility
and potential for closely achieving a desired level of performance associated with the introduced class of
service policies. The latter have been illustrated through some examples and numerical results.

Appendix A. Proof of Propositions 2 and 3
A.l. Proof of Proposition 2

It suffices to show that under any realization of the packet arrival process

F.Q F.X LZ I,
9, =4, (org, ™ =¢q;™)

for all K > 0. Consider an initially empty system. Let ¢#; mark the (end of the time) slot at which the first
packet arrives to Q'; clearly,

F.2 _ FEX
qtl - qt1 ’

since uninterrupted service to QF has been provided under both policies up to 71. Condition (16) implies that

the service horizons under policies X and £2—denoted by % (qg'):) and 7 (q,Fl‘“Q), respectively—will
satisfy

s o es
2 (g7 < t2g 7).
and thus,

1. 1.2 2
9, =¢q;7"7. nh=t=<t;,

since a packet from Q! is served under policy X no latter than under policy £2; tz'é =n+ 9 (q,]? 'Q) +1

marks the slot at which the server serves the first packet in Q! under policy £2. At tQQ the following cases
may be distinguished.

(a) If q,[bg = 0, then it is easy to see that ql;;: = 0, since the former implies that only one packet arrival
2 f

to Q' has occurred up to tz“Q . Let | mark the arrival time of the next packet to Q!. Then,

o= =0 i <t<q.
Thus, it has been proven that
g <q'” n<i<i

where [71, 1{) denotes the time interval of an I-cycle, defined to be the interval between consecutive
arrivals to Q" which find the buffer empty under both policies X and 2.
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(b) If q Q > 0, then it is easy to see that the time #y at which the second packet is forwarded to the head

of QI under policy X will satisfy

. N -
11+r2(q§'2)+1:1225105z

The departure time instant of the second packet under policies X and £2, will be
,fé;0+ff(q,i'f)+l and tfé1f+té(q§;9)+l.
respectively. Since in view of (16), b
Zght) < r‘}(q:}é), (A.1)
it is implied that t32_ < t{z and

L 1.2 3
@ c <q, <t <i (A2)

By reiterating the argument presented above until Q' becomes empty under both policies, it is estab-
lished that (A.2) holds at any time instant of an I-cycle with an arbitrary number of packet arrivals to

o

Parts (a) and (b) above complete the proof of Proposition 2.
A.2. Proof of Proposition 3

The proof can be established by following the proof of Proposition 2. The introductory part and part (a) of
that proof is directly applicable. In order for part (b) to be valid, the validity of (A.1) needs to be established.

While condition (16) in Proposition 2 guarantees that for any values of q,f)‘ ¥ and q[F(‘Z'Q inequality (A.1) will

hold true, condition (20) in Proposition 3 would also guarantee it provided that
FE_ FQ
9y~ = q{ 5 - (A.3)

That is, provided that the finite queue occupancy when the second packet is forwarded to the heac_i of Q!
under policy X be not less than under policy £2. Since QF will have been reduced by tq — Ig at 17 under
policy £2 compared to its value at 7y under policy X and the potential new packet arrivals to QF over the
interval (7o, 5 $2y will be at most ’z — to (condition (19)), it is evident that (A.3) will hold true. Reiterating
the argument for the packet arrival to the head of Q! that may follow, the proof of Proposition 3 can be
established.
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