NH,
E
;i

ELSEVIER

Computer Networks 37 (2001) 363-382

COMPUTER
NETWORKS

www.elsevier.com/locate/comnet

Adaptive rate control in high-speed networks:
performance issues ™

Mohamed Abdelaziz *!, Toannis Stavrakakis ®*

& Core Switching Division, Lucent Technologies, 1 Robbins Rd., Westford, MA 01886, USA
® Department of Informatics and Telecommunications, University of Athens, Panepistimiopolis, Ilisia, 157-84 Athens, Greece

Received 2 February 2001; accepted 15 May 2001

Responsible Editor: J. Quemada

Abstract

It is well established that increased network transmission speed reduces the effectiveness of feedback-based adaptive
rate control mechanisms, due to the increased bandwidth propagation delay product. In this environment, differences in
the propagation delays associated with the controlled sources become larger when measured in slots (transmission time
of information unit), potentially inducing substantially diversified performance metrics. One of the objectives in this
work is to quantify the potential unfairness as well as the reduced effectiveness of this rate control scheme in the
presence of non-zero propagation delays. As the network speed increases, it is also expected that traffic sources will
seem to be slower due to the relative increase of the information generation time and/or the decrease of the portion of
the bandwidth required by a specific source. The other objective in this work is to investigate and quantify the expected
increased effectiveness of this rate control scheme in the presence of non-zero propagation delays as the traffic sources
become slower. The studies are carried out by formulating queuing models and evaluating the per-session cell loss

probabilities and they are supported by numerical results. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Traditionally, packet-switched data networks
have provided a best-effort type of service without
guaranteeing the provided quality of service
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(QoS). Bandwidth is shared by the different traffic
sources in the network in a dynamic manner and
no explicit limits are imposed on the amounts of
the traffic entering the network. In contrast, cir-
cuit-switched public telecommunication networks
have employed fixed peak bandwidth allocation
techniques, enabling the provisioning of QoS
guarantees by limiting the input traffic at the
connection set-up phase. While traffic manage-
ment schemes used in packet switching networks
provide the potential for efficient network utiliza-
tion and those used in circuit-switched networks
provide QoS guarantees, neither can cope alone
with the requirement of guaranteeing the provided
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QoS while attaining efficient utilization of re-
sources in ATM networks.

Unlike circuit-switched telecommunication net-
works and packet-switched data networks where a
certain type of service is primarily supported, B-
ISDN ATM networks are expected to support a
multitude of services with diverse characteristics
and QoS requirements. In order to guarantee the
QoS of the supported applications, a preventive
traffic management approach has been primarily
considered [1]. During the call set-up phase the
associated traffic source provides a set of traffic
descriptors and QoS requirements. The call is ad-
mitted if — based on the provided information and
the current network conditions — it is determined
that the QoS of this call as well as that of existing
ones can be delivered. In addition, traffic shaping
schemes are employed to smooth the traffic and
allow its representation in terms of properly iden-
tified traffic descriptors; traffic policers enforce the
compliance of the traffic delivered to the network
to the adopted traffic descriptors. This (preventive)
traffic management approach provides QoS guar-
antees to individual calls by properly shaping the
call’s traffic and limiting the number of calls that
can be supported at any given time. Such an ap-
proach is necessary to guarantee the QoS require-
ments of voice and video services which require
very low cell loss probabilities and stringent
bounds on cell delays and cell delay variation.

In order to accommodate the delay tolerant
applications whose traffic may not be possible to
specify at call set-up — for instance, available bit
rate (ABR) and unspecified bit rate (UBR) appli-
cations [2,3] — adaptive feedback-based rate con-
trol schemes have been proposed. Through
dynamic sharing of the available * network ca-

2 The available network capacity may be defined at any of 3
levels determined by the time-scale involved: on a semi
permanent basis determined by the network management, on
a call level basis or instantaneously [4]. Examples of semi-
permanent allocations may include dedicated virtual paths that
are changed over the time-scale of days/months. On the call
level, the available bandwidth for the ABR service fluctuates as
guaranteed QoS calls (e.g. video and voice) are established and
released. Finally, capacity may become available to ABR
applications due to instantaneous fluctuations of the traffic
during the lifetime of a guaranteed QoS call.

pacity, increased network utilization may be
achieved.

Adaptive, feedback-based mechanisms were
first introduced to dynamically control the user’s
traffic (sending windows at the transport layer le-
vel) in classical packet switched networks [5]. Ex-
amples include the DECBIit rate adjustment
scheme [6] and the slow start enhancement to the
TCP/IP [7]. Similar concepts have been proposed
[8-12] to directly control the rate of traffic sources
where rates are either determined explicitly by
some network controllers [11] or are incremented
and decremented in an adaptive fashion based on
some fed-back network information [13-15]. Ap-
plications of such adaptive schemes for the control
of voice/video coders can be found in [16,17].

Due to the large bandwidth propagation delay
product characterizing high-speed networks (such
as ATM), network feedback information may be
outdated by the time it reaches a source. Thus, it is
necessary to evaluate the performance of such
adaptive control schemes in high-speed network-
ing environments. Since the QoS of many appli-
cations is often expressed in terms of very low loss
probabilities, a performance evaluation approach
based on the prevalent standard simulation tech-
niques is becoming less formidable. For this rea-
son, studies based on analytically tractable
techniques are becoming of great importance.
Several studies have shown that adaptive rate
control schemes are adversely affected by the
presence of propagation delays between the con-
trolled sources and the control nodes [18] and
several authors have limited the applicability of
such schemes to the realm of local area networks
[19,20] where propagation delays are no longer
than several tens of the service time.

Unlike in open-loop schemes where no compe-
tition for network bandwidth takes place once a
call is set-up, an important characteristic of adap-
tive rate control schemes is that existing connec-
tions compete, at the cell level, for the available
bandwidth. This competition may result in unfair
allocation of the resources and some mechanisms
may be necessary to establish fairness. Fairness is
defined in this work in the sense that equal per-
formance measures are delivered to the different
connections within the same class. The issue of fair
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allocation of resources under adaptive rate control
schemes is considered in [21] in the presence of
negligible propagation delays and in [22] where all
controlled sources have the same propagation de-
lays. In ATM networking environments where
geographically dispersed areas are spanned by the
supported services, it is not uncommon that sour-
ces located at significantly different physical dis-
tances share the same network access node. Since
the effectiveness of adaptive rate control schemes is
known to be affected by the propagation delays, it
is expected that some unfairness may arise in this
environment. In order to quantify the resulting
unfairness, it is necessary to be able to isolate the
performance of individual sessions subject to
adaptive rate control. Due to the associated ana-
lytical difficulty, most previous analytical studies
for adaptive rate control schemes have focused on
aggregate performance measures.

In addition to the large bandwidth propagation
delay products characterizing high-speed net-
works, an often overlooked — by earlier discrete-
time studies such as [14,20] — characteristic is the
potentially large disparity between the relative
speeds of a network link and an input source. This
disparity or speed-up factor represents the time in
slots required for a source to generate enough bits
to form one cell * and is referred to as the source
time constant [23]. Notice that both the bandwidth
propagation delay product and the time between
consecutive cell transmissions from the same
source increases as the network link speed
increases. And while the former indicates the ex-
istence of larger traffic volume in the pipe (in
transit), the latter indicates the existence of a lower
traffic volume in the pipe coming from the same
source. While both these factors clearly influence
the performance of an adaptive rate control
scheme, only the first has been considered in most
previous studies.

In Section 2, the impact of an increased source
time constant on the effectiveness of the adaptive
feedback-based rate control under non-zero

3 Similarly, a time constant can be defined as the minimum
spacing among consecutive blocks of consecutive cells gener-
ated by a source which is required to receive (generate) an entire
packet before cells are created.

propagation delays is investigated. Unlike previ-
ous considerations, the time constant of the sour-
ces is assumed to be greater than one (network
slot). As a result, cells cannot be generated over
consecutive time-slots whose distance is less than
the sources time constant. The considered queuing
model also allows for the performance evaluation
of adaptively controlled connections with signifi-
cantly different propagation delays and can be
viewed as a generalization of those considered in
[20,24] and can reduce to any of those models by
proper parameter setting. This model may be
adopted to model a switching node of a high speed
network receiving traffic from lower speed net-
works or from sources with slow cell generating
mechanisms compared to the network time con-
stant (slot). As established in Section 2, the
greatest reduction in the effectiveness of the
adaptive rate control, due to non-zero propagation
delays, will be experienced by sources with the
smallest time constant (one slot). For this reason —
as well as because of sources with time constant
one has been considered in almost the entire past
work — the study in Section 3 is carried out for
sources with time constant one. The magnitude of
the impact of the diversified non-zero propagation
delays is expected to be reduced in the presence of
the slower sources. Finally, some concluding re-
marks are presented in Section 4.

2. Adaptive rate control for slow sources
The model considered in this work is shown in

Fig. 1 where a number of sources share a common
network access node. The access node is modeled
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Fig. 1. Queuing model for the study of the impact of the source
time constant on the effectiveness of the adaptive rate control.
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by a finite buffer receiving deterministic service.
Sources are assumed to be located at the same
physical distance from the network access node
and, thus, have the same propagation delays.

Under an adaptive rate control mechanism, a
traffic descriptor to be modulated is identified (for
instance, the arrival rate) and sources adjust its
value dynamically, based on either explicit or im-
plicit information about the state of the network.
The network state is determined in terms of some
pre-identified state descriptor such as the node
load or buffer occupancy. By comparing the state
descriptor to a threshold value, the network state
is determined to be in either an underload or an
overload state.

The network state is reviewed periodically over
intervals of length T, referred to as update inter-
vals. At the end of each update interval, the net-
work state is communicated to the traffic sources.
Either the same or different update intervals may
be used to update the sources sharing the network
node. Individual sources receive the network state
information after a time interval equal to their
respective propagation delays and respond by
modulating the pre-identified traffic descriptor.
The modulated traffic is received at the network
node a round-trip propagation delay time after the
network state information is sent. The tradeoffs
involved in the choice of the length of the update
interval can be found in [4]; the impact of the se-
lected update interval on the performance of the
individually controlled connections will be con-
sidered in Section 3. In this section, all sources are
assumed to be updated according to the same
update interval which is equal to the round trip
propagation delay (7, = Ty).

In this work, sources modulate their (instanta-
neous) transmission rates based on the state of the
network buffer. A two-level (Binary) adaptation
scheme is considered, where sources switch to a
high arrival rate (4,) if the network is underloaded
and switch to a low arrival rate (4) if the network
is overloaded. Notice that an additive increase
multiplicative decrease rate control system may
not be exactly implementable by most switching
architectures due to the floating points multipli-
cations required in decreasing the rates of indi-
vidual virtual circuits and the inherent associated

scheduling difficulties. A typical implementation
may use built-in tables of possible arrival rates
corresponding to an M-level adaptive rate scheme.
The two level scheme (M = 2) presented in this
paper is chosen for tractability, and to help gain
insight into the associated design and performance
issues. The precise description of the arrival pro-
cess considered in this section is presented in the
following subsection.

2.1. The arrival process

Arrivals from the /th controlled source can be
represented by a two state process {r'}, ' € {0, 1}
and is specified by the set of parameters {77,
SH(k): 0<i<1}. T! is an integer constant which
represents the minimum time between consecutive
arrivals (potential arrival instants) from the /th
source and will be referred to as the time constant
of the I/th source; f/(k) denotes the probability
mass function (PMF) for the number of cells
generated at potential arrival instants (boundaries
separated by the time constant) when the arrival
process of the /th source is in state i, i € {0,1}.
State transitions for the arrival process are gov-
erned by the two-level adaptive rate control
mechanism — as determined by the state of the
network-state descriptor fed back to the individual
sources — and occur at time instants coinciding
with the boundaries of the update intervals.

Note that by appropriately choosing 7., the
considered source model is capable of modeling
the cell arrival dynamics at different time scales.
For instance, setting 7, = 1 leads to the regular
arrival processes considered in [20]. Also, setting
fl(k) = fl(k) leads to the non-deterministic peri-
odic arrival process considered in [24].

In addition to the above parameters, let ¢/,
1 <! < T, denote the time instant at which the /th
source is activated. ¢’ represents the phase differ-
ence between the different arrival processes and
will be referred to as the initialization time of the
/th source. N such source with the same time
constant 7, are said to be fully synchronized if
Cl = e . = CN.

The aggregate arrival process from N synchro-
nized sources with time constants 7/ = k; min{7/},
0<j<N can be completely described by the
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parameters {7, F;(-): 0<i<1}, where I, = LCM
{T’} (the Least Common Multiple) and F;(-) is the
N-fold convolution of the individual PMFs fi(-).
N; and A; will be used to denote the maximum
number of cell arrivals per slot and the average
arrival rate from state i of the aggregate arrival
process, respectively.

2.2. Queuing analysis

In this subsection, the queuing analysis is car-
ried out in discrete-time. Time is slotted and a slot
duration is equal to the transmission time of one
cell. Although the provided analysis can be used to
study sources with different time constants, all N
sources considered will be assumed to have the
same time constant 7, and the same propagation
delay 7 in order to facilitate the presentation and
the discussion of the numerical results. The round-
trip propagation delay 7j is assumed to be an in-
teger multiple of the time constant 7, that is,
Ty=M xT,, M € Z", where Z* is the set of pos-
itive integers. Similar analysis can be adopted for
thecase . =M x Ty, M € Z*.

Time is divided into frames of length 7y slots;
each frame is divided into M subframes, each of
length T slots. Cell arrivals from the controlled
sources arrive at a finite size network buffer of ca-
pacity Q and are served according to the FIFO
service policy. Arrivals from individual sources
occur at subframe boundaries and are assumed to
follow a Bernoulli PMF with rate o; when in state 1
and rate oy when in state 0. Therefore, the aggre-
gate arrival process at subframe boundaries is Bi-
nomial with parameters N, o; (N, o) when in state
1 (0). The aggregate arrival rate from state 1 (0) is

5 NOC] NOC()
A = /10: .
T. T.

Let {qi}, -, be the buffer occupancy process em-
bedded at subframe boundaries with state space
§¢=1{0,1,...,0}. Let gy, be the buffer threshold
value indicating the network state as overloaded
(¢ = qu) or underloaded (¢ < quw). Let {r}, -, be
the arrival process embedded at the subframe
boundaries with state space S = {0,1}. Note that
since the duration of the frame is equal to the
duration of the update interval (7y slots), state

transitions of the process {r;},., occur only at
frame boundaries. Due to the propagation delay,
the state of process {r},., at the beginning of
frame k is determined by the state of the buffer
process at the beginning of frame k£ — 1. Thus, the
arrival process evolves as follows:

P 1 if gx < g,
k+l 0 if qk = qth-

The system state can be defined at frame bound-
aries in terms of the quantities (74, ¢;). Given that
re = i at the beginning of frame k, the finite queue
will evolve over frame k under the i.i.d. batch ar-
rival process with PMF F(-). It is easy to establish
that the stochastic process {rx,qx}; > o, embedded
at frame boundaries, is a finite state Markov chain
with state space S, = {(r,41): 0<r <1, 0<
Q< Q}

The probability that the Markov chain moves
from state (7, q;) at the beginning of the kth frame
to state (r,,q») at the beginning of the (k + 1)th
frame will be denoted by p(ri, q1,72,¢>) and can be
evaluated recursively as follows:

P(r1,q1,72,q2)
0 if (g1 < quw), (r2=0),
=40 if (1 = qu), (m=1),
X (q1,92) otherwise,

where p(q1,¢,) denotes the probability that the
process {gx}, > , moves from state ¢, to state g, in
M subframes under the assumption that process
{re}i > remains unchanged over this transition.
The i.i.d. arrivals — occurring at the subframe
boundaries — will be determined by the PMF F; (-).
P%(‘]l,%)v 0<q1, <0 ~— called the M-
subframe-step transition probability under state 7|
— are ecasily calculated in terms of the 1-subframe-
step transition probabilities p) (q1,¢2), 0<qi,
¢>» < Q which are derived as follows. Consider the
following definitions:
o p. (q1,1) denotes the probability that the buffer
occupancy process moves from state g, to state
[ over the first slot of a subframe under state
ry, r € {0, 1}, qul, Z<Q
e 5*(I,q,) denotes the probability that the buffer
occupancy process moves from state / at the
end of the first slot of the current subframe to
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state ¢, at the end of the current subframe
(0< 1, g2 < Q). Notice that no arrivals can occur
during this transition due to the source time
constant and that the buffer occupancy can only
decrease.

Then the 1-subframe-step transition probabilities

P (q1,92), 0< q1,q2 < Q, are given by

Zprl a1, )P (1, ¢2),

Pr] (91,92)

where p*( , 0< 1, ¢, < Q, are given by

(1—61275T—1)

ifgp=21(-qgp="T-1),
lfQQ—O (l<T—1)

lfqz/
142

—_—— O

1,q2)
andp,1 q1, 1), r €{0,1},0< gy, < Q, are given by
F

Br(qi 1) = F, (1= g1 +1) + F,(0) - 1y, 1=y,
0<q1<Q, max(0,q; —1)<I<0—1,
Ny,
ﬁ:l(qlag): Z El(l)’
1=0—q1+1

where 1y, -y is an indicator function that takes
the value 1 if ¢; + /=0 and takes the value 0
otherwise, and N, denotes the maximum number
of arrivals, as determined by the state of the ag-
gregate cell arrival process, 7.

The stationary probabilities of the Markov
Chain {ry,q:} (n(r1,q1), 1 € {0,1}, 0<¢1<0Q)
can be easily computed by solving the system of
linear equations {PIT =11, Ile' = 1}, where P is
the transition probability matrix with elements
given by (1), I is the stationary probability vector
and e is the unity vector.

It should be noted that since the Markov chain
{r1,q+} is embedded at the frame boundaries, the
complexity in computing its stationary probabili-
ties by solving the system of equations
{PIT =11, II¢' = 1} is independent of 7. As a
consequence, systems with relatively large propa-
gation delays may be considered without signifi-
cant numerical complexity. A large value of T,
however, may indirectly impact on the numerical
complexity through the number of subframes M,
but the potential complexity in calculating the M-
step transition probabilities is not the limiting
factor of the presented numerical approach.

2.3. Cell loss probability

In this subsection, the cell loss probability of an
arbitrary arriving cell is derived. In the following,
let »; be the state of the arrival process at the be-
ginning of the current frame. Let ¢; be the buffer
state at the beginning of the kth subframe in the
current frame. Let we(ry,i k), 1<k<M, be a
random variable describing the number of cells
lost over the period starting from the beginning of
the kth subframe till the end of the current frame
(over a period of M —k subframes). Clearly,
we(ri, q1, 1) describes the number of losses over a
period of a frame.

It can be easily shown that the loss probability
(L) can be derived in terms of the expected value of
we(, -, 1), wr(+, -, 1), as follows:

Z(rl ql)gsp ﬂ(”hq}) (’”17417 1)

L =
Z(rl q1)ESp 7[(1’1 s QI)/Lr] T4

The random variables we(ri,qi,k), 1<k<M,
(r1,q1) € S, and their expected values can be de-
rived recursively by noting that the number of cells
lost starting from the kth subframe in the current
frame till the end of the frame is equal to the
number of cells lost over the kth subframe plus
the number of cells lost from the beginning of the
(k 4+ 1)th subframe till the end of the frame. Let
ws(r1,q2) be a random variable describing the
number of cells lost during the £th subframe at the
beginning of which the buffer occupancy is
q2, (ﬁ»Qz) S Sp. Then:

Forgi,q2 €40,...,0},r1 €{0,1}, 1<k<M —1:

Wf(rlaqlak) = Ws(rlaql) +Wf(rlaq27k+ 1)
. g 1
with probability p, (91,¢2),

and
we(ri,q1, M) = wy(ri, q1).

The probabilities p} (q1,4,) were computed in
Section 2.2. The random variables wy(+, -, -) needed
for the computation of we(-,-,-) can be evaluated
as follows. Let a; denote a random variable de-
scribing the number of arrivals over the first slot of
the subframe.
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For r, € {0,1}, q1 € {O,,Q}

(I-0+q1—-1)
if =1 (Q—qi+1)<IN,
0 otherwise.

Ws(rlaql) =

By considering the expectation of the above
equations, the following are obtained:

Ny,

w(rq) = Y, (I—=0+q—1)E,(]).

1=0—i+1
Forgq, €{0,...,0}, r1 €{0,1}, I<k<M —1:

Wf(”l,‘]hk) :Ws(rl)ql)
+ Zprll (quqz)wf(”1>CI2ak+ 1) (2)

q2

and
Wf(rhqu):WS(rbql)‘ (3)

By computing we(ri, ¢, M), from (3), and back
substituting in (2), w(ry,qi, 1) can be obtained.

2.4. Numerical results and discussion

The numerical results presented in this section
are derived assuming 2-state Markov modulated
Binomial arrivals at subframe boundaries with
parameters (N, 4o/N) under state 0 and (N, 4,/N)
under state 1.

The induced cell loss probability as a function
of the round-trip propagation delay 7, for vari-
ous values of the common source time constant
T. are shown in Fig. 2. The results have been
obtained for 1, =09, =0, Q=70, g4 =40
and N = 40. As expected (and established in past
research), the effectiveness of the adaptive feed-
back-based rate control decreases as Ty increases,
as indicated by an increased value of the induced
cell loss probability. The results also indicate that
for a fixed value of Ty, the effectiveness of this
control scheme increases as the source time con-
stant increases. This implies that the performance
of an adaptive feedback-based rate control
scheme may be substantially underestimated if
the time constant of the arrival process is as-
sumed to be one (7, = 1). Considering a different
point of view, assuming 7. = 1 for slow sources
may limit the range of applicability of this rate

Loss Probability

4 - — Te=1
107%y — Te=10
— Tc=20

40 60 80 100 120 140
Td

Fig. 2. Loss probability versus the propagation delay for var-
ious source time constants.

control scheme. For instance, this rate control
policy can guarantee a cell loss probability of
10~ only if Ty<60 if T, =1, while the same
policy will still provide the same cell loss proba-
bility guarantee for much higher values of Ty
(T4 = 150) for 7. = 10. This range is further ex-
tended for lower values of T..

This behavior can be explained by noticing that
there are two primary sources for cell loss in the
considered model: the first is the traffic in transi-
tion (in the feedback loop/pipe) that may overflow
the buffer after the queue threshold is exceeded
while sources switch to the lower arrival rate. The
second is the arrival of batches of cells separated
by the time constant of the arrival process. One, or
the other, of the cell loss components induced by
the above two sources may dominate depending
on the time constant of the arrival process and the
available buffer size. A slow process (larger T;)
having the same arrival rate as that of a faster
process (shorter 7.) submits larger batches sepa-
rated by its “larger” time constant. Consequently,
if the available buffer size is not large enough to
accommodate the larger batches, the losses in-
duced due to the batch arrivals from the slower
process will be more significant than that induced
by a process having smaller batches. For larger
buffer sizes however, the batch loss component is
absorbed by the available buffer sizes and the cell
losses are primarily due to the traffic in the pipe.
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This traffic is less from a slower process and
therefore the lower losses and the observed im-
proved effectiveness of the adaptive rate control.

The impact of the buffer capacity Q and the
source time constant 7, on the induced cell loss
probability is shown in Fig. 3 for a fixed value of
Ty = 30; the other parameters were set to
A1 =094, 1o =0.9, g2, =20 and N = 40. Notice
that for 7, > 1, the effectiveness of the adaptive
rate control scheme can either increase or decrease
compared to that for 7. = 1. When the buffer ca-
pacity is less than N (approximately) the effec-
tiveness of the adaptive rate control scheme
decreases as the source time constant increases.
The opposite behavior is observed for buffer ca-
pacity values exceeding (approximately) V. In view
of the fact that the number of sources coincides
with the maximum value of the cell batch size, it
may be concluded that as long as sufficient buffer
space is available to absorb a single batch (called
batch-absorption buffer capacity value), the effec-
tiveness of the adaptive rate control will increase
as the source time constant increases. Considering
a different point of view, a fixed increase in the
buffer capacity (for a fixed value of 7y and buffer
capacities exceeding the batch-absorption value)
will result in much larger improvement of the ef-
fectiveness of the adaptive rate control scheme for
slower sources.

Loss Probability

s s s s s s s
30 35 40 45 50 55 60 65 70
Q

Fig. 3. Loss probability versus buffer capacity for various
source time constants.

The impact of the number of controlled sources
N and the source time constant 7, on the induced
cell loss probability is shown in Fig. 4, for Ty = 30.
The other parameters were set to Q =50,
A =094, =09, gu =30. The same conclu-
sions can be drawn here as from Fig. 3. When N is
(approximately) less than Q, the effectiveness of
the adaptive rate control scheme increases as the
source time constant increases. The effectiveness
decreases when N (approximately) exceeds Q. One
significant conclusion from these results is that for
a fixed cell loss probability and (sufficiently large)
fixed buffer capacity, a larger number () of slow
sources (compared to the number of sources with
T. = 1) can be supported, provided that N remains
below the buffer capacity.

Notice that for the results presented thus far, it
is assumed that the controlled sources are syn-
chronized (¢' =---=¢"), ie. arrivals from the
aggregate process occur in Binomially distributed
batches with time constant equal to that of the
individual sources. This may represent a worst
case scenario in terms of queue performance. The
impact of the synchronization of the different
sources on the induced cell loss probabilities for
different values of the buffer capacity (Q) is illus-
trated in Fig. 5. N = 60 sources are adaptively
controlled; each of the individual sources has a
time constant TC/ =30, 1 <j<60. The remaining

Loss Probability
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.
. - — Te=1
5
107 F . — Te=10
. ©+ Te=20
107° . e Tc=30
.
1071 . . . . . .
40 50 60 70 80 90 100

N

Fig. 4. Loss probability versus the number of controlled
sources for various source time constants.
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Fig. 5. Impact of source synchronization.

parameters are set to 4; = 0.94, 4 = 0.9, g4, = 30
and Ty = 30. Several scenarios for the distribution
of the initialization time of the individual sources
are considered as follows:

e All sources are assumed to be synchronized,
thus leading to an aggregate arrival process with
T. = 30 and N = 60.

o Initialization times of the sources are assumed
to be ¢/ =1, 1<j<30 and ¢/ =15, 31<;<
60, thus leading to an aggregate arrival process
with 7, = 15 and N = 30.

o Initialization times of the sources are assumed
to be ¢/ =1, 1<;<20, =11, 21<;<40
and ¢/ =41, 1<;j<60, thus leading to an
aggregate arrival process with 7, =10 and
N =20.

o Initialization times of the sources are assumed
to be ¢/ =, 1<j<30 and ¢/ =j—30, 31<
j <60 thus leading to an aggregate arrival pro-
cess with 7, = 1 and N = 2.

Notice that the last case (7. = 1 and N = 2) should
not be confused with the classical assumption of
unity time constant (7, = 1 and N = 60) shown in
Fig. 6. The overlap in effectiveness of the rate
control for T, = 30 is as explained before. As ex-
pected spreading the initialization times of the
different sources leads to lower loss probabilities
and consequently increased applicability of the
adaptive rate control.
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Fig. 6. Impact of source synchronization.

3. Adaptive rate control in the presence of diversified
propagation delays: fairness issues

In this section, the impact of the difference of
propagation delays on the relative performance of
individually controlled connections is considered.
In order to facilitate the presentation, all con-
trolled sources will be assumed to have a unity
time constant (7, = 1). As indicated in the intro-
duction, the objective of this study is to quantify
the impact of diversified propagation delays on the
effectiveness of the most commonly proposed
adaptive rate control scheme (source time constant
equal to one), which is also expected to emphasize
the most the unfairness issues based on the study
in the previous section.

The model considered in this section is shown in
Fig. 7 where a number of sources share a common

b—— T2 —

Local sources l ]

—=11l

" T./2 S

Fig. 7. Queuing model for the study of the impact of the di-
versified propagation delays on the effectiveness of the adaptive
rate control.

Remote Sources
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network access node. The access node is modeled
by a finite buffer receiving deterministic service.
Sources are divided into two groups: a group of N’
local sources which has a round-trip propagation
delay of T! and a group of N' remote sources
which has a round-trip propagation delay of T7j.
The length of the update interval of the local (re-
mote) sources 7' (T7) is taken to be equal to the
round-trip propagation delay of the local (remote)
sources 7; (7;). With minor changes, the pre-
sented analysis can be used when both the local
and remote sources are updated at the same up-
date interval (7, = 7). Numerical results will be
derived for both cases in Section 3.5.

It is further assumed that the adaptive rate
control mechanism operates synchronously, that
is sources within the same group switch to the
low or high rate at the same instant. Therefore all
sources within the same group are in the same
state and thus the arrival process from the local
(remote) sources can be represented by a two
state process r' (1), r' (r") €{0,1}; sources
transmit at a rate Ao (4;) when in state 0 (1).
Transitions between the two states are controlled
by the network state information. The aggregate
traffic (arrival process) delivered to the network
may be described by a two-dimensional process
(r',r"), the state space of which is S, = {(0,0),
(0,1, (1,0), (1, 1)}.

If both the local and remote sources have the
same propagation delays (7} = T3) and are up-
dated with the same update interval, then due to
the synchronous behavior of the considered
adaptive rate control, the state space of the ag-
gregate arrival process will be limited to S, =
{(0,0),(1,1)}. Consequently, the average arrivals
from both sources should be equal at any time
instant and hence the throughputs should be
equal. However, due to the adaptive rate control,
the total arrival process will oscillate between the
two states (0,0) and (1, 1). These oscillations have
been shown to be a characteristic of any adaptive
rate control with a non-increasing monotone
control function of the network-state descriptor in
[25] and that the system is stable in the sense that
the arrival processes and the state of network-state
descriptors will be confined to a small neighbor-
hood of some operating point.

In the presence of unequal propagation delays,
the state space of the aggregate arrival process is
S,. The throughput of the local (R') and remote
processes (R") will depend on the time spent in the
states (0, 1), (1,0). Again due to the synchronous
and distributed nature of the considered algorithm
when all sources are updated with the same update
interval, it can be seen that whenever the local
sources switch to some state i, the remote sources
will switch to that same state i, 7} — 7, time slots
later. As a result, local and remote sources will
achieve identical throughput, after some transient
time period. This can be observed in the simula-
tion trace in Fig. 8, where the network load is used
as the network-state descriptor, infinite buffers are
employed, T =2, T} =5, 4 =0.4 and 4, =0.1.
The arrival process of the remote sources lags that
of the local sources by the difference in propaga-
tion delays (as can be seen from the lower two
graphs in Fig. 8). However, the average through-
puts are the same and the rate control scheme is
fair in that sense. Connections considered in this
work are assumed to have comparable life time
durations and therefore transient effects due to the
establishment and disconnection of new connec-
tions are not considered.

The presence of infinite capacity buffering
guarantees that the above mentioned “lags” in the
throughput will be “absorbed” and the resulting
throughput will be equal to the arrival rate. This is
not the case when finite buffers are employed. As a

1 T T T T T T T T T
LN A LT R Y B A o A O A R IR I B
'.\.’ I-[' :.’.’ !"; PRTE TV B O B RS AR
.,\.|.\-1-:\‘ IS AN AR

Fig. 8. Simulation trace of the individual throughputs.
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result, cell losses occur leading possibly to unequal
throughputs and the issue of unfairness emerges.

Consider, for example, the realization of the
buffer occupancy process under the adaptive rate
control scheme in Fig. 9. The network buffer oc-
cupancy is taken to be the network’s traffic de-
scriptor and 4y = 0, that is, sources switch off to
relieve the network congested state. At time in-
stant ¢, the network-state indicator (buffer occu-
pancy) is below the threshold (¢4), and a rate
modulation cell is sent to the sources indicating
that the network node is underloaded. Sources
receive this cell after their respective propagation
delay and respond by increasing their arrival rate.
At time t, = £, + T/, the higher local arrival rates
reach the network node, and at # =¢ + T the
higher remote arrival rates reach the network
node; the buffer occupancy maybe increasing. At
time instant 4, the buffer threshold is exceeded and
a rate modulation signal is sent to the sources in-
dicating that the network is overloaded. During
the interval (I), the buffer capacity may be ex-
ceeded and losses may occur. Notice that losses
may occur during that interval (I) from either of
the two source groups since they are both active.
After time instant s =4 + T d’ , arrivals occur only
from the remote sources (4y = 0) and therefore any
cell losses that occur during the time interval (II),
till remote sources cease to transmit, will be losses
associated with the remote sources only. Thus,
remote sources may suffer higher losses.

The potential for unfairness, due to distance,
emphasizes the importance of the performance
evaluation of adaptive rate control schemes. Since
cell losses are also affected by the buffer manage-
ment policy, the performance of the adaptive rate

t1 . t2 t3 ts ts te
o—'I;l-.
>-—— ﬂ —

Fig. 9. A realization of the network buffer.

control schemes will be considered under several
buffer management policies described in Section
3.3. Note that in general, when two arrival streams
have different arrival rates in any time interval
(slot) and the buffer management policy treats all
cells in the same manner, the number of cells lost is
expected to be higher for the stream with the
higher rate. When the propagation delays are
equal, losses are expected to be equal since the
arrival rates are equal at any time instant. This will
be also shown later in Section 3.5.

In the next subsections a queuing analysis is
presented for the above system and the individual
cell loss probabilities are derived.

3.1. Queuing analysis

In this section, the queuing analysis is carried
out in discrete-time. Time is slotted and a slot
duration is equal to the transmission time of one
cell. The propagation delay of the remote sources
T; is considered to be an integer multiple of that of
the local sources, that is, T} =M x T}, M € Z*,
where Z* is the set of positive integers. Time is
divided into frames each of length T} slots; each
frame is divided into M subframes, each of length
T} slots. Cell arrivals from both source groups
arrive at a finite size network buffer of capacity Q
and are served according to the FIFO service
policy. If the number of cell arrivals over a slot
exceeds the available buffer space, the buffer
management policy determines which cells to be
admitted to the queue. Several buffer management
policies are considered in Section 3.3.

Arrivals from the local (remote) sources are
represented by a two state aggregate process
{r'}, r €{0,1} ({r}, r € {0,1}), that will be
referred to as the local (remote) arrival process.
Let F'(k) (F'(k)) denote the probability mass
function (PMF) for the number of cells generated
in each slot when the local (remote) process is in
state i,i € {0,1}. N/ (NI) will denote the maxi-
mum number of local (remote) cell arrivals per
slot from state i. State transitions for the local
and remote arrival processes are governed by
the two-level adaptive rate control mechanism
as determined by the state of the network-state
descriptor.
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Let {qi},~, be the buffer occupancy process
embedded at subframe boundaries with state space
§9 ={0,1,...,0}. Let gy, be the buffer threshold
value indicating the network state as overloaded
(¢ = qw) or underloaded (¢ < gw). Let {ri}, -,
({r}}¢>o) be the local (remote) arrival process
embedded at the subframe boundaries with state
space S = {0, 1}. Note that since the duration of
the subframe is equal to the duration of the update
interval of the local sources (7] slots), state tran-
sitions of the process {r'},., occur only at sub-
frame boundaries. Similarly, since the duration of
the frame (M subframes) is equal to the update
interval of the remote sources (7 slots), state
transitions of the process {r},., occur only at
frame boundaries. Notice also that due to the dif-
ference in propagation delays the state of process
{ri}s> o at the beginning of subframe k is deter-
mined by the state of the buffer process at the be-
ginning of subframe k& — 1, while the state of
process {r'},. , at the beginning of the same sub-
frame is determined by the state of the buffer pro-
cess at the beginning of subframe (k — M). In order
to obtain a system state description that evolves
according to a Markov process embedded at sub-
frame boundaries, the following two indicator
processes are introduced to keep track of the state
of the remote process at subframe boundaries:
® {I;},-,:itis an indicator process describing the

index of subframe k, that is, its position within

the current frame; its state space is S/ =

{0,1,...,M —1}.
® {Ci}. >, itis an indicator process — defined pre-

cisely below — embedded at subframe bound-

aries, which carries the state of the remote
process at the first subframe (subframe 0) to
the current subframe. It may change at subframe

0 and remains unchanged for the following

M — 1 subframes; its state space is S = {0, 1}.
Thus the key processes evolve as follows:

Ik+1 = (]k + l)modM,
! { 1 if qk < qGin,
T = .
0 if dk Z G,
1 if 9k < Gt and [, = 0,
Ck+1 = 0 if qk = qth and Ik = 0,
C, if I #0,

rp L #M-—1,

14 =
o G ifL=M-1.
Given that i =i and 7} = j at the beginning of
subframe k, the finite queue will evolve over sub-
frame k under the i.i.d. batch arrival process with
PMF obtained through the convolution of the
PMFs F/ and Ff (F(i,j,-))- It is easy to establish
that the stochastlc process {I, rk, C, i, Gk} 00
embedded at subframe boundaries, is a finite state
Markov chain. Its state space is given by S, = S
USiuS,U---US) ., where
SO = {(117’{5(:177{7611): [1 = 07 (rgvcl) € Sjv

res, q €89},
Sl = {(11,}"{, Clﬂ’iﬂl): Il = 1> rll- S S7

(Chri) S Sja q1 € SQ}7
Sn = {(1],1”{, C],I"i,ql)l I, = n, I”li S S,

CieS, reS,q €S, 2<n<M-—1,

and (1;,7%,Cy, 1, q1) denotes the current state of
(Iy, 7%, Ci,rt, qx). Note that SP does not contain
impossible states contained in the product space of
the processes {Ii, Ci,r}, 74, qr}y >, and thus has
reduced cardinality (memory requirements).

The transition probabilities of the above Mar-
kov chain can be expressed recursively as follows:

p([17r{7cl7r{aql7[25C27r£7r§aq2)
0 if b # (I, + 1)mod M,
B p]](l"g,C],l”{,Q],Cz,VE,I’é,C]z), otherwise,
ph(ri?Cl)r{aq17C2ar£aré7q2)
0 if (0<ShH<M=2), (] #15),
pjh,{(chl"{,ql,Cz,Vé,C]z) otherwise,
plwﬁ(clvrivqlaC27réaq2)
{o if (1<, <(M—2)), (Ci #C),

pr (r,q1,75,q2) otherwise.
0 if (¢1 < qm)
(r; =0),
pe(rl 15, q2) = < 0 if (> gu)
( = 1)
Dt (q1,92) otherwise.

where P ,/(ql, g») are the T)-step transition prob-
abilities 'from state q1 to state g, for the finite
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queue, under the i.i.d batch arrival process speci-
fied by F(rl,r!,-). The one-step transition proba-
bilities Py (g1,92), 0< g1, g2 < Q, are given by

For 0<¢;<Q and max(0, ¢ — 1)< <
Q - 1’
P (q1,42) = F(ri,7}, ¢ — q1 + 1)

JrF(I’{,I’i,O) : 1{q1+q2:0}7

where 1, 4,-0)} 18 an indicator function that takes
the value 1 if ¢, + ¢, =0 and takes the value 0

otherwise.
For 0<q1 <0,

N

Y. F(irD,

1=0—q1+1

ﬁr}r{ (ql ) Q) =

where N = N, + N} denotes the maximum num-
ber of arrivals, as determined by the aggregate cell
arrival process, when the local and remote arrival
processes are in states 7| and 7}, respectively.

The multi-dimensional state-space of the pro-
cess (I, 7, Cy, 7, qx) can be mapped lexicographi-
cally into a one dimensional space /. Due to the
periodic evolution of [;, the transition matrix of
the one dimensional process /;, P, takes the ca-
nonical form of a periodic Markov chain of period
M given by

0 P, 0 --- 0
0 o P - 0
e (4)
0 0 0 - Py
Py, 0 O --- 0

where the matrices P;, i€ {0,...,M —1} are
those corresponding to state transitions from

states (i,-,-,-,+) to states (j,-,-,-, ), wWhere j=
(i4+ 1)mod M. Each P, is of order m; x m;,; with
my=4(Q+1), m =4Q+1),
m,=80+1), 2<n<M-1.

The stationary probabilities of the process /;, or
equivalently =(Z,7,C,r',i) can be obtained by
utilizing Theorem 7.1.6 in [26]. According to this
theorem, any finite irreducible periodic Markov
chain, with transition matrix such as in (4), has a
unique stationary probability vector, IT = (I, . ..
I, ,)’, given by

1 ’
m-— HOH’I---H;H] ,

where II; is the unique stationary probability
vector obtained by solving AJII; = I1;, with the
normalizing condition ITe = 1, where: A; =P; - --
Py1-Py---Py (=1,....M—1), Ay=Py---
Py,_; and e is a unity vector. Notice that each A; is
square and of order m;. Thus, the stationary
probability vector of the transition matrix P in (4),
is obtained by solving M systems of m; linear
equations each, 0 <i< M — 1, the largest of which
is composed of 8(Q + 1) equations. This is instead
of solving the larger system of order |S|=
8(M —1)(Q0—1). This effectively eliminates the
dependence of the computational storage com-
plexity on the ratio of the propagation delays
M = T;/T;. Notice that since the Markov process
1s embedded at the subframe boundaries, the
complexity is independent of 7. Thus it is possible
to solve for systems with both large local and re-
mote propagation delays.

3.2. Per-session cell loss probability

In this section, the cell loss probability of an
arbitrary cell from the local arrival process is de-
rived. The cell loss probability for the remote ar-
rival process and the overall cell loss probability
can be derived in a similar fashion.

In the following, let ', be states of the local
and remote arrival processes at the beginning of
the current subframe, respectively. Let i be the
buffer state at the beginning of the kth slot in the
subframe. Let wy(r/, 1", i,k), 1 <k < T! be a random
variable describing the number of local cells lost
over the period starting from the beginning of the
kth slot till the end of the current subframe (over a
period of T} — k slots). Clearly, wi(r',7",i,1) de-
scribes the number of losses over the period of the
subframe. It can be easily shown that the loss
probability of the local sources (Z;) can be derived
in terms of the expected value of w(.,.,.,.),
Wi(ey - -), as follows:

Z(n,r'AC,rl.i)GSp TC(”’ rr7 C7 rl’ i)Wl(rr’ rl7 i7 1)

L=
Ry ]
Z(n,r",Cr’,i)eSp TC(I’l, rr’ C7 r 71)/LV] Td
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Let w; be a random variable describing the num-
ber of local cells lost during the kth slot. The
random variables wi(+/,7",i,k) and their expected
values can be derived recursively by noting that the
number of cells lost starting from the kth slot in
the current subframe till the end of the subframe is
equal to the number of cells lost over the kth slot
plus the number of cells lost from the beginning of
the (k + 1)th slot till the end of the subframe, as
follows:

Forie€{0,...,0}, 1<k<Ti-1:
wi(r!, i k)

_ 0w k1) i i), £ 0,
m+w(r' ", 0,k+1) if w=m,0<m<N),
m if wy=m, 0<m<N,
Wl(rlvrraiaTci){ : . , "
0 otherwise.
Let p(m,i,r',r) denote the probability that
wy; = m, the buffer occupancy is i and the arrival
processes are in states »/,r", respectively. The
probabilities pj(m,i,r!,7"), needed for the evalua-
tion of w(.,.,.,.), depend on the buffer manage-
ment policy and will be derived in the next
subsection.

3.3. Buffer management policies

The buffer management policy determines the
number of cells from each of the local and the
remote arrival processes which are discarded over
any slot. It is therefore necessary to consider
the impact of the buffer management policy on the
per-session performance in conjunction with the
rate control scheme.

Let i denote the buffer state at the beginning
of the current time slot. It is assumed that the
cell receiving service during that time slot leaves
the queue immediately at the beginning of the
slot and thus the remaining buffer capacity that
can be allocated to arriving cells during the
current time slot is Q—i+ 1. Let & and %, be
the number of local and remote cells arrived
during the current time slot, respectively. The
local process cell discarding probabilities
p(m,i,r' r"), introduced in Section 3.2, can be
evaluated as

pi(m, i, I )

—ZZM [ .7 17| e ) () (k)

=0 k=

where the conditional probabilities py[(m,i,r!, ")

(k, k)] are determined by the adopted buffer
management policy. A number of policies are
considered in the following subsections.

3.3.1. Equal remaining capacity (ERC) policy

According to this buffer management policy,
the remaining number of available buffer posi-
tions at any time slot is split equally between the
two arrival processes, or equivalently the buffer
management policy assigns every other position
to one of the two contending processes. If some
of the buffer positions allocated to one of the two
processes are not used, they may be utilized by
the other arrival process. If the number of re-
maining buffer positions is an odd integer, then
the remaining buffer positions cannot be split
equally between the two arrival processes. The
remaining buffer position in this case may be
randomly assigned to any of the two processes or
may always be assigned to the same process; the
former case is considered here. Consider the fol-
lowing quantities which are used in the derivation
of cell losses:

s=(0—-i+1))2 if (Q—i+1)/2e€Z",
sa=[(Q—-i+1)/2] if (Q-i+1)/2¢Z",

sw=(0—i+1)/2] if (Q—i+1)/2¢&Z".

The number of cells lost from the local arrival
process (/) can be determined by

For ke{0,...,N}, ke{0,....Ni}, ie
{0,...,0}:

For (Q—i+1)/2¢Z":

I [k — sy — [su — k| 7]"  with probability 0.5,
"\ Tk —su—[sw — k71" with probability 0.5.

For (O—i+1)/2eZ":
h=[kh-s—[s—k] "

The computation of the probabilities pi[(m,i, ',
)| (ki, k;)] follows easily. The number of cells
lost from the remote sources /; and the proba-
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bilities p;[(m,i,7',7")|(k, k)] can be found simi-
larly.

3.3.2. Random allocation (RA) Policy

According to the random allocation policy,
two bounds on the number of local (remote) cells
that may be lost during the current time slot are
defined: an upper bound m, and a lower bound
my. The number of local (remote) cells lost m’
(m") is uniformly distributed between the two
bounds. Since the number of local cells lost
cannot exceed either of the number of local cells
arrived during the slot or the total number of
cells lost, then the upper bound on local cells lost
m! is min{k, k+k — (Q—i+1)}. The lower
bound m! is max{0, k—(Q—i+1)}, where
ki—(Q—i+1) is the total number of cells lost,
ki + k. — (Q —i+ 1), minus the maximum number
of cells that can be lost from the remote sources
(k). Thus:

pil(m, i1, )| (ki k)

ifh+k=Q—i+14+m),

I _ il
mi —ml, +1
i i
my, <m< my,
0 otherwise

and p;[(m,i,7',r")|(k, k)] can be found similarly.

3.3.3. Fixed distribution (FD) policy

This policy favors certain loss patterns over
others. As with the random policy, an upper
bound m, and a lower bound m, are identified.
However, instead of the uniform distribution of
losses between the two bounds in the random
policy, a specific distribution g(m), my, <m < my is
identified and cell losses are distributed accord-
ingly. Thus

pllm, i, r )| (s k)]
gm) fh+k=(Q—-i+1+m),
= mévémémfl,

0 otherwise,

pel(m,i, 7', 17)|(ki, k)] can be found similarly. g(m)
may be chosen to minimize the difference between
losses for the remote and local processes. A
simple g(m) is considered in this work, where

losses are split equally, if possible, whenever they
occur. The policy considered distributes the cell
losses equally between the two processes. As-
suming that a total of I'=k+k —(Q—i+1)
cells will be lost in the current slot, the policy
operates as follows:
For I'/2 € Z*:
I, = min{max(/'/2,my), my}.
For I'/)2 ¢ Z*:
minmax([/' /2], my), my)
with probability 0.5,
minmax(|/' /2], my), my)
with probability 0.5.

1

The computation of the probabilities pi[(m,i, ',
)| (ki, k;)] follows easily. The number of cells
lost from the remote sources /; and the proba-
bilities p;[(m,i,#,7")|(k, k)] can be found simi-
larly.

3.4. Equal update intervals

The analysis developed earlier can be simply
used when both the local and remote sources
are updated at the same update interval T, = T}.
In this case, both the local and remote process
transitions occur at frame boundaries. The
evolution of the local arrival process is as
shown below while all other processes evolve as
before.

1 if 9k < Gtn and [, = 0,
ra=10 ifg>qum and I, =0, (5)
i otherwise.

The system’s steady state probabilities and
consequently the cell loss probabilities are derived
as above.

3.5. Numerical results and discussion

For the results derived in this section, both the
local and remote arrival processes are assumed to
follow a binomial distribution with parameters
No, 20/Ny when in state 0 and with parameters
Ny, 21/N; when in state 1.
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Fig. 10. ERC policy, unequal update intervals.

The effect of the ratio of the propagation delays
M on the cell loss probability is shown in Fig. 10
under the ERC policy where different update in-
tervals are used, 4,=0.8, 4 =0.10, Ny=1,
Ny =20, 0=60, g =50 and T =2. The un-
fairness is also clear from Fig. 11, where the ratio
of the remote loss probabilities to the local loss
probabilities increases as M increases. The effec-
tiveness of the FD policy and the RA policy over
the ERC policy in reducing the differences in cell
loss probabilities becomes apparent as M in-
creases.
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Fig. 11. Ratio of remote cell losses to local cell losses.
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Fig. 12. FD policy, unequal update intervals.

The throughputs obtained by the FD policy is
shown in Fig. 12. Note that as M increases, the
ratio between the update intervals (7/Ti = M)
increases and the unfairness as expressed by
the differences in throughputs increase. The
throughputs obtained by the RA and ERC poli-
cies are almost identical to that obtained by the
FD policy and are not plotted. This is expected,
since the buffer management policies primarily
control the losses. For the above parameters,
losses are in small orders of magnitude and the
throughputs are mainly controlled by the time
individual sources operate at the different access
rates. This can be seen from Fig. 13, for equal
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Fig. 13. FD policy, equal update intervals.
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update intervals, where the differences in
throughputs are negligible and are mainly due to
the losses.

Fig. 14 shows the loss probability for the ERC
policy under equal update intervals (7, = T;) for
the same parameters considered before. Although
the ratio of remote to local cell losses tend to be
smaller than when unequal update intervals is
employed (Fig. 10), the overall losses tend to be
higher due to the lax control over the local sources.
(local sources are updated at longer intervals (T})
than before (7})).

Fig. 15 shows that the unfairness increases as
the difference between A, and A; increases. This
can also be seen from Fig. 16, where the ratio of
remote and local loss probabilities are shown.
The dependence of the unfairness on the choice
of the overall parameters in the system can be
seen by contrasting Fig. 17, where 7, = 0.49,
M =4, Ny =10, N, =10, Q =40, gy =20 and
Ti =10 with Fig. 15, where 4, =08, M =4,
No =10, Ny =20, 0 =60, gy, = 50 and 7} = 2. In
the former figure (Fig. 17), the loss probabilities
of the local and the remote processes are almost
equal.

The above results show that it is necessary to
carefully choose the wupdate interval scheme
(identical or non-identical) as well as the parame-
ters of the rate control scheme; operating the sys-
tem in a region of high losses under unequal
update intervals increases the difference between

Loss Probability
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- - -Local Sources
— Remote Sources

10 2 4 6 8 1gll 12 14 16 18 20

Fig. 14. ERC policy, equal update intervals.
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Fig. 15. Effect of changing 4, unequal update intervals.
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Fig. 16. Ratio of remote to local cell losses (ERC policy).

the cell loss probabilities suffered by the local and
remote sources. It is clearly seen that these differ-
ences decrease as the system is operated in a low
loss region.

Finally, it should be noted that the results pre-
sented in this section are derived for sources with
time constant equal to 1 (7, = 1). Earlier results —
presented in Section 2.4 — indicated that an in-
creased time constant induces lower cell loss
probabilities (assuming Q > N). It is therefore ex-
pected that in this latter case the difference in cell
loss probabilities due to diversified propagation
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Fig. 17. Effect of changing 4, unequal update intervals.

delays will be rather insignificant, provided that
the system operates in a low cell loss region.

4. Concluding remarks

In this work, some of the performance issues
related to a simple two-level (Binary) adaptive rate
control scheme in a high-speed environment are
considered. Appropriate queuing models are
formulated and analyzed to investigate two key
performance issues for adaptive rate control
schemes.

First, the impact of the ratio between the net-
work and source speeds on the effectiveness of the
adaptive rate control is considered. Unlike previ-
ous studies, a queuing model for an adaptive rate
control scheme incorporating slow arrival pro-
cesses that deliver cells with a certain time constant
is considered. An efficient technique is developed
for the computation of the induced cell loss
probabilities. Numerical results show that the
performance of an adaptive feedback-based rate
control scheme may be substantially underesti-
mated if the time constant of a slow arrival process
is assumed to be one (7. =1), as in previous
studies. Numerical results also show that the ef-
fectiveness of the adaptive rate control scheme
depends heavily on the relationship between the
number of the controlled sources and the available

buffer capacity. The results point to the existence
of a batch-absorption buffer capacity value beyond
which the effectiveness of the adaptive rate control
will increase as the source time constant increases.
Finally, a significant conclusion from the pre-
sented results is that for a fixed cell loss probability
and (sufficiently large) fixed buffer capacity, a
larger number (N) of slow sources (compared to
the number of sources with 7, = 1) can be sup-
ported provided that N remains below the buffer
capacity.

Second, the impact of the difference in propa-
gation delays and update intervals on the perfor-
mance seen by two groups of sources with vastly
different propagation delays is considered. Al-
though in the presence of infinite capacity buffers
and equal update intervals, an adaptive rate
control scheme leads to equal distribution of
bandwidth between the competing connections —
irrespective of their propagation delays — it is
shown that it leads to unequal distribution of cell
loss when finite capacity buffers are considered. An
efficient technique is developed for the computa-
tion of the cell loss probabilities of the local and
remote connections; the dimensionality of the
formulated model is independent of the associated
propagation delays. Numerical results show that
when different update intervals are used, increased
unfairness and significant differences in the relative
performance may be seen by the different sources
as the ratio between the propagation delays in-
creases. It is further shown that the relative per-
formance seen by the different groups largely
depends on the choice of the update intervals
(identical or un-identical), as well as the choice of
the rate control parameters. In particular, it is
shown that the difference in performance decreases
(increases) if the rate control system is operated in
a low (high) loss region.
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