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Abstract— The transmission of real-time streams over best-effort net-
works has been an interesting research area for over a decade. An im-
portant objective of the research community has been to devise methods
that cope with the variations of the network delay – also called delay jit-
ter – that are an inherent characteristic of best-effort networks. Jitter de-
stroys the temporal relationships between periodically transmitted media
units (MUs) that constitute a real-time media stream, thus hindering the
comprehension of the stream. Playout adaptation algorithms undertake the
labor of the temporal reconstruction of the stream, which is sometimes re-
ferred to as the restoration of its intrastream synchronization quality. This
paper surveys the work in the area of playout adaptation, aiming to con-
cisely organize ideas that have been presented in isolation and identify the
main points of differentiation amongst different schemes. The survey dis-
cusses issues related to the timing information, the handling of late media
units, the quality evaluation metrics, and the adaptation to changing delay
conditions.

I. INTRODUCTION

Continuous media are characterized by well defined temporal
relationships between subsequent media units (MUs). Informa-
tion is only conveyed when these temporal relationships are pre-
served at presentation time (if altered during the transportation
they will need to be reconstructed prior to presentation). The
reconstruction of temporal relationships between media units of
the same stream is referred to as intrastream synchronization.
For video presentations, the temporal relationship refers to the
spacing between subsequent frames, which is dictated by the
frame production rate, typically 25 or 30 frames/second. For
packet audio, the basic media unit is a voice sample, and the
spacing between voice samples is determined by the sampling
process. Temporal relationships also exist between MUs that
belong to different streams, when these streams are to be con-
sumed concurrently, as in an orchestrated audio-visual presen-
tation (the lip-synchronization problem). The problem of syn-
chronization between different, but related streams, is called in-
terstream synchronization and it is out of the scope of this pa-
per. For intermedia synchronization issues, the reader is referred
to [1], [2], [3], [4].

A packet media receiver consists of a playout buffer for the
temporary storage of incoming MUs and a playout scheduler
for the presentation of MUs. The role of the scheduler is to
provide a presentation schedule that resembles as much as pos-
sible the temporal relationships that were created by the encod-
ing process. In doing so, the scheduler employs MU-buffering,
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the extent of which is bounded by the maximum end-to-end
delay tolerance of the application. Bidirectional applications
such as desktop video conferencing place very strict latency re-
quirements, typically a few hundreds of milliseconds. On the
other hand, unidirectional applications, for example video on
demand (VOD), allow for much larger latencies which range
from around one second, for responsive web-based distribution
of short video clips, to several minutes, in near video on demand
systems. All the proposed schemes provide for some compro-
mise between the intrastream synchronization quality and the
increase of end-to-end delay due to the buffering of media units.
At the two extremes of this continuum of choices we have the
buffer-less scheduler, that provides for the minimal stream de-
lay by presenting frames as soon as they arrive, and the assured
synchronization method, that completely eliminates the effects
of jitter at the expense of a large stream delay.

In what follows we attempt to provide a structured presen-
tation of proposed playout schedulers by examining the way
they tackle the fundamental tradeoff between the synchroniza-
tion quality and the imposed delay. Alongside the operational
comparison of different schemes, an effort is made to indicate
their suitability for different real world applications.

The remainder of the paper is organized as follows. Some
background material and an outline are presented in Sect. II.
Sect. III discusses the appropriateness of the various schemes
for different media types. Sect. IV presents the family of time-
oriented playout schedulers. Time unaware systems are covered
in Sect. V. Sect. VI provides a comparison of different systems.
Sect. VII briefly examines forward error correction techniques
as well as multimedia caching and their relevance to playout
adaptation. Sect. VIII concludes the paper.

II. ISSUES OF INTEREST AND OUTLINE

For the assessment of intrastream synchronization quality
several metrics have been proposed. They can roughly be cat-
egorized as being of first or second order (see Table II). First
order metrics quantify “how much” synchronization loss occurs
(e.g., expected frequency of gaps, accumulated duration of gaps,
etc.). In most earlier schedulers, designed for packet voice sys-
tems, the metric of intrastream synchronization quality is the
probability (or frequency) of a voice packet being discarded as
a consequence of a ”late” arrival due to a large network trans-
fer delay. In buffer-oriented schedulers (Sect. V) the continu-
ity quality of the stream is affected by underflow discontinuities
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(when the buffer empties) and overflow discontinuities (when an
arriving MU finds the playout buffer full) – so the synchroniza-
tion metric must cater to both events. Also, in systems that mod-
ify the playout delay by affecting the duration of MUs (Sect. V-
C), the metric must also consider the discontinuity introduced
by the system itself (e.g., due to the expansion (or reduction) of
the presentation duration of a video frame).

Second order metrics capture the appearance pattern of syn-
chronization loss occurrences. The human perceptual system
is known to be more sensitive to a small frequency of long-
lasting disruptions than to a higher frequency of short-lived dis-
ruptions [5]. This is due to the human perceptual inability to
notice small deviations of presentation rate. As a result, a bet-
ter perceptual quality can be expected by replacing large conti-
nuity disruptions (underflows and overflows) with shorter ones
(e.g., truncated or extended MU presentation durations). A hy-
brid metric that involves both first and second order features has
also been proposed [6]. Despite the plethora of proposed met-
rics, only a few experimental perceptual studies have been con-
ducted for the assessment of acceptable values for these met-
rics [7], [8], [9], especially for the more advanced metrics, and
under different media encoding methods.

Throughout the rest of the paper various playout schedulers
from the literature will be presented. One main point of differen-
tiation will be whether the systems use or do not use, timing in-
formation. Time-oriented schedulers (Sect. IV) put timestamps
on MUs and use clocks at the sender and the receiver in order
to measure the network delay or the differential network delay
(jitter); see Table I for an overview of time-oriented schedulers.
Buffer oriented schedulers (Sect. V) implicitly assess the cur-
rent level of network jitter by observing the occupancy of the
playout buffer; see Table II for an overview of buffer-oriented
schedulers. In any case, the level of synchronization between
the sender and the receiver greatly affects the design and the
capabilities of the system. A general classification of playout
schedulers is given schematically in Fig. 1.

Systems that have some protocol for the synchronization of
their clocks are said to have a global clock. The existence of a
global clock allows for the exact measurement of the network
transfer delay of a MU which, along with the buffering delay
at the receiver, makes up the total end-to-end delay of the MU.
With such knowledge, the receiver can then guarantee that a MU
be delivered before an available (requested) end-to-end delay
budget is exhausted.

When the network delay is unknown, no guarantee in abso-
lute values can be provided for the interactivity of the system (as
required by some demanding bidirectional applications). Differ-
ential delay methods (Sect. IV-C) do not require a global clock
and, thus, cannot measure precisely the network delay of a MU
as there might be an offset between the two clocks. These meth-
ods do not consider absolute delays but rather operate on delay
variations (captured by the difference between subsequent de-
lay measurements, thus eliminating the offset). They strive to
maintain a fixed tradeoff between the perceived delay and the
synchronization quality of the stream, across time varying jitter.

Schedulers with approximated clock synchronization (Sect. IV-
D) try to bound the offset (thus the uncertainty) between the two
clocks. This is achieved by using the virtual clock algorithm
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Fig. 1. General classification of playout schedulers.

under which the clock of the receiver adopts as local time the
timestamp from a reference packet (sometimes called a probe)
which is sent by the sender. The consequence of this virtual
synchronization of the receiver clock to the sender clock is that
within the context of this communication the clock of the re-
ceiver will be delayed by

�������
time units compared to the clock

of the sender.
�������

denotes the network delay of the refer-
ence packet. The receiver forwards the reference packet back
to the sender (incurring a delay

�����	�
), thus allowing for the ex-

act measurement of the round-trip-time (RTT) between the two
end-points. The time offset between the two clocks is then se-
curely identified as a value in the interval 
 ������ RTT � 1. See [10],
[11] for more issues related to delay estimation and clock syn-
chronization.

Nearly all presented systems have mechanisms to detect in-
creases in the end-to-end latency: time-oriented systems can tell
if a MU is ”late” by comparing its arrival timestamp with its
scheduled playout time; buffer oriented system realize a latency
increase when they detect an over-built queue of MUs waiting
to be displayed. The way late MUs are handled divides the pro-
posed schemes into two categories: delay-preserving schemes,
where all late frames are discarded to preserve the delay require-
ments of the stream; non delay-preserving schemes, where some
(or all) late packets are accepted for presentation with the aim
to protect the continuity of the stream from further degradation
due to the discard of MUs that have been late.

The majority of the proposed schemes adjust the occupancy
of the playout buffer dynamically, in response to varying net-
work delay jitter. The playout buffer is increased to compensate
for increased delay variability, protecting the continuity of the
stream; it is decreased in times of reduced jitter, to provide for
a similar synchronization quality but with a reduced stream la-
tency. Packet audio systems with silence detection modify the
playout buffer by taking advantage of silence periods, which
they use to make adjustments on a per-talkspurt basis. Packet
video receivers usually drop a frame to reduce latency, or stop
the presentation of frames for one frame period (a pause); we
refer to this method as the pause/drop method. More advanced
systems (Sect. V-C) change the occupancy of the playout buffer
by regulating the duration of video frames; they present frames
faster (instead of dropping) to reduce latency, and they present
frames slower to avoid underflows. It has been realized that
this regulation approach has some advantages, as slight modi-
fications of presentation rate may be unnoticed due to human
perceptual limitations, and thus, the adjustments are better con-
cealed.

�
When the clock at the sender reads � , the clock at the receiver will be at���������� . The offset will be 0 if ��������� , meaning that the entire RTT was

due to the network delay from the receiver to the sender. At the worse case the
offset will be equal to RTT (meaning that �������� RTT and �������� � ).
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III. MEDIA TYPE AND PLAYOUT ADAPTATION

In the following sections, playout schemes will be taxono-
mized according to the precision of timing information. This
section provides a parallel organization based on the applicabil-
ity of schemes for different media types.

Streaming media can be either continuous or semi-
continuous. The first category includes media streams with a
regular inter-MU interval that is maintained throughout the du-
ration of the presentation. Typical examples are streaming video
(live or stored) and streaming audio (e.g., web-radio). Semi-
continuous media are characterized by inactivity periods that in-
tervene between the periods of continuous MU flow. Spoken
voice with silence detection is a widely used semi-continuous
medium. Video programs, where the user watches a short video
clip and then selects the next one (e.g., news repository consist-
ing of sequences of short clips) also belong to the same category.

The main difference between these two media types is that
the inactivity periods of semi-continuous media give the play-
out scheduler the opportunity to adjust the playout point for the
imminent activity period without affecting its continuity. The
playout schedulers of sections IV-B to IV-D modify the silence
period in an audio conversation and by doing so they adjust the
playout point2 for the next spoken phrase. Playout schedulers
for continuous media do not have the “luxury” of inactivity pe-
riods, but have to act on inter-MU intervals to adjust the play-
out point. One may wonder why a scheduler should alter the
temporal relationships of MUs when it’s main job is to restore
these same relationships. The answer to this question is that
by intentionally harming the continuity of a stream under the
proper conditions, the scheduler anticipates a future quality im-
provement. This anticipation stems from the improved ability to
conceal long-lasting continuity disruptions. Such schemes – for
continuous video – are presented in Section V which is devoted
to buffer-oriented playout schedulers (see Table II for a quick
summary). Although some of the ideas therein could also be
applied to continuous audio, we are not aware of such applica-
tions. This may be attributed to the fact that audio is believed to
be more sensitive than video to the manipulations introduced by
a buffer-oriented scheduler.

Finally, we note that some schemes are equally appropriate to
both continuous video and continuous audio. Such schemes are
those that decide only on the initial amount of buffered data and
do not intervene thereafter. Section IV-A presents two systems
of this category. Also, the simplistic approach of not implement-
ing a dejitter buffer (Section V-A) has been used in both audio
and video applications (e.g., in the VIC Mbone tool).

IV. TIME-ORIENTED PLAYOUT SCHEDULERS

This section presents some common time oriented playout
schedulers, i.e., schedulers that timestamp MUs and use local
or global clocks to determine the presentation instant and the
duration of each MU.

�
Here the playout point, i.e, the scheduled playout time for each voice sample,

depends on the initial delay that is imposed on the entire talkspurt.
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Fig. 2. The total end-to-end delay of the
�
th MU, ��� ����� 	 , is composed of

a variable network delay component, ��
�� 	 , and a buffering delay compo-
nent, �� � 	 , at the playout buffer. The network delay ranges from a minimal
value – only the propagation component ��
�� ��	 
 – up to a maximum delay
� 
�� ����� . � ����� denotes the maximum network delay variability.

A. The assured synchronization under bounded delay jitter

The ideal intrastream synchronization quality is achieved by
completely eliminating any kind of distortion in the temporal
relationships of MUs and completely restoring the stream to its
initial form. This objective must be achieved on the fly as MUs
arrive at the receiver, having crossed a network that alters the
spacing between MUs by imposing a variable network transfer
delay. The network transfer delay consists of two components:
a static propagation delay and a variable queueing delay, due
to variable waiting times in the queues of intermediate network
nodes. If the delay variability is unbounded, meaning that an
infinitely long interarrival period may appear, then no scheduler
with a finite buffer can eliminate the discontinuities from the
reconstruction process.

Under some service classes, e.g., in ATM CBR or in IETF’s
Guaranteed Service, the network is able to bound the maximum
delay difference that can be experienced over a certain data path,
and a total resynchronization at the receiver becomes feasible.
We refer to this synchronization-optimal playout of frames as
the assured synchronization. Two slightly different approaches
have been proposed for the implementation of the assured syn-
chronization. For their description, as well for use in the rest
of the paper, the following notation is introduced (see also the
delay diagram in Fig. 2): ����� � denotes the network delay of
the � th MU; ����� � denotes the buffering delay of the � th MU;
���� ��!� � denotes the total end-to-end delay of the � th MU (network
and buffering parts); ����� "#� � denotes the minimum network de-
lay; �$��� "&%�' denotes the maximum network delay; ()"&%�' de-
notes the maximum difference in any two network delays,i.e.,
(*"&%�',+-�$��� "&%�'/.0�$��� "#� � . A delay quantity without the index
� refers to the entire stream and not to a particular media unit.

It has been shown that the � th MU causes a synchronization-
loss event when its network delay, ����� � , is larger over all previ-
ous network delays, ����� 1,243,57698-� , plus the initial buffering
delay for the first MU, �:��� ; (see [12], [13], [14], [15]). Thus,
to ensure no loss of synchronization it suffices to guarantee that
the first MU incurs a total delay �$�� ��!� ;&+<�$��� ;�=>����� ; which is
no less than �$��� "&%�' . The total delay of the stream is then equal
to the total delay of the first MU, �$�� ���+?���� ��!� ; . Depending
on whether �$��� ; is known, the following two schemes provide
for the assured synchronization by adding an appropriate �9��� ;
to the first MU. The first scheme requires that (�"&%�' be known
while the second scheme requires that �:��� "&%�' be known.
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A.1 Unknown ����� ; .
If �$��� ; is unknown (timestamps are not used), or if it can not

be precisely measured (the two clocks are not synchronized),
then to guarantee an assured synchronization, the first MU must
be kept in the buffer for an interval equal to the maximum de-
lay difference, i.e., �:��� ;7+ (*"&%�' , before the presentation of
frames is initiated by extracting frames from the head of the
playout buffer (see Geyer et al. [16]). The initial buffering de-
lay protects the synchronization of the stream against the worst
possible scenario which corresponds to the first MU experienc-
ing the minimum network delay, ����� "#� � , while a subsequent
frame experiences the maximum network delay, �:��� "&%�' . The
total end-to-end delay of the stream becomes: ���� �� + ���� ��!� ; +
�$��� ; =,(*"&%�' , taking values in 
 ����� "#� � =,(*"&%�' � �$��� "&%�')=,(*"&%�' � ,
since �$��� "#� � 5<�$��� ; 5<�$��� "&%�' . In any case, the total end-to-
end delay ���� ��!� ; of the first MU is no less than the maximum
network delay ����� "&%�' , so it is guaranteed that no packet will
arrive late.

A.2 Known ����� ; .
The assured synchronization method can be implemented

more efficiently by using timestamps and a global clock to ac-
curately measure the delay of the first MU and add the mini-
mum buffering delay that makes the total delay of the first MU
exactly equal to ����� "&%�' . This was not the case in the previ-
ous implementation that was unaware of �:��� ; and had to as-
sume �$��� ; + �$��� "#� � and require an additional delay (�"&%�'
to ensure that �$�� ��!� ; � �$��� "&%�' . The improved implementa-
tion (see Baldi and Ofek [17]) achieves a potentially smaller
end-to-end delay, while continuing to guarantee an absolute
synchronization at the receiver. Assuming that the scheduler
knows �$��� ; , an uninterrupted presentation schedule can be pro-
vided by keeping the first MU in the playout buffer for an addi-
tional interval �:��� ; , so that the total delay of the MU becomes:
���� ��!� ;&+-�$��� ; =,����� ;&+-�$��� "&%�' . This way, it is guaranteed that
no MU will experience a larger delay, thus no loss of synchro-
nization will occur. Note that in comparison to the first method,
a delay reduction of ����� ; =>(*"&%�' . �$��� "&%�' +<�$��� ;�. �$��� "#� �
has been achieved (this is the excess resynchronization delay);
this gain can be as large as ����� "&%�' . �$��� "#� �:+ (*"&%�' and it is
equal to zero when the first MU has experienced the minimum
network delay. Despite this reduction, the delay performance
may still be inadequate for interactive applications due to the
total stream delay �$�� �� + �$��� "&%�' which may be in the order
of seconds, while the average network delay, �:��� "���%�� , and the
acceptable ���� �� may be in the order of milli-seconds.

B. Allowing for the latency/synchronization tradeoff by allow-
ing for loss due to MU-lateness

The intrastream synchronization performance of the assured
synchronization method can not be matched by any other
method. Its weakness lies on its potentially poor delay per-
formance that makes it inadequate for interactive applications.
This is due to the fact that even the improved version (with a
global clock), imposes a prohibiting end-to-end delay (equal to
the maximum network transfer delay ����� "&%�' ). In most modern
packet networks there is no guarantee of an upper bound on the

D
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Fig. 3. A typical network delay distribution. Under method-I of Naylor and
Kleinrock, all MUs with network delay larger than � � ��� are considered lost.
The percentage of lost packets, under this distribution is, ��� � � � ��� �	 ��
� � � ����� .

delay and even when a bounded3 �$��� "&%�' exists it is seldomly
experienced by a MU as reported by recent delay studies [18],
[19], where it shown that the probability of a long delay (given
by the area under the tail of a delay distribution, see Fig. 3 for
an illustration) is very small. Clearly, delaying the entire stream
for �$��� "&%�' , in order to guarantee the on-time arrival of even
the rare slow MUs, leads to poor delay performance. Further-
more, modern video and audio codecs can tolerate a substantial
amount of packet loss (1-5% for voice) with acceptable degrada-
tion of the perceived quality. Consequently, playout schedulers
can sacrifice an amount of lost MUs (which have been dropped
as being excessively late) in order to decrease the overall delay
of the stream and effectively support real-time applications.

Schedulers destined for bidirectional interactive real-time ap-
plications usually try to provide a small, constant total end-to-
end delay ( ���� �� ) by utilizing precise timing information and al-
lowing for packet lateness. Baldi and Ofek [17] have shown
that given a small network delay, a system can be configured
(packetization, compression, rendering) to provide a total delay
as small as 100 msec. Packets that arrive at the receiver with a
network delay larger than �$�� �� are discarded (delay-preserving
schedulers or the absolute delay method). The choice of ���� ��
regulates the tradeoff between intrastream synchronization qual-
ity and delay. When the sender and receiver timestamps (used
for the measurement of the network delay) come from synchro-
nized clocks (GPS,NTP [20]), then it is guaranteed that any
played MU will be delivered with an accurate ���� �� (e.g. the
Concord algorithm [14], [21] ). The Concord algorithm as-
sumes the existence of synchronized clocks at the sender and
the receiver, and uses MU timestamps to construct a packet de-
lay distribution (PDD) which is an estimate of the real distribu-
tion, possibly non-stationary, that packets face within the net-
work. Having approximated the cumulative distribution func-
tion (CDF) of the PDD – i.e., the probability that the network
delay of the � th MU is smaller than

�
: ��� ����� ��5 ��� +�� ����� ���

– one can choose a value for �$�� �� that provides for the de-
sired compromise between packet loss and delay. The com-
promise is expressed as a function of the delay, which is ���� ��
for all MUs, and the packet loss probability, which is given by:���  ��� + 1 . CDF( ���� �� ) (Fig. 3). By dynamically updating the
 
For best-effort networks the maximum delay of a delivered packet corre-

sponds to the case where it finds all queues of intermediate nodes nearly full,
but with enough space to accept it.
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PDD, the system provides a constant synchronization quality
(���  ��� ) by adjusting the delay; �$�� �� is increased to smooth-out
increased jitter, and it is decreased when jitter drops, to enhance
interactivity.

C. Playout schedulers that do not require a global clock

A global clock can provide the utmost interactivity precision;
it is the only mechanism that is capable of supporting the most
stringent – in term of delay – policy, that demands that all MUs
be presented at a constant (small) delay, or be discarded. A
global clock is seldomly available, and thus, the majority of
playout schedulers – those that do not require a constant end-
to-end delay guarantee – operate on delay differences and not
on absolute delays. When considering delay differences, the
two clocks need not be synchronized, as their offset is cancelled
when taking differences of timestamp values. The only require-
ment is that they run at approximately the same speed (they do
not drift). The fundamental idea behind such systems is that
the total delivery delay of MUs (encoding to presentation time)
need not be constant, or confined under an absolute value, but it
can fluctuate in response to changing network delay variability,
so that a level of synchronization quality (e.g. percentage of late
packets), or the more relaxed requirement of a constant tradeoff
between continuity and delay, be maintained. Network delay
differences are used as indications of the current jitter level, and
drive the regulation of the playout buffer.

A pioneering work in this field is that of Naylor and Klein-
rock [12]. It presents a playout scheduler that adaptively de-
lays the first packet of a talkspurt based on recent jitter mea-
surements. Specifically, the receiver logs the last � delays of
MUs prior to the initiation of a new talkspurt and extracts the�

partial range, � � � � � � , which is the maximum difference be-
tween the � samples having first discarded the

�
largest delays4.

The first MU of the talkspurt is delayed for � � � � � � . The par-
tial range is used to eliminate isolated cases of extremely large
delay that do not have a significant impact on the probability of
a late arrival. The tradeoff between gap probability and delay
is controlled by the level of conservatism in the partial range,
i.e., by the relative selection of � and

�
. As � � � � � � is smaller

than the maximum network delay, some packet lateness will oc-
cur. Two methods are proposed for the handling of late packets:
method-I, preserves the delay of the stream by discarding late
packets (delay-preserving method); method-E, expands the de-
lay of the stream – in favor of continuity – by presenting late
frames (data-preserving method).

A popular playout method for the adjustment of the play-
out buffer across time-varying network delay environments uses
timestamps, without assuming global clock synchronization, to
approximate the one way network delay

��
and its variability

�� .
The presentation time of the first MU of a talkspurt, � � , (let it be
the � th MU of the conversation) is scheduled for:

� ��+ � � = �� �4=���� �� � (1)
� � denotes the generation time of the � th MU according to the
sender’s clock. The variation coefficient � is used to set the play-
out time “far enough” beyond the delay estimate so that only an	 � � 
�� � � is the total range, the maximum delay difference out of the entire
set of 
 delay samples

acceptable amount of packets will miss their playout time; in
essence � regulates the synchronization/latency tradeoff ( � +�
in [22]). Ramjee et al. [22] propose four synchronization algo-
rithms that differ only in the way they derive the estimate

�� � . The
estimation is carried out on a per packet basis – using as input
the network delay of the � th MU,

� � – while delay adjustments
are applied on a per talkspurt basis. No clock synchronization is
assumed,

� � is the difference between the arrival timestamp � �
and the generation timestamp

� � .
�� ��+���� �� ��� ;=���3&.�� � � � ��� ��+���� �� ��� ;=���3&.�� � ��� �� � . � ��� (2)

Two of the proposed algorithms are based on the linear recursive
estimator of equation (2) ( 3.�� is the gain of the filter, see [23]
for details), the third algorithm is adopted from the NEVOT au-
dio tool, and a fourth is a novel algorithm with delay spike detec-
tion capabilities and dual mode of operation, aiming at improv-
ing performance in delay environments with sharp delay spikes,
as the ones reported in [24].

The last algorithm has been enhanced by Moon et al. [25] by
substituting the linear recursive estimators of

�� � and
�� � with the

calculation of a percentile point � of the underlying network de-
lay distribution. This is done by logging the last � packet delays
(no clock synchronization) and using their � th percentile point
as the playout delay for the next talkspurt. By utilizing more
detailed information about the delay distribution, the algorithm
outperforms the initial algorithm by Ramjee et al. [22], and ap-
proaches an optimality bound, which is also derived in the same
work.

D. Playout schedulers with approximated synchronization –
Virtual Clocks

So far we have presented playout schedulers with global
clock synchronization ([14], [21]) and without global clock syn-
chronization ([12], [22], [25]). Schedulers with approximated
clock synchronization fill the gap between the two extreme ap-
proaches. Such systems do not require a global clock, so they
cannot guarantee a delivery delay in absolute values, but they
provide a soft delivery guarantee that is more specific than the
freely fluctuating delay of differential-delay systems, where the
network delay component is completely unknown. A bound on
the total delivery delay ( �$�� �� ) is established by measuring the
round-trip-time (RTT) between the communicating end-points,
and assuring that no MU will be presented with a delay that ex-
ceeds some expression that involves the RTT.

In Roccetti et al. [26], periodic probe packets and a three-
way-handshake protocol are used for the exact measurement of
the round-trip-time between the communicating end-points. The
clock of the receiver is virtually synchronized to the clock of the
sender by adopting as local time the timestamps of the probe
packets. This immediately leads to a clock offset equal to the
one-way network delay of the probe packet,

���
. A playout de-

lay of
���

would be too small, leading to increased packet late-
ness, so the clock of the receiver is delayed by an additional
RTT, as measured by the latest probe packet, to give an over-
all time gap between the two clocks equal to

��� = RTT, i.e., the
clock of the receiver falls

��� = RTT time units behind the clock



6

of the sender. Packets that arrive at the receiver with a times-
tamp larger than the local clock are buffered; packets that arrive
with timestamps smaller than the local clock are considered too
late and are discarded (their network delay has been larger than��� = RTT); packets are extracted from the buffer and played when
the local clock equals their timestamp. By refreshing the RTT
every second, the algorithm regulates the playout point in accor-
dance to the current network delay. Clock adjustments are en-
forced on the receiver only during silence periods to avoid time
gaps caused by the adjustment of the clock during talkspurts.

A similar approach is followed by Alvarez-Cuevas et al. [27]
with the use of probe packets, not periodically, but rather at the
beginning of every silence period. Having measured the RTT,
RTT/2 is used as an estimate of the one way delay of the talk-
spurt and is sent to the receiver with a reference packet. The
receiver uses RTT/2 as the estimate of the network delay and
adds an additional delay component with the aim of achiev-
ing a fixed target end-to-end delay �$�� �� that results in only
1% packet lateness. The additional delay up to ���� �� should
be (*"&%�' ��� , where (*"&%�' denotes the maximum delay variabil-
ity ( �$��� "&%�' . �$��� "#� � ). However, (�"&%�' ��� is not known a-
priori, but is approximated and corrected by observing the extent
of synchronization errors and increasing ���� �� accordingly. By
dynamically measuring RTT and adjusting ���� �� , the algorithm
adapts to network delay fluctuations and maintains the targeted
synchronization quality. In the same work, a second method
for the estimation of the target �$�� �� is described. It identifies
the “fastest” packet – the one with the smallest delay (propa-
gation only) – by looking for the packet that incurs the largest
waiting time in the buffer; it is assumed that this is the fastest
packet. ���� �� is approximated as the network delay of the fastest
packet plus the largest observed difference in buffering delays,
which should approach (�"&%�' , resulting in approximately 1%
packet lateness. Both methods can be improved by employing
the method of hop-by-hop network delay accumulation which
results in very accurate network delay estimations (only the lo-
cal clocks of intermediate nodes are involved, each node accu-
mulates its own added delay, see Montgomery [10]).

E. Non delay-preserving playout schedulers

A scheduler is characterized as being delay-preserving if it
does not present late MUs, i.e, MUs that have missed their
scheduled playing time. Non delay-preserving schedulers may
accept and present a late MU, instead of discarding it, to protect
the continuity of the stream from further degradation5.

In delay-preserving playout schedulers, the arrival time of a
MU, is bound to fall in one of the two possible regions: the
acceptance region – limited by the targeted end-to-end delay –
where the MU waits in the playout buffer for its playout time;
and the discard region, for arrivals with a total delay longer than
the targeted ���� �� . The playout scheduler proposed by C. Liu et
al. [2] violates the delay-preserving discipline of the two-region
approach, by introducing the no-wait region, which lies between
the other two regions (see Fig. 4); all arrivals in the no-wait re-
gion are played immediately. An arriving MU with delay that
places it in the no-wait region is a MU which has missed its tar-
�
The continuity of the stream has already been harmed by the late arrival.

acceptance
region

no-wait
region

discard
region

Dn
playout

immediate network delay buffering discard

boundary 1 boundary 2

Fig. 4. Network delays fall in one of the three possible regions. MUs are
buffered if they arrive early ( � 
 in the acceptance region), they are pre-
sented immediately if they are slightly “late” ( � 
 in the no-wait region),
they are discarded if they arrive too late ( � 
 in the discard region).

geted ���� �� , but not long enough to be discarded, so it is played
immediately to prevent further degradation of synchronization
caused by a media unit discard. With the acceptance and the
presentation of a late MU, the end-to-end delay for subsequent
MUs is increased. The boundary values that define the three
regions are set by taking into consideration user-defined input-
parameters which are: the maximum synchronization error, the
maximum variance of synchronization error, and the maximum
acceptable MU loss ratio. The scheduler monitors the percent-
age of MUs that fall in each region and adjusts their bounds so
that the end-to-end delay is minimized and the user intrastream
synchronization requirements are met. The scheduler does not
offer an assured end-to-end delay as it does not use a global
clock but only a virtual clock on the receiver.

The playout scheduler proposed by H. Liu et al. [28] is also
non delay-preserving, as in some occasions it chooses to present
a late video frame. The scheduler enters a synchronization re-
covery phase immediately following the arrival of a late packet.
During that phase the scheduler determines the presentation du-
ration for the late frame. A full presentation duration is undesir-
able as it increases the end-to-end delay of subsequent frames.
On the other hand, a truncated presentation – up to the scheduled
presentation instant of the next frame – might truncate the late
frame excessively, causing motion jerkiness that is easily de-
tected by the end user. The scheduler has a bounded minimum
frame duration – such that motion jerkiness is not detectable –
and can choose to apply it to a series of frames following the late
arrival, thus progressively reducing the added delay due to the
late arrival. This approach compresses the delay successfully,
while at the same time protects the quality of intrastream syn-
chronization by employing a rather “mild” delay control func-
tion. Another interesting feature of the scheduler is that it uses a
second order continuity metric called RMSE. A user requested
threshold RMSE is maintained by the scheduler across differ-
ent transmission conditions by regulating the buffering delay ac-
cordingly.

V. BUFFER-ORIENTED PLAYOUT SCHEDULERS

The family of buffer-oriented playout schedulers involves
schedulers that deal with the fundamental synchroniza-
tion/latency tradeoff but do not require the timestamping of
MUs or the use of clocks. Buffer-oriented schedulers share
some resemblance with time-oriented schedulers that use dif-
ferential delay methods to adjust the playout point. Instead of
using timestamps for the assessment of the current level of de-
lay jitter, buffer-oriented schedulers implicitly assess jitter by
observing the occupancy of the playout buffer. The adjustment
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author media global clock delay performance sync. performance delay adaptation
assured synchr. (Geyer et al.) [16] audio/video not assumed

����� ���	��
���
no loss of synch. delay static during connection

improved assured synchr. (Baldi et al.) [17] audio/video assumed
����� 
���

no loss of synch. delay static during connection
Concord alg. [14], [21] audio/video assumed variable

�
min static-guaranteed based on PDD estimation

Naylor and Kleinrock [12] audio+sil. det. not assumed stat. tradeoff stat. tradeoff per talkspurt (partial range filter)
Ramjee et al., [22] audio+sil. det. not assumed stat. tradeoff stat. tradeoff per talkspurt (recursive filter)
Moon et al. [25] audio+sil. det. not assumed stat. tradeoff stat. tradeoff per talkspurt (percentile point)

Roccetti et al. [26] audio+sil. det. VC, ��� � RTT stat. tradeoff stat. tradeoff periodic (1 sec) (RTT based)
Alvarez-Cuevas et al. [27] audio+sil. det. VC, RTT/2 variable

�
min 1% MU lateness per talkspurt (RTT based)

C. Liu et al. [2] audio/video VC variable
�

min satisfy user input per MU (delay region based)
H. Liu et al. [28] audio/video VC variable

�
min satisfy user input per MU � , per � MUs �

TABLE I

OVERVIEW OF SURVEYED TIME-ORIENTED SCHEDULERS (TIMESTAMPING + SOME FORM OF CLOCK SYNC.). THE ABBREVIATION (VC) INDICATES A VIRTUAL CLOCK

SYNCHRONIZATION METHOD, WITH SOME (USUALLY MENTIONED) APPROXIMATED OFFSET. THE LABEL “STAT. TRADEOFF” IDENTIFIES SYSTEMS WHERE A CONSTANT

TRADEOFF BETWEEN SYNCHRONIZATION AND DELAY IS MAINTAIN ACROSS DIFFERENT LEVELS OF JITTER (EQUATION (1) GIVES SUCH AN EXAMPLE).

of the playout point is based on the occupancy of the buffer. The
lack of timing information precludes any kind of absolute total
end-to-end delay guarantees for the MU presentation epochs.
The only “visible” delay component for the scheduler is the
buffering delay of the MUs at the playout buffer. Various syn-
chronization/latency objectives can be optimized by focusing
on the tradeoff between media continuity and buffering delay.
The total end-to-end delay, although unknown (and fluctuating),
can be implicitly controlled as a consequence of the regulation
of the buffering delay component; the suppression (expansion)
of the buffering delay leads to the suppression (expansion) of
the total end-to-end delay with a subsequent cost (gain) in in-
trastream synchronization quality. Delay performance that can
approach the requirements of interactive applications is feasible,
but cannot be guaranteed in absolute values. Due to this uncer-
tainty concerning the interactivity of the system, buffer-oriented
schedulers are usually employed in video applications where the
interactivity requirements are more relaxed than in audio appli-
cations.

A. No initial buffering: Self-adjusting and Buffer-less sched-
ulers

Presenting the first MU as soon as it arrives is a simple and
rather successful scheme. It provides a potentially low initial
delay (only the network part), and if no jitter occurs, it is a fairly
good solution. In the common case in which jitter exists, the first
underflow will occur as soon as some MU experiences a net-
work delay that is greater than the delay of the first MU ( �:��� ; ).
The self-adjusting schedulers present all MUs that arrive at the
receiver, thus, the playout buffer builds up as a natural effect
of the induced underflows (since the mean arrival rate equals
the mean presentation rate and an underflow is analogous to a
“server vacation”). This results in a stream presentation with a
small initial delay (no initial buffering) but also with an initially
poor synchronization quality (frequent underflows); continuity
is improving with time, as the dejitter buffer expands with un-
derflows, but this also increases the perceived delay. To control
the delay, some of the late MUs must be discarded. Contrary
to time-oriented systems, a MU cannot be declared as late by
means of comparison of its arrival time and its scheduled play-
out time (no timestamp or scheduled playout time exist). Delay
control actions should depend on the current buffer occupancy.
A simple way to avoid large end-to-end delays is to play all MUs

as soon as they arrive and forbid buffering. This is equivalent to
using a buffer-less playout scheduler.

B. Buffer occupancy control: Queue monitoring and Watermark-
based schedulers.

The work of Stone and Jeffay [29] demonstrates the funda-
mental idea that instead of measuring delay differences, one can
directly measure the impact of the delay jitter on a receiver by
observing the occupancy of the playout buffer over time. The
proposed policy is called queue monitoring (QM). Under QM,
a sequence of video frames that has been presented with no
gap between frames – meaning that the queue was never found
empty following the completion of a presentation – is used as an
indication of reduced delay variability and triggers a reduction
of the end-to-end delay of the stream by discarding the newest
frame from the buffer. The selection of the duration for the gap-
free interval regulates how aggressively QM tends to reduce la-
tency and is thus the synchronization/latency tradeoff parameter.
The implemented system uses a series of thresholds (for every
occupancy level) and associated counters for the derivation of
the frame discard decisions. Increasing network jitter causes
buffer underflows (display gaps) and naturally increases the oc-
cupancy – thus the buffering delay – with the acceptance and
presentation of “late” frames. That is, QM is to some extent
data-preserving, as in some occasions presents late frames.

QM uses a window mechanism for the adjustment of delay,
however, many buffer oriented schedulers are given the freedom
to adjust the playout point in a per-MU fashion [30], [31], [5],
[32], [33], [6]. Rothermel and Helbig [30] introduce the idea
of occupancy watermarks (high-watermark, HWM and low-
watermark, LWM) to define a range of desired playout buffer
occupancies that balance the risk between buffer underflow and
buffer overflow (see Fig. 5). A targeted area, lying between the
HWM and the LWM levels, is defined by the upper target bound-
ary (UTB), and lower target boundary (LTB). The positioning
and the width of the targeted area (inside the watermark limits)
reflects the desired synchronization/delay compromise. For ex-
ample, a minimum-delay policy sets the LTB equal to the LWM
and the UTB to a slightly larger value. When the occupancy of
the buffer falls outside the targeted area – in the so-called critical
buffer regions – the scheduler enters an adaptation phase with
the aim of returning the occupancy inside the targeted area. This
is accomplished by modifying the receiver’s consumption rate
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Fig. 5. The watermark-based playout scheduler of Rothermel and Helbig. The
selection of watermarks mainly affects the underflow and overflow probabil-
ities. The positioning of the target area, inside HWM and LWM, regulates
the tradeoff between intrastream synchronization and stream latency.

until the occupancy returns in the targeted area. The width of the
targeted area determines the aggressiveness of the buffer control
algorithm, while the selection of watermarks mostly contributes
to the data loss rate. The watermarks are fixed in [30] but it is
noted that the scheduler can be made adaptive by dynamically
regulating the watermarks in response to jitter effects (e.g. MU-
loss).

Biersack et al. [31] have modified the watermark method of
Rothermel [30], by placing the rate adaptation mechanism at
the sender (which is a VOD server) rather than at the receiver.
The receiver uses a gradient descent estimator of the buffer oc-
cupancy in order to smooth out occupancy fluctuations caused
by short term jitter. When the smoothed buffer occupancy falls
in the critical region (outside LWM,HWM), the receiver sends
a signal to the sender suggesting that the latter should adjust
its rate so that the smooth occupancy returns in the targeted
area. The sender either skips some frames or pauses (pause/drop
method) to adjust its rate. Source rate adaptation that affects the
encoding process6 could also be used, but the authors do not
consider it due to high implementation complexity.

C. Buffer occupancy control with dynamic regulation of the du-
ration of MUs.

Most playout schedulers (time/buffer oriented) have followed
a slotted approach in the regulation of the buffering delay, in
the sense that they increase or decrease it in constant amounts
(slots) that equal the duration of a MU. The discard of “late”
frames [31], [34] and the tail-drop from over-built queues [29]
lead to sharp delay reduction jumps of duration � , equal to the
duration of a video frame. Similarly, when the playout buffer
empties, the presentation resumes after one or more MU peri-
ods [31]. This approach owes its popularity to implementation
simplicity but can be quite crude, especially in the case of low
frame rate streams where the slot (video frame) has a significant
duration. Take for example a low bit rate 15 frames/sec encoder
with each frame lasting 66 msec. Pause/drop operations on that
slot scale can significantly degrade the perceptual quality, as it is
easier for the human visual system to detect disruptions of such
coarse magnitude.

The work of Yuang et al. [5], [32] has demonstrated an im-
provement in the perceptual quality of video, achieved by a fine-
�
Dynamically adjust the number of quantization levels in order to reduce the

output bit rate of the encoder.

grained regulation of playout durations based on the current oc-
cupancy of the playout buffer. In [5] a threshold-based play-
out scheduler is proposed; the scheduler employs progressively
reduced playout rates, aiming at avoiding large underflow dis-
continuities, as the buffer occupancy � drops below a threshold
value ��� . The selection of ��� is made prior to stream initia-
tion and remains unchanged despite jitter fluctuations; it governs
the tradeoff between stream continuity and reduction of playout
rate. Stream continuity is described by two disjoint metrics: the
probability of an empty buffer, and the frame loss probability
due to buffer overflow. The work has been enhanced in [32] by
introducing a dynamic playout scheduler which uses a window
to optimize some quality metric by responding to changing net-
work delay jitter conditions. The window is in essence a time-
varying, dynamic version of the threshold approach. A neural
network (NN) traffic predictor and a NN window determinator
are being used for the online estimation of traffic characteristics
and the regulation of the window size. The derived value for
the window is compared to the current buffer occupancy, result-
ing in the selection of playout durations for the buffered frames.
Stream continuity is described by a second-order metric – the
variance of discontinuity (VoD) – which accounts for underflow
occurrences and discontinuities due to reduced playout rates. A
number of playout schedules are derived, each providing a dif-
ferent tradeoff between playout continuity (captured by VoD),
and reduction of mean playout rate.

The threshold-based scheduler of [5] has been extended in
Laoutaris and Stavrakakis [33]. A compact and fair continuity
metric has been introduced. It is called the Distortion of Playout
(DoP) and combines all causes of media asynchrony: underflow
gaps, slowdown gaps, and overflow gaps – in a concise, and ex-
perimentally justified way. The definition of DoP has been moti-
vated by experimental perceptual results for video transportation
over packet networks – conducted by Claypool and Tanner [9]
– reporting that jitter degrades the perceptual quality of video
nearly as much as packet loss does. The study has limited the
range of the threshold parameter, ��� , by identifying a range of
values where there is no beneficial tradeoff between continuity
and reduction of mean playout rate – the two antagonistic met-
rics of interest. Interestingly, it has been shown that this range of
values changes with the burstiness of the frame arrival process7,
revealing the danger of an initially meaningful ��� appearing
in the undesirable area due to a change of the arrival burstiness.
Finally, the work is supplemented with online algorithms for
the detection and the maintenance of the operational parameter
��� within the area of beneficial tradeoff across unknown, non-
stationary, delay jitter.

The work of Laoutaris and Stavrakakis [6] develops a sched-
uler that outperforms the earlier empirical schedulers of [5], [33]
by solving an appropriate optimization problem. Stream conti-
nuity is described by using the first two moments of the Distor-
tion of Playout metric. This approach allows for a fine grained
optimization of stream continuity by catering to a combination
of both the expected frequency of synchronization loss and its
appearance pattern. It is realized that the minimization of the
expected value of DoP and the minimization of the variability
�
Burstiness is created by delay jitter that transforms a periodic stream to a

bursty stream consisting of clustered arrivals and large inactivity periods.
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author buffer control delay performance intrastream sync. metric evaluation
Stone and Jeffay (QM) [29] tail dropping try to reduce gap freq., ; st order experimental
Rothermel and Helbig [30] adjust playout rate predefined(static tradeoff) gap prob., ; st order simulation

Biersack et al. [31] adjust source rate predefined(static tradeoff) gap prob., ; st order experimental
Yuang et al. [5] static threshold threshold dependent gap prob., ; st order analytical
Yuang et al. [32] NN dynamic threshold variable delay

�
nd order simulation

Laoutaris and Stavrakakis [33] adaptive threshold small initial,increase
�

nd order analytical
Laoutaris et al. [6], [35] offline optimal policy policy dependent combined ; st,

�
nd order analytical

TABLE II

OVERVIEW OF SURVEYED BUFFER-ORIENTED SCHEDULERS. IN THE BUFFER CONTROL COLUMN, A slow (fast) IN PARENTHESES, DENOTES THAT THE

SCHEDULER IS ABLE TO APPLY REDUCED (INCREASED) PLAYOUT RATES.

of DoP, are two contradicting objectives. It is concluded that,
for a perceptually optimal result, the scheduler must be allowed
to increase the frequency of discontinuities, if this increase is
to provide for a smooth spacing between discontinuity occur-
rences, and thus help in concealing them. Markov Decision the-
ory is employed for the derivation of the optimal playout policy
for a certain level of network jitter. This work has been extended
in [35] to encompass different levels of network jitter. By calcu-
lating in advance (offline) the optimal playout policy for some
common levels of network jitter, a playout scheduler can use
a jitter estimator and adaptively “load” the appropriate, offline-
computed, optimal policy and, thus, approach the optimal per-
formance in a dynamic environment, at a low complexity (no
online optimization required).

VI. DISCUSSION AND IMPLEMENTED SYSTEMS

Various concepts that were discussed during the presentation
of individual systems are summarized in this section with the
aim to address the appropriateness of each scheme for different
types of applications. Some examples from implemented sys-
tems are drawn to support the discussion. The appropriateness
of schemes for different media types was discussed in Sect. III.
Here we discuss the delay performance and the complexity of
the proposed schemes. In general, time-oriented schedulers are
preferred when there is an interactivity requirement, in most
cases in systems that handle spoken voice. Buffer-oriented
systems are employed in video communication systems, where
some compromise in delay is acceptable, even in interactive sys-
tems, if this is to provide for a smooth presentation of frames.

Bidirectional, interactive audio applications usually imple-
ment time-oriented playout schedulers. When interactivity is the
major concern, a global clock is implemented and MUs are de-
livered at a constant low delay or are discarded. Many systems
cannot afford the added complexity of a global timing mecha-
nism (NTP or GPS) and choose to use differential delay meth-
ods. By doing so, they sacrifice the guarantee (in absolute val-
ues) for the total end-to-end delay. The RAT audio tool [36]
implements the algorithms of Ramjee et al. [22] and Moon et
al. [25] which have been described in Section IV-C (RAT uses
�0+ �

in equation 1).
Bidirectional video applications are usually less demanding,

as far as interactivity is concerned, compared to their audio
counterparts. The buffer-less approach is very simple and pro-
vides for the best interactivity (frames are displayed as soon as
they arrive), but the synchronization quality quickly degrades
with jitter, as there is no dejitter buffer. The VIC video con-

ferencing tool [37] does not implement a dejitter buffer and
transfers the video frames to the decoder upon arrival. The
self-adjusting buffer is also quite simple to implement, and as-
suming a small amount of jitter, provides a very good synchro-
nization/delay tradeoff as the buffer quickly adjusts to an occu-
pancy that eliminates all jitter, at a small delay. The downside
is that it is sensitive to rare occurrences of unusually large jitter;
in such cases the delay of the stream will rise and will remain
large since there is no delay control function to restore it. Nei-
ther scheme employs smoothing of long-lasting discontinuities.
Dynamic regulation of MU durations can be used to improve
the intrastream synchronization quality. The threshold-based
schemes [5], [33] are quite simple to implement while systems
that require some offline optimization are more complex [32],
[6].

Streaming of stored content can be carried out by using the
algorithms of Section IV-A which provide for an absolute resyn-
chronization at the lowest possible end-to-end delay. Imple-
mented systems seldomly use them though, mainly because
these algorithms induce an initial delay that is up to the maxi-
mum network jitter ( (�"&%�' ) which in most cases is unknown. But
even with a known (�"&%�' , different sides could argue against the
assured synchronization. Some would consider an initial buffer-
ing delay that smoothes out (�"&%�' unnecessary, since (�"&%�' is
seldomly experienced. On the other hand, when ()"&%�' is fairly
small, a system can choose to prebuffer even more data than
needed to smooth it out as this allows for the incorporation of
selective retransmission protocols at the receiver, shielding the
stream against network losses. The Real Player from RealNet-
works Corp. implements a buffering scheme that favors the pro-
tection of stream continuity; a reasonable choice since the player
is used for the reproduction of stored content so latency is less
important. The player initiates the presentation of frames after
it has downloaded the entire clip, or a significant part of it, up
to the available free memory. In the latter case it is possible to
run into buffer underflows, but these would occur only under
extreme network jitter. The Media Player from Microsoft Corp.
allows the user to set the amount of prebuffered data. A default
value of 3-5 seconds is recommended; larger values protect the
stream from even larger jitter, while smaller values make the ser-
vice more interactive. A similar capability is also available as a
choice in the Real Player, with a large suggested initial delay.

VII. RELATED RESEARCH ISSUES

This section briefly comments on two research areas that are
of particular interest to playout adaptation, namely, forward er-



10

ror correction (FEC) and video caching (or proxying). FEC and
its coupling with playout adaptation is a research topic that has
recently attracted much attention, owing perhaps to the fact that
FEC plays a significant role in enabling packet video commu-
nications in wireless environments. Video caching appears as
a very attractive way to provide high quality, non-interactive
streaming content in a cost-effective manner.

A. FEC and playout adaptation

Most playout adaptation algorithms consider packet losses
due to packet lateness only, and disregard packet losses that
occur in the network due to congestion. Network losses are
assumed to be out of the scope of playout adaptation and the
compensation of losses is left to various forward error correc-
tion mechanisms [38], [39], [40], which operate in isolation
from the playout adaptation algorithm. Recent work has shown
that a considerable performance gain can be expected from the
coupling of the delay-oriented playout adaptation, and the loss-
oriented FEC [41], [42].

Rosenberg et al. [41] study the effect of � � . � �
Reed-

Solomon correction codes8 on existing and new playout al-
gorithms and show that performance improvement is achieved
when considering the coupling between jitter and loss compen-
sation. Existing playout algorithms [22], [25] are made FEC-
aware by substituting the network delay ( �:� ) of a packet with
the virtual network delay (

� ��� ) – which is either ��� , or the
extended recovery delay (recovery time minus generation time).
If no error occurs in the network, then the recovery time of a
MU coincides with its arrival time, otherwise the recovery time
is the time when the reception of some redundant FEC packet
allows the correct decoding of the corrupted9 (or lost) MU. The
targeted end-to-end delay �$�� �� is shaped by

� ��� s, which in
turn depend on the FEC algorithm, thus the coupling. Several
new adaptation algorithms have been proposed. The – adap-
tively virtual algorithm – targets a desirable packet loss proba-
bility. It is based on [22], and uses virtual delays to dynami-
cally adjust the variation multiplier � of (1) in order to achieve
a targeted loss rate. Another algorithm is the so called Previous
Optimal algorithm; it determines the optimal (minimal) delay
for the previous talkspurt, such that a specific application loss
rate be maintained, and applies it to the next talkspurt, hence the
Previous in the algorithm name. Finally, the authors describe an
analytical framework for the expression of the total end-to-end
delay as a function of the application level reception probability
(in the presence of FEC), the network delay distribution, and the
network loss probability.

Hartanto and Tionardi [42] also consider the interaction be-
tween media synchronization and error control. Given a fixed
amount of bandwidth for a video stream, additional FEC pack-
ets protect the stream against network losses, but they also in-
crease the transmission delay of packets. The increased overall
delay may lead to loss due to packet lateness, so the end users
may experience worse quality than in the case without FEC. The
� � ����� � redundant FEC packets protect the � data packets. Any � of the �

packets must be received to recover the remaining � ��� packets.�
Video applications usually fragment a frame as it is too large to fit in a single

network packet; the loss of a single fragment corrupts the entire frame and calls
for the use of redundant FEC info for its salvation.

authors introduce the concept of cumulative jitter – which is the
running total of time variations between the application-data-
unit spacings at the receiver and at the sender – and use it to
study the tradeoff between network loss and loss due to packet
lateness. Forward error correction has also been studied in con-
junction to source rate control [43].

Intrastream synchronization has been studied for wireless re-
ceivers’s by Liu and Zarki [28]. In the wireless environment, the
media synchronization module must be coupled with the ARQ
of the wireless link.

B. Video caching and playout adaptation

As with traditional data objects of established protocols like
http and ftp, real-time objects – mostly stored video – are be-
ing cached, or proxied, with the aim of reducing the network
traffic and improving the interactivity of content delivery [44],
[45], [46], [47], [48], [49] . Unlike the popular web proxies,
video proxies typically store only a portion of a video clip, the
initial part usually – called the prefix [44], [45], [46] – as the
entire video object is too lengthy to be replicated on a typical
proxy nor is replication the most cost-effective alternative [45].
Video proxies improve the quality of video delivery in many
ways. First, they reduce the network transfer delay, as proxies
are located closer to end clients, thus the stream travels just a
few network hops before the delivery. Second, proxies assist in
the improvement of intrastream synchronization quality. If the
prefix of a video is of large duration, in the order of minutes,
then the amount of proxied data completely smoothes out the
jitter in the data path from the server to the proxy. This is im-
portant as it relieves the receiver from a large fraction of jitter;
only the jitter in the access part remains, from the proxy to the
receiver, which is usually small and can be easily smoothed out
with a small playout buffer at the receiver. The reduction of the
playout buffer reduces also the total delay, thus improving the
responsivity of the service. Even if the amount of prefix corre-
sponds to a time duration of the same time scale with the net-
work jitter at the core network, it will again absorb some portion
of the delay variability and, thus, decrease the size of the play-
out buffer at the receiver. For a given synchronization quality,
the existence of the prefix, helps by “hiding” some portion of
the total delay.

VIII. CONCLUSIONS

This paper has presented a survey of the literature on playout
schedulers. Playout schedulers play a significant role in stream
communications over best-effort networks as they protect the
intrastream synchronization quality of the real-time stream. A
significant amount of work has been published in this field, dif-
ferentiating in a number of key aspects such as: the granular-
ity of timing information, the handling of late media units, the
employed metrics, and the adaptation to changing delay condi-
tions. This paper has tried to provide a structured overview of
these issues and taxonomize the proposed playout schemes ac-
cordingly.
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