
The Impact of Replacement Granularity on
Video Caching

Elias Balafoutis, Antonis Panagakis, Nikolaos Laoutaris, Ioannis Stavrakakis

Department of Informatics & Telecommunications,
University of Athens, 15784 Athens, Greece

{balaf,apan,laoutaris,istavrak}@di.uoa.gr

Abstract. In this paper the idea that large objects, such as video files,
should not be cached or replaced in their entirety, but rather be par-
titioned in chunks and replacement decisions be applied at the chunk
level is examined. It is shown, that a higher byte hit ratio (BHR) can be
achieved through partial replacement. The price paid for the improved
BHR performance is that the replacement algorithm, e.g. LRU, takes a
longer time to induce the steady state BHR. It is demonstrated that this
problem could be addressed by a hybrid caching scheme that employs
variable sized chunks; the use of small chunks leads to the maximization
of BHR in periods of stable video popularity, while large chunks are used
when extreme popularity changes occur to assist the fast convergence to
the new steady state BHR.

1 Introduction

The explosive growth of demand for bandwidth, fuelled by the introduction of
the world wide web in the early nineties, found data networks unprepared to
handle the new traffic volumes. This led to an increase in both loss rates and
user perceived latency, that could easily hamper the new global information
delivery system. Caching, i.e, replication of popular data objects close to the
demanding clients, has been successfully used to relieve the backbone network
and reduce the delivery delay of requested data. In a similar way contemporary
networks, although copying adequately with web traffic, seem to have difficulty
in managing effectively the delivery of information-rich content such as streaming
video, which is rising as the new popular media to be integrated in the internet
infrastructure. The large size of videos not only overloads data connections but
also easily exhausts the capacity of conventional web caches.

A variety of caching schemes have been proposed to handle video. Initial
works, have inherited the main characteristics of web caching schemes and have
treated videos as single entities which are either cached completely or not at
all [1–3]. More recent works take into consideration the special characteristics of
videos : their structure, the associated rate variability, their large volume and
the need for a time-constrained delivery of content. The later does not only refer
to a requirement for a small initial delay, to preserve the interactivity of the



service, but also to a requirement for an isochronous delivery of the media units
(video frames) that make up a video stream.

In [4] the initial frames of each video (called the prefix) are cached in the
proxy in order to improve the startup latency experienced by users. Additionally,
smoothing is performed to reduce the peak bandwidth and increase the utiliza-
tion in leased network channels that connect the proxy with the origin server. In
a similar approach in [5], the bursty part of a VBR video stream is selected to be
stored at the proxy while the remaining smooth part is retrieved directly from
the repository, again reducing the peak bandwidth requirement in the backbone
links. Both aforementioned schemes deal with the burstiness, which is inherent
in VBR encoding algorithms.

In [6, 7] the prefix is stored in the cache and the remaining part (the suffix)
is either explicitly requested from the video repository or retrieved through an
ongoing multicast transmission which services a group of concurrent users; in
the later case, a patch might be requested directly from the repository, so as to
fill the gap between the prefix and the currently multicasted part of the suffix.
Request merging is also proposed in [8, 9] in the form of window-based caching
schemes. In particular, local proxies cache a sliding window of data, trying to
merge requests for the same stream that arrive closely in time.

The caching of layered encoded video is studied in [10, 11]. In [10] an opti-
mization algorithm determines which videos and which layers should be cached.
In [11] the focus is on the maximization of the perceived quality for popular
videos that are delivered over best-effort networks.

Unlike traditional web caching, most of the above video caching schemes
(most of them have been designed for video on demand systems) do not con-
form to the dynamic nature of caching according to which cache contents are
dynamically updated in a demand driven fashion.

The performance of a proxy is characterized by its ability to reduce the
amount of data that cross the backbone network (captured by the BHR), and
also by the ability to provide streaming services with acceptable initial delay. The
overall performance is sensitive to sudden changes in popularity. If the cache does
not detect such changes quickly, there could be substantial mismatch between
the content of the cache and the upcoming content requests, leading to a low hit
ratio and an increased initial delay.

In what follows it is proposed that a video be segmented into a number
of chunks and replacement decisions be taken at the chunk level rather than
based on the entire video. This partial caching has a twofold beneficial effect: it
increases the BHR compared to entire video caching; and it reduces the perceived
delivery delay, as a significant number of initial parts may be found in the cache
upon request. The existence of the initial part of a stream in the cache also
allows for jitter concealment in the path from the proxy to the server. Our work
studies the effect of the replacement granularity on cache performance and the
trade-off that exists between cache performance and responsiveness to popularity
changes. We show that the price paid for using partial caching is a slower reaction
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Fig. 2. State diagram of the cache for the second
scenario(*).

(*)State 1 (state 2) corresponds to video 1 (video 2) being entirely cached and state 1/2 corresponds
to the first half of each video being cached. The transition probabilities p1 and p2 are equal to the
corresponding request probabilities.

to popularity changes. We attempt to eleviate this drawback by using variable
sized replacement units.

2 Motivation of the Work - Intuitive Considerations

Cache replacement algorithms utilize the request history to estimate the current
request probabilities and self-organize accordingly. Given a stationary request
pattern and a large number of request samples, the underlying request proba-
bilities can be ”learned” by counting the requests for each video. Replacement
algorithms are able to provide a good estimate of the request ranking without
the need to count a large number of requests, e.g. LRU simply replaces the least
recently used object upon a request of a new object.

In web caching the arrival of a single request changes slightly both the recent
request history and the state of the cache, since the size of an ordinary web
page is very small compared to the capacity of the cache. In video caching a
single replacement causes a relatively greater change to the state of the cache,
although a single request has similar impact on the recent request history as
in web caching. Chunk-based replacement strategies (as studied here) try to
establish a “Web-like” relation between a single request and the corresponding
replacement unit.

The potential advantage of chunk-based replacement strategy is demonstrated
in the following simplified example. Assume that there are two equally sized
videos, competing for a place in the cache that can fit entirely only one video.
Let p1 (p2) denote the probability that video 1 (video 2) is requested. In addi-
tion assume that a request-based replacement algorithm is used. A video that is
not found in the cache upon request, is cached when it arrives from the server,
taking up storage space that was held by the other video. Two scenarios are con-
sidered. In the first scenario the replacement unit is equal to the entire video,
implying that videos are cached or removed from the cache entirely. The state
of the cache upon replacement epochs1 can be modelled as a two state Markov
chain (depicted in Fig. 1). The second scenario allows the partial replacement
of video, with a replacement unit that is equal to half of a video. When the
1 We assume that a video is immediately downloaded upon its request, so replacement
decisions occur at request arrival instants.



requested video is completely or partially missing from the cache, one half of
the previously cached video is flushed, and one half of the requested video is
being cached. Replacement takes place in such a way that if a video is partially
cached, the cached part is always its first half. This implies that there are three
possible states of a full cache, namely the first half of each video, the entire video
1, or the entire video 2 being cached. The state diagram of the cache content
according to the second scenario is illustrated in Fig. 2.

For both scenarios, let the cost of a total cache miss (the entire requested
video is missing from the cache) be equal to 1 and the cost of a partial cache
miss (one half of the requested video is missing) be 0.5. If the requested video
is completely cached, a cache hit occurs, and no cost is incurred. It is straight-
forward to calculate the steady state probabilities and costs for each scenario.
More specifically, the steady state cost is equal to

∑
i,j πiPijcij where Pij is the

transition probability from state i to state j, cij is the cost corresponding to this
transition and πi is the steady state probability of state i. If C1 (C2) denotes
the steady state cost for the first (second) scenario, then:

C1 = 2p1p2 C2 =
3p1p2

2(1− p1p2)
(1)

which implies that C1 ≥ C2 for all p1 and p2 (equality holds only for the special
cases p1 = 0, p1 = 1, and p1 = .5)2.

3 System Description

3.1 Network Topology

Figure 3, illustrates the topology of the video dissemination system under con-
sideration. Videos are stored at geographically dispersed origin servers. A proxy
server is installed at the same local area network with a number of clients. Re-
quests for videos are directed to the proxy which services them either from its
local cache or by contacting the origin servers over the wide area network. The
proxy caches the most popular videos trying to reduce the accesses to the servers
and consequently the volume of data transmitted over the wide area network. It
is assumed that there is abundant bandwidth between the proxy and the clients
to support video streaming. On the other hand, the transmission of videos from
the origin servers over the wide area network is expensive as it consumes band-
width, which is a scarce resource in the backbone.

3.2 Proxy’s Internal Architecture

Figure 4 illustrates the internal architecture of the porxy. The proxy consists of
two major entities: the request manager and the cache manager. The request
2 The aforementioned analysis was carried out under the assumption that request
interarrivals are always greater than the time it takes to download half or the entire
video; this in essence means that replacement decisions are implemented instantly
and do not have to wait until the missing data arrive from the origin server.
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manager accepts all the client requests and is responsible for the continuous
streaming of video towards the clients. In general, its responsibility is to schedule
both the transmission of the prefix to the clients. The main responsibility of
the cache manager it to efficiently allocate the proxy storage resources to the
requested videos. This work focuses on the functionality of the cache manager.

To allow for the isolated study of the cache manager, only a simple request
manager is considered. It is assumed that the request manager immediately
initiates the transmission of the prefix (if any) to the client and requests the
suffix from the origin server. In addition, it is assumed that the suffix can be
(and is) delivered exactly when it is needed from the origin server3.

The cache manager receives incoming data from the origin server and decides
whether the new data will be cached or not. When the decision is to cache the
newly retrieved video parts the cache manager also decides a) how much space
to dedicate to this video, b) which of the missing parts of the video to hold, and
c) which data to remove from the cache to make room for the data.

In particular, the cache manager uses a fixed caching/replacement unit, called
a chunk. When a video that is not in the cache is requested it is fetched from the
server and its initial chunk is stored in the proxy. In case there is not sufficient
space in the cache the replacement algorithm selects a video for removal. The
last chunk of the selected video is removed. Each additional request for the same
video results in the caching of an additional (consecutive) chunk. This guarantees
that only the prefix (initial consecutive parts) of each video are cached. The
objective is to investigate the impact of the replacement granularity on the
overall performance of the system.

4 Performance Evaluation

4.1 Preliminaries

As mentioned in Sect. 3.2, the main responsibility of the cache manager is to
efficiently manage the proxy’s storage resources so as to reduce the volume of
the data that are fetched from the origin servers. This performance aspect is
captured by the Byte Hit Ratio (BHR), which is the fraction of data that can be

3 A more advanced request manager could, for example, perform request batching to
service nearby requests with a single connection to the client.



served directly from the cache’s local storage. Here, the BHR for a single request
for video i is defined as:

BHRi =
Size of the cached portion of the requested video i

Size of the complete video i

BHRi takes values between 0 and 1; 0 for a complete miss, and 1 for a complete
hit. The average BHR of all requested videos over an interval4 x is denoted as
BHR(x). The steady state BHR (ss-BHR) is determined from BHR(x) as x
tends to infinity and assuming that no popularity changes occur, i.e. the request
probability of a video is assumed to remain unchanged over the interval x.

The independent reference model [12] is assumed, according to which a video i
is requested with probability pi independently of previous requests. If the request
probability of each video is known and assuming a unicast-only backbone in the
path from the server to the proxy, it can be shown that the optimal caching policy
– in terms of bytes that cross the backbone link – is the Highest Popularity
First (HPF) policy. Under HPF, the proxy stores entire videos in descending
order of popularity, until its cache capacity is reached. Only the last video is
partially cached. The optimality of HPF stems from the fact that HPF is an
optimal solution to the partial knapsack problem: maximize

∑N
i=1 vi · pi under

the constraints:
∑N

i=1 vi ≤ S, 0 ≤ vi ≤ Li, where Li is the length of video i in
number of chunks, vi is the cached prefix of video i in number of chunks, S is the
proxy’s storage capacity in number of chunks, and N is the number of available
videos (see [6] for details).

The performance of the proposed video caching scheme is evaluated via simu-
lations. The main metric of interest is the BHR. The responsiveness of the cache
to popularity changes is jointly considered.

4.2 Simulation Model

We have constructed a simulation model that consists of a video server with a
set of N videos, and a proxy server with a storage capacity of K complete videos;
the ratio K/N captures the relative cache size of the proxy. For simplicity it is
assumed that all videos are constant bitrate encoded and are of equal length L
units (under the constant bitrate assumption video length units can be time or
storage units). pi denotes the request probability of video i – it is also refered
to as the popularity of video i – and follows a Zipf distribution, i.e., pi = C/ia,
where C = (

∑N
i=1

1
ia )−1. a is the Zipf parameter determining the skewness of

the distribution. It is assumed that request arrivals follow a Poisson process with
mean rate λ. The parameters of the simulation study are summarized in Table 1.

The popularity changes considered in the simulation, were implemented us-
ing the following setting: whenever a popularity change is about to occur, we
transpose the popularities of videos, i.e., popular videos become unpopular and
vise versa. Under the new popularity distribution, unpopular videos that were
4 the interval x can be a time interval (e.g., a day) or a number of requests.



Table 1. Simulation parameters

Notation System Parameters Default Values

L Video Size / Duration 1000 units / 1hour
K Cache Size 100 videos
N Number of Videos in the repository 1000

K/N Relative Cache Size 0.1
a Zipf parameter 0.8
λ Mean request arrival rate 30 req/hour

missing from the cache appear as new hot videos and eventually capture a sig-
nificant part of the cache. Previously popular videos are made unpopular and
are eventually pushed out of the cache.

In our simulations the LRU replacement policy is used with a slight mod-
ification that prevents the replacement of chunks belonging to “active videos”
(videos that are currently streamed), i.e., the least recently used inactive video
is selected for the replacement. LRU was chosen as the most widely studied
replacement policy which is often used as a comparison standard.

5 Simulation Results

Cache State. Figures 5 and 6 provide a visualization of the content of the cache
as time evolves. For illustration purposes, only a total population of five videos
and a cache capacity of three videos is considered. The cache is empty prior to
the first request arrival and fills up as requests arrive. The LRU replacement
policy is activated as soon as the total capacity is reached. The video size is
assumed to be 1000 units. The results for chunk sizes of 2, and 100 units and
a Zipf parameter a = 0.8 for video-1 to video-5 (descending popularity) are
shown in Fig. 5 and 6 respectively. In Fig. 7 the optimal static allocation of the
cache storage is illustrated. From Fig. 5 and Fig. 6 it becomes clear that for a
small chunk size the cache state converges to the optimal static allocation slowly
and with negligible oscillations, while for a greater chunk size, the cache state
converges fast but significant oscillations appear. Oscillations are expected to
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have a negative impact on the BHR while the convergence time is expected to
affect the capability of the system to adapt to popularity changes. The underlying
tradeoff is investigated in detail in the sequel.
The Byte Hit Ratio. Fig. 8 illustrates the effect of the relative cache size

on BHR, for several chunk sizes. BHR increases with the relative cache size since
a greater number of chunks fit in the cache. Moreover, for a specific relative cache
size, small chunks lead to a higher BHR. Similar observations apply to Fig. 9
that depicts the BHR as a function of the Zipf parameter, for different values of
the chunk size.

Figures 10 and 11 5 (for chunk sizes 10 and 1000 respectively) depict the
BHR versus the sum of the popularities

∑m
i=1 pi of the videos that fit in the

cache, when videos are placed in the cache according to descending popularity
order; m is the index of the least popular video that fits in the cache. This sum
depends on two factors: the size of the cache and the skewness of the popularity
distribution6. Each line in Figures 10 and 11 corresponds to a different value of
the Zipf parameter and the points of each line correspond to different values of
the cache size. From the figures it follows that for a small chunk size different
pairs of skewness and cache size result in the same BHR if the sum of the
popularities of the videos that fit in the cache is the same. That is, the latter sum
fully determines BHR under a small replacement unit. This conclusion suggests
that a smaller cache size would be required to achieve a certain BHR if the video
request probabilities are highly skewed, compared to the case under less skewed
request probabilities. For a greater chunk size this result seems to hold only for
zipf parameters greater than some value e.g 0.5.

The impact of the chunk size on BHR is illustrated in Fig. 12, for the system
parameters presented in Table 1. For these parameters the sum of the popu-

5 These figures relate to a discussion that is motivated by results in [13], where the
relation between the fault probability of LRU and the tail of the popularity (request)
distribution is demonstrated.

6 For a specific cache size, this sum increases as the zipf parameter increases, since a
greater request probability (pi) is associated with the videos involved in the sum. For
a specific value of the zipf parameter the sum increases as the cache size increases,
since more videos are involved in the summation.
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larities of the videos that fit in the cache when videos are placed in the cache
according to descending popularity order is 0.525. It is observed that as the
chunk size increases, the BHR reduces initially fast and then slowly converges
to the BHR achieved when complete videos are used as a replacement unit.
Responsiveness. Upon a change of popularities, the BHR is expected to

decrease for some period and then converge to the new steady-state value. It
should be noted that the new ss-BHR is not necessarily the same with the old
one as it depends on skweness of the popularity distribution. Responsiveness
can be qualitatively defined as the ability of the system to adapt to changes
in popularities. In order to quantitatively capture this performance aspect, we
flush the cache7 and measure the time needed for the BHR to reach 90% of its
steady-state value. In Fig. 13 the response time is illustrated for several chunk
sizes. As expected, the response time is small for large chunk sizes and increases
rapidly as the chunk size decreases.

7 This is an extreme case of popularity change since it is equivalent to a cache full
with totally unpopular videos.
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The effect of popularity changes. From the results presented so far, it
is evident that the performance of the system depends not only on the chunk
size but also on the frequency of popularity changes (and on how dramatic these
changes are). Under a fixed popularity distribution, a small chunk ensures a
better steady state BHR than a large chunk size. In practice the BHR under a
small chunk size is never reached, as it requires a long adaptation period which is
not available under frequent changes in popularity. This could lead to an overall
performance that is worse than that achieved under a large chunk size. Figures
14 and 15 illustrate the BHR(24h) versus time for two different cases 8. Fig. 14,
corresponds to the case where demand changes occur rarely (only one at time
instant 500). It is observed that in periods where popularity remains stable a
smaller chunk provides for better BHR. For the periods that follow a popularity
change the BHR reduces for both chunk sizes but the reduction is smaller for
a large chunk, which quickly adapts to the new popularity (observe the shallow
gap). A small chunk size, although performing better under static popularity, it
is outperformed during periods of popularity changes as it needs a considerably
larger time to catch-up with the new demand changes and consequently, the
gaps are deeper. The average BHR over the entire observation window, is equal
to 0.45 for the system that uses a chunk size of 50 units and 0.425 for the system
that uses a chunk size of 200 units. On the other hand, in Fig. 15 where demand
changes occur more often (every 170 hours), the system that uses a chunk size
of 200 units achieves higher average BHR (0.41 over 0.39).
Adaptation to Changes of Popularity. To cope with sudden changes

of popularity it is proposed that the system use a larger chunk size during peri-
ods when a change of popularity has just occurred. Sophisticated methods can
detect the change of popularity by looking for sudden decreases of BHR and
adjusting the chunk size automatically. In any case, once the cache content has
been updated the system could switch back to a small chunk size in order to
achieve higher ss-BHR.

8 In order to achieve a fast convergence to the stready state, the initial state of the
cache is considered to coincide with the allocation under HPF
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The benefits under a dynamic selection of the chunk size are illustrated in
Fig. 16 and Fig. 17 where the BHR is depicted as a function of time. The
parameters are the same as those in Fig. 14 and Fig. 15 respectively. From these
figures it becomes clear that a change of the chunk size at the right moment
combines the advantages of both chunk sizes and results in a better overall BHR
performance than under the corresponding static schemes. Note that the average
BHR under the dynamic chunk selection (0.46 (0.44) for the system of Fig. 16
(Fig. 17)) is higher than that under the fixed chunk size schemes for chunk size
50 (0.45 (0.39)) and chunk size 200 (0.425 (0.41)). The application of dynamic
chunk selection corresponding to Fig. 14 is illustrated in Fig. 16.

6 Additional Considerations

The presented system has taken a rather simplistic approach, as far as the cost of
the backbone bandwidth is concerned, by treating all video data as being equal.
This has mainly been dictated by our desire not to obscure this first exposition
of the effects of partial caching with additional parameters that are not directly
related to this issue. In reality not all bits entail the same cost nor should be
treated the same way. Some of the reasons for which it may be appropriate to
differentiate among videos are:

Server-proxy distance: In general, the greater the distance between the server
and the proxy (e.g. in number of hops), the higher the cost of fetching a video
from that server. This mean that a cache hit results in a greater reduction
of required bandwidth when the requested video belongs to a distant server.

Different link costs: Links may have different costs due to different bandwidth-
availability/bandwidth-demand ratios. For example, the proxy could give
preferential treatment to content that resides in an origin server that is
situated behind a congested link. Loss and/or delay measurements could be
used for the estimation of the congestion level.

Content differentiation: Some content could be given preferential treatment as
requested by the content provider, e.g., some clips could be given some sort



of priority in the cache, so as to be available upon a request of a popular web
page that includes them, with a revenue collected for the special treatment.

All the cases of can be accommodated by using variable sized chunks. The pre-
sented system has used a variable sized chunk to cope with changes of popularity;
chunks of different size could be used also within periods of static popularity to
provide for differentiation as suggested in the aforementioned examples.
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