
A Probabilistic Topology Unaware TDMA Medium Access Control
Policy for Ad-Hoc Environments

Konstantinos Oikonomou1 and Ioannis Stavrakakis2

1 INTRACOM S.A., Development Programmes Department,
19.5 Markopoulou Avenue, Paiania 190 02

Athens, Greece
Tel: +30 210 6677023, Fax: +30 210 6671312

okon@intracom.gr
2 University of Athens, Department of Informatics & Telecommunications

Panepistimiopolis, Ilissia 15 784
Athens, Greece

Tel: +30 210 7275343, Fax: +30 210 7275333
istavrak@di.uoa.gr

Abstract. The design of an efficient Medium Access Control (MAC) is challenging in ad-hoc networks where users
can enter, leave or move inside the network without any need for prior configuration. Chlamtac and Farago have
proposed a topology unaware TDMA-based scheme, suitable for ad-hoc networks, while Ju and Li have proposed an
enhanced version that maximizes the minimum guaranteed throughput. Both approaches consider a deterministic
policy for the utilization of the assigned scheduling time slots. In this work it is shown that this deterministic
policy fails to utilize non-assigned slots that would result in collision-free transmissions even under heavy traffic
conditions. A simple probabilistic policy is proposed, capable of utilizing the non-assigned slots according to an
access probability, fixed for all users in the network. An analytical study establishes the conditions under which
the probability of success for a specific transmission under the probabilistic policy, is higher than that under the
deterministic. The dependence of both policies on the topology density is shown and a simple topology density
metric is introduced as well. Simulation results show that there exists a suitable range of values for the access
probability for which the probabilistic policy outperforms the deterministic and show how this range is affected by
the variations of the topology density.

1 Introduction

Nowadays, the user demand for modern applications anytime and anywhere cannot be fulfilled by the traditional net-
works (wired, optical, infrastructure-based mobile, etc.). These networks are infrastructure-based and require prior
configuration in order for a user to be allowed to use the network resources. On the other hand, ad-hoc networks are
infrastructureless and a node can enter, leave or move inside the network without any need for prior configuration. The
infrastructureless nature of the ad-hoc networks provides flexibility to the user but at the same time introduces new
challenges. The idiosyncrasies of the ad-hoc networks make the design of an efficient Medium Access Control (MAC) a
challenging problem.

Several MAC protocols have been proposed for ad-hoc networks. CSMA/CA has been employed as the main mecha-
nism, [1], [2], [3], whereas many others have employed the Ready-To-Send/Clear-To-Send (RTS/CTS) mechanism, [4],
[5], in addition to CSMA/CA, to avoid the hidden/exposed terminal problem.

TDMA-based MAC protocols have also been proposed for ad-hoc networks. S-TDMA - proposed by Kleinrock and
Nelson, [6], is capable of providing collision-free scheduling based on the exploitation of noninterfering transmissions
in the network. Chlamtac and Farago, [7], have proposed an original TDMA-based scheme for topology transparent
scheduling. Their scheme exploits the mathematical properties of polynomials with coefficients from finite Galois fields,
to randomly assign scheduling time slot sets to each node of the network. Collisions are allowed, but it is guaranteed
that for each node at least one time slot in a frame would be collision-free, [7]. Ju and Li, [8], have proposed another
scheme that maximizes the minimum guaranteed throughput. However, certain factors, such as the topology density
and the particular random assignment of the polynomials, have not been taken into account.

In this paper the general approach proposed in [7] and [8] is considered and the idea of allowing the nodes to utilize
(according to a common access probability) scheduling slots not originally assigned (according to the rules in [7], [8])
to them, is introduced. As it is shown in this paper, the proposed policy achieves a higher throughput under certain
conditions (that are studied here), when the benefit of utilizing otherwise idle slots outweighs the loss due to collisions
induced by the introduced controlled interference.

In Section 2 a general ad-hoc network is described and some key definitions are introduced. The proposed policy (to
be referred to as the Probabilistic Policy) is motivated and introduced in Section 3; the one introduced in [7], [8] is also



described and is referred to as the Deterministic Policy. In Section 4 the case of a specific transmission between two
given neighbor nodes, is considered. A study is presented establishing the conditions (topology density and polynomial
assignment) under which the Probabilistic Policy achieves higher success probability, for the specific transmission; it is
also shown that the set of two-hop neighbor nodes influence the probability of success, for a specific transmission. In
Section 5 the system throughput is discussed and the motivation for the introduction of a topology density metric and
a categorization of topologies is presented in Section 6. The simulation results, presented in Section 7, show that there
exists a range of values of the access probability used to utilize probabilistically the otherwise idle slots, that result in a
higher throughput. Furthermore, the simulation results show that this range of values decreases almost exponentially, as
the density of the topology increases, as it is expected from the analysis in Section 4. Section 8 presents the conclusions.

2 System Definition

An ad-hoc network may be viewed as a time varying multihop network and may be described in terms of a graph
G(V,E), where V denotes the set of nodes and E the set of links between the nodes at a given time instance. Let |X |
denote the number of elements in set X and let N = |V | denote the number of nodes in the network.

Let Su denote the set of neighbors of node u, u ∈ V . These are the nodes v to which a direct transmission from node u
(transmission u→ v) is possible. Let D denote the maximum number of neighbors for a node; clearly |Su| ≤ D, ∀u ∈ V .

Suppose that a node u wants to transmit to a particular neighbor node v in a particular time slot i. In order for
the transmission u → v to be successful, two conditions should be satisfied. First, node v should not transmit in the
particular time slot i, or equivalently, no transmission v → ψ, ∀ψ ∈ Sv should take place in time slot i. Second, no
neighbor of v - except u - should transmit in time slot i, or equivalently, no transmission ζ → χ, ∀ζ ∈ Sv − {u} and
χ ∈ Sζ , should take place in time slot i. Consequently, transmission u → v is corrupted it time slot i if at least one
transmission χ→ ψ, χ ∈ Sv ∪ {v} − {u} and ψ ∈ Sχ, takes place in time slot i.

The transmission(s) that corrupts transmission u→ v may or may not be successful itself. Specifically, in the presence
of transmission u → v, transmission χ → ψ, χ ∈ Sv ∪ {v} − {u} and ψ ∈ Sχ ∩ (Su ∪ {u}), is corrupted. If ψ ∈
Sχ − (Sχ ∩ (Su ∪ {u})), then transmission χ→ ψ is not affected by transmission u→ v.

Let Φu→v be the set of transmissions which corrupt transmission u → v and at the same time transmission u → v
corrupts them as well. Let Θu→v be the set of transmissions which corrupt transmission u → v but are not corrupted
themselves by it. Note that transmissions that belong in Θu→v may still be corrupted by a transmission other than
transmission u→ v.

Transmission sets Φu→v and Θu→v are given by equations (1) and (2) respectively.

Φu→v = {χ→ ψ : χ ∈ Sv ∪ {v} − {u}, ψ ∈ Sχ ∩ (Su ∪ {u})} (1)

and

Θu→v = {χ→ ψ : χ ∈ Sv ∪ {v} − {u}, ψ ∈ Sχ − (Sχ ∩ (Su ∪ {u}))}. (2)

It is evident that Φu→v∪Θu→v is the set of transmissions that corrupts transmission u→ v. Obviously Φu→v∩Θu→v =
∅.

Figure 1 depicts an example topology of 27 nodes. Transmission 8 → 13 is denoted by a white arrow between nodes
8 and 13 and transmissions that belong in Φ8→13 (Θ8→13) are denoted by black dense (dotted black) arrows.

3 Scheduling Policies

Under the Deterministic Policy, [7], [8], each node u ∈ V is randomly assigned a unique polynomial fu of degree k with

coefficients from a finite Galois field of order q (GF (q)). Polynomial fu is represented as fu(x) =
k∑
i=0

aix
i(mod q) [8],

where ai ∈ {0, 1, 2, ..., q−1}; parameters q and k are calculated based on N and D, according to the algorithm presented
either in [7] or [8]. For both algorithms it is satisfied that k ≥ 1 and q > kD or q ≥ kD + 1 (k and D are integers).

The access scheme considered is a TDMA scheme with a frame consisted of q2 time slots. If the frame is divided into q
subframes s of size q, then the time slot assigned to node u in subframe s, (s = 0, 1, ..., q− 1) is given by fu(s)mod q [8].
Let the set of time slots assigned to node u be denoted as Ωu. Consequently, |Ωu| = q. The deterministic transmission
policy, [7], [8], is the following.

The Deterministic Policy: Each node u transmits in a slot i only if i ∈ Ωu, provided that it has data to transmit.
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Fig. 1. Transmission sets Φ8→13 and Θ8→13 for an example network of 27 nodes.

Depending on the particular random assignment of the polynomials, it is possible that two nodes be assigned over-
lapping time slots (i.e., Ωu ∩ Ωv = ∅). Let Cu→v be the set of overlapping time slots between those assigned to node u
and those assigned to any node χ ∈ Sv ∪ {v} − {u}. Cu→v is given by (3).

Cu→v = Ωu ∩

 ⋃
χ∈Sv∪{v}−{u}

Ωχ


 . (3)

Let Ru→v denote the set of time slots i, i /∈ Ωu, over which transmission u → v would be successful. Equivalently,
Ru→v contains those slots not included in set

⋃
χ∈Sv∪{v}Ωχ. Consequently,

|Ru→v| = q2 −


⋃
χ∈Sv∪{v}

Ωχ

 . (4)

Ru→v is the set of non-assigned eligible time slots for transmission u → v, that if used by transmission u → v,
the probability of success for the particular transmission could be increased. The increased probability of success for
transmission u → v does not necessarily increase the average probability of success of all transmissions in the network
(throughput); the presence of transmission u → v in a slot i, i /∈ Ωu, may corrupt another, otherwise successful,
transmission χ → ψ, for which i ∈ Ωχ and transmission u → v ∈ Θχ→ψ . Then, transmission χ → ψ will not be a
successful one, even though u→ v will be.

Theorem 1. |Ru→v| is greater than or equal to q(k − 1)D.

Proof. Notice that
⋃χ∈Sv∪{v}Ωχ

 ≤ (|Sv| + 1)q, since |Ωχ| = q, ∀χ ∈ V . From Equation (4) it is concluded that

|Ru→v| ≥ q2 − (|Sv|+ 1)q, or |Ru→v| ≥ q(q − |Sv| − 1). Given that D ≥ |Sv|, |Ru→v| ≥ q(q −D − 1). Since q ≥ kD + 1
(see [7], [8]), q −D − 1 ≥ (k − 1)D. Consequently, |Ru→v| ≥ q(k − 1)D. ��

From Theorem 1 it is obvious that for k > 1, |Ru→v| > qD. Consequently, the number of non-assigned eligible slots
may be quite significant for the cases where k > 1 (this case corresponds to large networks, [8]). Even for the case where
k = 1, |Ru→v| ≥ 0, that is, |Ru→v| can still be greater than zero. For those nodes for which the set of overlapping slots is
not the largest possible

(
i.e.,

⋃χ∈Sv∪{v}Ωχ
 < (|Sv|+1)q

)
, |Ru→v| is greater than zero, even for k = 1. Furthermore,

if the neighborhood of node v is not dense, or |Sv| is small compared to D, then |Ru→v| is even higher.
In general, the use of slots i, i ∈ Ru→v, may increase the average number of successful transmissions, as long as

Ru→v is determined and time slots i ∈ Ru→v are used efficiently. The determination of Ru→v requires the existence of
a mechanism for the extraction of sets Ωχ, ∀χ ∈ Sv. In addition, the efficient use of slots in Ru→v by node u, requires
further coordination and control exchange with neighbor nodes χ, whose transmissions χ→ ψ, with Rχ→ψ ∩Ru→v = ∅,
may utilize the same slots in Rχ→ψ ∩Ru→v and corrupt either transmission u→ v or χ→ ψ, or both.

Moreover, under non-heavy traffic conditions, there exist a number of idle slots, in addition to those in Ru→v, not used
by the node they are assigned to. In order to use all non-assigned time slots without the need for further coordination
among the nodes, the following probabilistic transmission policy is proposed.

The Probabilistic Policy: Each node u always transmits in slot i if i ∈ Ωu and transmits with probability p in slot i if
i /∈ Ωu, provided it has data to transmit.



The Probabilistic Policy does not require specific topology information (e.g., knowledge of Ru→v, etc.) and, thus,
induces no additional control overhead. The access probability p is a simple parameter common for all nodes. Under the
Probabilistic Policy, all slots i /∈ Ωu are potentially utilized by node u: both, those in Ru→v, for a given transmission
u → v, as well as those not in Ωu ∪ Ru→v that may be left by neighboring nodes under non-heavy traffic conditions.
On the other hand, the probabilistic transmission attempts induce interference to otherwise collision-free transmissions.
The following section establishes the conditions under which the loss due to the induced interference is more than
compensated for by the utilization of the non-assigned time slots.

4 Specific Transmission Analysis

In this section both policies are analyzed for a specific transmission (transmission u→ v). The analysis assumes heavy
traffic conditions; that is, there is always data available for transmission at each node, for every time slot.

Let Pi,u→v denote the probability that transmission u→ v in slot i is successful. Let Pu→v be the average probability
over a frame for transmission u→ v to be successful during a time slot. That is,

Pu→v =
1
q2

q2∑
i=1

Pi,u→v , (5)

where q2 is the frame size, in time slots.
Under the Deterministic Policy, Pi,u→v = 0, ∀i /∈ Ωu. For i ∈ Ωu there are two distinct cases: for i ∈ Cu→v, Pi,u→v = 0,

while for i /∈ Cu→v , Pi,u→v = 1 (note the if i ∈ Cu→v then i ∈ Ωu as well). Since |Ωu| = q, it is evident that under
the Deterministic Policy the average over a frame probability of success for transmission u → v (denoted by PD,u→v),
is given by

PD,u→v =
q − |Cu→v|

q2
. (6)

Under the Probabilistic Policy, it is evident that Pi,u→v = 0, for i ∈ Cu→v, as well as for i /∈ Ωu and i /∈ Ru→v. On
the other hand, Pi,u→v = (1 − p)|Sv|, for i ∈ Ωu and i /∈ Cu→v, whereas Pi,u→v = p(1 − p)|Sv |, for i ∈ Ru→v (note that
if i ∈ Ru→v then i /∈ Ωu). Consequently, Pi,u→v = (1 − p)|Sv| for q − |Cu→v| time slots, while Pi,u→v = p(1 − p)|Sv|

for |Ru→v| time slots. As a result, under the Probabilistic Policy the average over a frame probability of success for
transmission u→ v (denoted by PP,u→v), is given by

PP,u→v =
q − |Cu→v| + p|Ru→v|

q2
(1 − p)|Sv|. (7)

The term q−|Cu→v|
q2 (1 − p)|Sv| is equal to PD,u→v, decreased by the factor (1 − p)|Sv| that is due to the interference

introduced by the probabilistic transmission attempts. The term p|Ru→v|
q2 (1 − p)|Sv | is the gain due to the use of the

non-assigned eligible slots Ru→v. The aforementioned reduction of PD,u→v due to the interference, is possible to be more
than compensated for by the gain due to the use of the non-assigned eligible slots, resulting in PP,u→v > PD,u→v. This
is investigated in the sequel.

It is evident that PP,u→v = PD,u→v, when p = 0. For p > 0, PP,u→v may or may not be greater than PD,u→v, depending
on the values of p, q, |Sv|, |Ru→v| and |Cu→v|. The scope of the following analysis is to determine the conditions under
which PP,u→v > PD,u→v.

Theorem 2. PP,u→v = PD,u→v for p = 0 and PP,u→v < PD,u→v for 1 ≥ p > 0, provided that |Ru→v| ≤ (q−|Cu→v|)|Sv|.
��

The proof of Theorem 2 can be seen in Appendix 1.
Figures 2 and 3 depict the generic behavior of PP,u→v as a function of p, when |Ru→v| ≤ (q − |Cu→v |)|Sv|. Figure 2

corresponds to the case where the second derivative is not zero for any value p, 0 ≤ p < 1, while Figure 3 corresponds
to the case where a value of p, 0 < p < 1 exists such that the second derivative is zero. According to Appendix 2, this is
true when 2|Ru→v| > (q− |Cu→v|)(|Sv| − 1). The value of p for which the second derivative is zero is denoted by ps,u→v

and ps,u→v = 2|Ru→v|−(q−|Cu→v|)(|Sv|−1)
|Ru→v|(|Sv|+1) .

Theorem 3. Provided that |Ru→v| > (q − |Cu→v|)|Sv| is satisfied, PP,u→v > PD,u→v for p ∈ (0, pmax,u→v), for some
0 < pmax,u→v < 1. ��
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Fig. 2. PP,u→v when |Ru→v| ≤ (q − |Cu→v|)|Sv | and 2|Ru→v | < (q − |Cu→v|)(|Sv| − 1).
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Fig. 3. PP,u→v when |Ru→v| ≤ (q − |Cu→v|)|Sv | and 2|Ru→v | ≥ (q − |Cu→v|)(|Sv| − 1) .

The proof of Theorem 3 can be seen in Appendix 3.
The generic behavior of PP,u→v, as a function of p, when |Ru→v| > (q − |Cu→v|)|Sv|, is shown in Figure 4. According

to Appendix 3 there exists a maximum value for PP,u→v for a particular value of p ∈ (0, pmax,u→v) (≡ p0,u→v). In
Appendix 2 it is shown that there exists a value ps,u→v, such that p0,u→v < ps,u→v < 1, for which the second derivative
of PP,u→v with respect to p is zero.

It should be noted that pmax,u→v is not easy to be calculated analytically from Equation (7). On the other hand, it
can be calculated using numerical methods, such as the well-known Newton-Raphson method.

5 On the System Throughput

The analysis presented so far has established the conditions for which the probability of success under the Probabilistic
Policy is higher than that under the Deterministic Policy, for a specific transmission. Since the same value of p is
assumed to be adopted for all nodes under the Probabilistic Policy it is possible that this common value results in
different comparative performance under the Deterministic and the Probabilistic Policies, for different transmissions.
First, it may be that for some transmissions Theorem 2 holds and thus the Probabilistic Policy can never outperform
the Deterministic one. Second, it may be that for some transmissions χ → ψ Theorem 3 holds but the common p is
outside the range (0, pmax,χ→ψ) and thus the Probabilistic Policy induces a lower probability of success. Finally, for
some transmissions χ → ψ Theorem 3 may hold and p is within the range (0, pmax,χ→ψ) and thus the Probabilistic
Policy outperforms the Deterministic one. From the aforementioned three cases it is clear that the system throughput
(averaged over all transmissions) under the Probabilistic Policy (denoted by PP,succ) may or may not outperform that
under the Deterministic Policy (denoted by PD,succ) for a given value of p.

The following theorem shows that for large networks (k > 1, [8]) |Ru→v| ≥ (q−|Cu→v|)|Sv| holds for every transmission
u→ v. For k = 1 the condition also holds for any transmission u→ v for which |Sv| ≤ D/2.



0

0 1

υ→uDP ,

υ→uPP ,

p
υ→upmax,υ→up ,0

����������	
��
������
���
������������ υ→u

υ→usp ,

Fig. 4. PP,u→v when |Ru→v| > (q − |Cu→v|)|Sv |.
Theorem 4. For k > 1, |Ru→v| ≥ (q−|Cu→v |)|Sv|, for every transmission u→ v. For k = 1 |Ru→v| ≥ (q−|Cu→v |)|Sv|,
provided that |Sv| ≤ D/2.

Proof. From Theorem 1 and for any transmission u→ v, it is concluded that |Ru→v| ≥ qD, for k > 1. Since q ≥ q−|Cu→v|
and |Sv| ≤ D, it is concluded that (q− |Cu→v |)|Sv| ≤ qD, and, consequently, |Ru→v| ≥ (q− |Cu→v |)|Sv| holds for k > 1.

In [7], [8] it is established that q ≥ D + 1 for k = 1. From Theorem 1 and for any transmission u → v, |Ru→v| ≥
q(q − |Sv| − 1) or |Ru→v| ≥ (q − |Cu→v |)(q − |Sv| − 1), since q ≥ q − |Cu→v|. To show that |Ru→v| ≥ (q − |Cu→v|)|Sv| it
suffices to show that q − |Sv| − 1 ≥ |Sv| or q ≥ 2|Sv| + 1. Since q ≥ D + 1, it suffices to show that D + 1 ≥ 2|Sv| + 1 or
|Sv| ≤ D/2. ��

From theorems 2, 3 and 4, it is shown that for k > 1 there exists a range of values of p such that PP,χ→ψ ≥ PD,χ→ψ ,
for any transmissions χ→ ψ. Consequently, for k > 1, there exists a range of values for p such that PP,succ ≥ PD,succ.

The analysis presented in the previous section (as well as in Theorem 4) has shown an obvious connection between
the number of the neighbor nodes of node v and the probability of success for transmission u → v. From equations (3)
and (4) it is concluded that |Cu→v | increases and |Ru→v| decreases as |Sv| increases. Under the Deterministic Policy (see
Equation (6)) the probability of success for transmission u→ v decreases linearly as |Cu→v| increases (as |Sv| increases).
Under the Probabilistic Policy (see Equation (7)) as |Sv| increases the probability of success: (a) decreases linearly as

|Cu→v| increases; (b) increases linearly as |Ru→v| decreases; and (c) decreases exponentially
(
term (1 − p)|Sv|

)
as |Sv|

increases. Thus, it seems that an increase in |Sv| has a more negative impact on the probability of success under the
Probabilistic Policy than under the Deterministic. Consequently, it is expected that: (a) the Probabilistic Policy (with
access probability p) outperforms the Deterministic Policy for a certain topology G(V,E) with parameters N and D
and low topology density, while the reverse can be true for the same parameters N and D and access probability p but
a higher topology density; (b) the value of p that results in a higher probability of success for the Probabilistic Policy
decreases, to reduce the impact of the interference caused by the increased number of probabilistic attempts by the
increased number of neighbors. The maximum system throughput achieved under the Probabilistic Policy under some
p is expected to decrease as the topology density increases.

From the above discussion, it is evident that the topology density affects strongly the probability of success under
the Probabilistic Policy. In the next section, a topology density metric is introduced to be used for the categorization of
each topology G(V,E) for a given pair N , D. In Section 7, the relation between the range of suitable values of p (range
of values for which PP,succ ≥ PD,succ) and the topology density metric is investigated as well as the relation between
the maximum value of PP,succ and the particular metric.

6 Topology Density Analysis

It has been shown that a specific transmission u → v is influenced (is corrupted or successful) by the transmission set
Φu→v ∪ Θu→v. Consequently, node v as well as any node χ ∈ Sv − {u} influence transmission u → v. Let the set of
nodes Su be referred to as the set of one-hop neighbor nodes of node u with respect to transmission u → v, the set of
nodes Sv − {u}, ∀v ∈ Su, be referred to as the set of two-hop neighbor nodes of node u and the union of both previous
sets to be referred to as the aggregate two-hop set of neighbor nodes of node u with respect to transmission u → v.
Consequently, the aggregate two-hop set of a node influences the transmissions of that particular node. Based on this
observation, the topology density is defined as it is presented next.



For a given pair N and D numerous topologies G(V,E) exist. It is possible to categorize these topologies depending
on the number of the aggregate two-hop nodes. Let Calculated(G(V,E)) denote the total number of aggregate two-hop
nodes, for all nodes in the network, calculated for topology G(V,E).

Calculated(G(V,E)) =
∑
u∈V

∑
v∈Su

|Sv − {u}| =
∑
u∈V

∑
v∈Su

(|Sv| − 1). (8)

Let Upper(N,D) and Lower(N,D) be defined as follows.

Upper(N,D) = ND2, (9)

Lower(N,D) =



D2 +D N −D = 1
D2 +D + 4 N −D = 2
D2 − 3D + 4N − 4 N −D ≥ 3.

(10)
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Fig. 5. Least dense topology for D = 4 and N = 5, 6, 7, 8 respectively.

Theorem 5. For a topology G(V,E) with parameters N and D, the following holds: Lower(N,D) ≤ Calculated(G(V,E)) ≤
Upper(N,D).

Proof. The upper bound for Calculated(G(V,E)) is derived by considering the most dense topology G(V,E) for which
N = |V |. The most dense topology corresponds to the case for which |Su| = D, ∀u ∈ V . Consequently, for each of the
N nodes, there are D one-hop neighbors, and D(D− 1) two-hop neighbors. Thus, the total aggregate two-hop nodes in
the network are N(D(D − 1) +D) = ND2. As a result, Upper(N,D) = ND2. Note that in the case in which the most
dense topology for a pair N and D is not possible to have D neighbor nodes for every node, Upper(N,D) < ND2 still
holds.

The lower bound for Calculated(G(V,E)) corresponds to the total number of aggregate two-hop nodes of the least
dense topology possible for a given pair N , D. The latter is a topology in which there is only one node u with |Su| = D
one-hop neighbor nodes, D − 1 nodes are one-hop neighbors of u but have no other one-hop neighbor except node u,
and one node χ is one-hop neighbor of node u and the initiator of a line of nodes. No loops are present in the topology
(see Figure 5).

In case N −D = 1 (see Figure 5.a for the corresponding least topology) each node other than u has only one one-hop
neighbor node; node u. Consequently, there are D aggregate two-hop nodes for node u, as well as D for the rest D nodes.
As a result, Lower(D,N) = D2 +D, for N −D = 1.

In case N −D = 2 (see Figure 5.b for the corresponding least dense topology) node χ has another one-hop neighbor
node, node ψ, expect u. Consequently, there are D+1 aggregate two-hop nodes for node χ, and 2 for node ψ. For node
u, there are D + 1 aggregate two-hop nodes, and for each of the D − 1 remaining nodes (for which their only one-hop
neighbor node is u), D aggregate two-hop nodes. As a result Lower(D,N) = (D − 1)D + (D + 1) + (D + 1) + 2 or
Lower(D,N) = D2 +D + 4, for N −D = 2.

In case N − D ≥ 3 (see Figures 5.c and 5.d for the corresponding least dense topology) node χ is the initiator
of a line of nodes. The number of nodes in this line is equal to N − D − 1. For the two nodes at the end of the
line there is 3 + 2 aggregate two-hop nodes, while for each one of the N − D − 3 nodes there are 4. As a result
Lower(D,N) = (D − 1)D + (D + 1) + (D + 2) + 4(N − D − 3) + 3 + 2 or Lower(D,N) = D2 − 3D + 4N − 4 for
N −D ≥ 3. ��



Let W (G(V,E)) denote a density metric for topology G(V,E) defined as follows;

W (G(V,E)) =
Calculated(G(V,E))− Lower(N,D)

Upper(N,D)− Lower(N,D)
. (11)

It is evident from Theorem 5 that 0 ≤ W (G(V,E)) ≤ 1. For W (G(V,E)) close to 1 the number of the aggregate
two-hop nodes is high, while for W (G(V,E)) close to zero the number of the aggregate two-hop nodes is low.

7 Simulation Results

For the simulation purposes four different topology categories are considered. The number of nodes in each topology
category is N = 100, while D is set to 5, 10, 15 and 20. These four topology categories are denoted as D5N100, D10N100,
D15N100 and D20N100 respectively. Parameters q and k are determined according to the algorithm presented in [8].
Time slot sets are assigned randomly to each node, for each particular topology. The particular assignment is kept the
same for each topology category throughout the simulations. Different topologies that correspond to different topology
density values W (G(V,E)) are considered for each topology category.
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Fig. 6. Psucc under the Deterministic as well as the Probabilistic Policy, for small topology density values.

Note from Theorem 1 that for k > 1 the number of non-assigned eligible time slots is expected to be higher for a
higher value of k and Theorem 3 always holds as it has been proved in Theorem 4. Consequently, it is expected that
for k > 1 all transmissions will achieve a higher throughput under the Probabilistic Policy for any value of p in the
range (0, pmax), where pmax depends on the specific transmission’s environment (see Theorem 3). When k = 1, the
Probabilistic Policy will outperform the Deterministic Policy for those transmission for which |Sv| ≤ D/2 and may not
for others. That is, the lower the topology density the more transmissions will satisfy the condition |Sv| ≤ D/2 and the
wider the range of values of p for which the Probabilistic Policy will outperform the Deterministic Policy.

The simulation results presented demonstrate the performance for k = 1 (the resulting value for k is equal to 1 for
the four topology categories, [8]), that is the case that the number of non-assigned eligible time slots is expected to be
rather small and, thus, the effectiveness of the Probabilistic Policy rather low.

The simulation results show that: (a) there exists a range of values for 0 ≤ p ≤ pmax (0 < pmax < 1) such that PP,succ ≥
PD,succ; (b) this range decreases as the topology density, measured byW (G(V,E)), increases as expected, suggesting that
the introduced topology density metric W (G(V,E)) is an effective one; (c) PP,succ decreases as W (G(V,E)) increases.

Figures 6, 7 and 8 depict simulation results for the system throughput (Psucc), under both the Deterministic and
the Probabilistic Policies, as a function of the access probability p. In Figure 6, W (G(V,E)) is close to zero, in Figure
7, W (G(V,E)) is close to 0.5, while in Figure 8, W (G(V,E)) is as high as possible (close to 0.8). In all three sets
of simulations it can be observed that the system throughput achieved under the Deterministic Policy is constant
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Fig. 7. Psucc under the Deterministic as well as the Probabilistic Policy, for medium topology density values.

with respect to p. Under the Probabilistic Policy there exists a range of values for p (0 ≤ p ≤ pmax < 1) such that
PP,succ ≥ PD,succ.

For values of p close to 1 the throughput is almost zero. This is expected since the interference induced due to the
high access probability is rather high; it may also be concluded from Equation (7).

A careful consideration of the results in figures 6, 7 and 8 shows that pmax decreases as W (G(V,E)) increases as
expected. This trend is shown more clearly in Figure 9, where the values for pmax derived in the simulations are plotted
as a function of W (G(V,E)). Notice that pmax decreases almost exponentially as W (G(V,E)) increases, as expected
from the discussion in Section 5. The results in Figure 9 demonstrate the effectiveness of the introduced topology density
metricW (G(V,E)) in capturing the topology density and determining the range of probabilities p under the Probabilistic
Policy that lead to a higher system throughput than that under the Deterministic Policy. Notice that for a particular
value of W (G(V,E)), any value of p below the curve results in PP,succ ≥ PD,succ. Based on the results in Figure 9, one
could measure or estimate the value of W (G(V,E)) and depending on whether it is low or high select a larger or smaller
probability p.

Finally, Figure 10 shows the maximum value of PP,succ as a function of W (G(V,E)). As expected, this value decreases
as W (G(V,E)) increases, which again shows that the effectiveness of the introduced topology density metric.

8 Summary and Conclusions

In this paper the inherent inefficiencies of the Deterministic (slot assignment) Policy in an ad-hoc network, proposed
in [7] and [8], are investigated and the Probabilistic (slot assignment) Policy is introduced in an effort to improve the
achieved network throughput. The basic idea behind the proposed policy is to use (with some probability p) slots not
assigned to a node under the assignment scheme in [7], [8]. The study in this paper has been carried out under heavy
traffic conditions, which are expected to minimize the benefits of the Probabilistic Policy that eventually tries to utilize
slots non-assigned to anybody or not used by others.

First, the ad-hoc environment is discussed and the potential for improved efficiency under the Probabilistic Policy
is established. Then, a specific generic transmission u → v is considered and it is shown that under certain conditions
(that are derived and depend on the two-hop neighborhood) the Probabilistic Policy can outperform the Deterministic
Policy for access probabilities p in a range (0, pmax,u→v).

In the sequel, a common probability p is assumed for all transmissions in the network - as it would practically be the
case - and the system throughput is considered, as shaped by all transmissions (which may or may not achieve a higher
throughput under the Probabilistic Policy). First, it is shown that the networks for which the assigned polynomials have
degree k > 1 (see [7], [8]) - which is the case for large networks - a nonzero range for the common probability p exists
under which the Probabilistic Policy outperforms the Deterministic Policy. Second, for k = 1 (typically for rather small
networks) sufficient conditions are established regarding the two-hop neighborhood under which the conditions for the
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Fig. 8. Psucc under the Deterministic as well as the Probabilistic Policy, for high topology density values.

existence of a range (0, pmax) of the access probability are satisfied and, thus, such transmissions will achieve a higher
throughput under the Probabilistic Policy; thus, such transmissions will contribute a higher value toward the system
throughput achieved under the Probabilistic Policy. The latter conditions show that the size of the two-hop neighborhood
affects the performance of of a specific transmission (the smaller the size the higher the achieved throughput) and suggest
that the system throughput achieved under the Probabilistic Policy is affected by the overall one- and two-hop (aggregate
two-hop) neighborhood size of the network. These observations have led to the idea of introducing the topology density
metric W (G(V,E)) and use it to infer how large the aggregate two-hop neighborhood is for a certain topology. As
W (G(V,E)) decreases it is expected under the Probabilistic Policy that both the range of effective access probabilities
(0, pmax) and the achieved system throughput will increase.

Simulation results have been derived for four network topology categories
(
for four pairs (N,D)

)
and the for three

values of the corresponding value of W (G(V,E)) for each one of them; k = 1 and heavy traffic conditions have been
assumed, both of which are expected to induce only a small advantage of the Probabilistic Policy over the Deterministic
Policy, compared to the cases of networks with k > 1 and non-heavy traffic conditions. The derived results have supported
the claims and expectations regarding the comparative advantage of the Probabilistic Policy over the Deterministic
Policy, as well as the dependence of the former on the introduced topology density metric.
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Appendices

Appendix 1 Proof of Theorem 2

From Equation (7) it is concluded that PP,u→v = PD,u→v for p = 0.
The first derivative of PP,u→v with respect to p is calculated in Appendix 4. For |Ru→v| ≤ (q − |Cu→v|)|Sv|, the first

derivative is zero for two values of p: p = 0 and p = 1. For any other value p ∈ (0, 1) the first derivative is always
negative (see Appendix 4) and therefore, the global maximum corresponds to p = 0 (PP,u→v = PD,u→v) whereas, the
global minimum corresponds to p = 1 (PP,u→v = 0). Consequently, for any value of p ∈ (0, 1], PP,u→v < PD,u→v.
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Fig. 9. pmax parameterized by W (G(V, E)).

Appendix 2 On the Existence of ps,u→v

d2g(p)
d2p = 0 for p = 1 and p = 2|Ru→v|−(q−|Cu→v|)(|Sv|−1)

|Ru→v|(|Sv|+1) ≡ ps,u→v. Since 0 < p ≤ 1 (0 is not included since it is the case
for which PP,u→v = PD,u→v), in order for ps,u→v to be a valid root it is required that 0 < ps,u→v ≤ 1. ps,u→v > 0 when
2|Ru→v| > (q− |Cu→v|)(|Sv|− 1). Note that ps,u→v ≤ 1, when ps,u→v > 0. Notice that 2|Ru→v| > (q− |Cu→v |)(|Sv|− 1)
is always met if |Ru→v| > (q − |Cu→v|)|Sv| and, in this case, ps,u→v > p0,u→v. To show the latter it suffices to show
that 2|Ru→v|−(q−|Cu→v|)(|Sv|−1)

|Ru→v|(|Sv|+1) > |Ru→v|−(q−|Cu→v|)|Sv|
|Ru→v|(|Sv|+1) or 2|Ru→v| − (q− |Cu→v|)(|Sv| − 1) > |Ru→v| − (q− |Cu→v|)|Sv|

or 2|Ru→v| − (q − |Cu→v |)|Sv| + q − |Cu→v| > |Ru→v| − (q − |Cu→v|)|Sv| or 2|Ru→v| + q − |Cu→v | > |Ru→v| or
|Ru→v| + q − |Cu→v| > 0. The latter always holds.

Appendix 3 Proof of Theorem 3

From Equation (7) it is concluded that PP,u→v = PD,u→v for p = 0 and PP,u→v = 0 for p = 1. Consequently, the range
of values for which PP,u→v > PD,u→v includes neither 0 nor 1.

For 0 < p < 1 and |Ru→v| > (q−|Cu→v|)|Sv| the first derivative of PP,u→v, with respect to p, is zero (see Appendix 4),
when p = |Ru→v|−(q−|Cu→v|)|Sv|

|Ru→v|(|Sv|+1) (≡ p0,u→v). For p = p0,u→v (the first derivative is zero) the second derivative is negative
(see Appendix 4). Consequently, p0,u→v corresponds to a maximum value for PP,u→v. For every value p, 0 < p ≤ p0,u→v,
the first derivative is always positive and consequently, PP,u→v > PD,u→v.

On the other hand, for every value p0,u→v < p < 1 the first derivative is always negative. For p→ 1, PP,u→v → 0 and
given that PP,u→v is a continuous function of p, there exists a value p0,u→v < p < 1, such that PP,u→v = PD,u→v. Let
pmax,u→v denote that value of p.

Finally, it is evident that for any value p ∈ (0, pmax,u→v), PP,u→v > PD,u→v, provided that |Ru→v| > (q−|Cu→v|)|Sv|.

Appendix 4 Complement of Proofs of Theorems 2 and 3

For convenience, the following function g(p) is considered

g(p) = (q − |Cu→v| + |Ru→v|p)(1 − p)|Sv| = Pp,u→vq
2.

The first and second derivative of g(p) with respect to p are given by:

dg(p)
dp

= |Ru→v|(1 − p)|Sv | − |Sv|(q − |Cu→v| + |Ru→v|p)(1 − p)|Sv |−1

=
(
|Ru→v| − (q − |Cu→v|)|Sv| − |Ru→v|(|Sv| + 1)p

)
(1 − p)|Sv|−1.
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Fig. 10. Maximum value of PP,succ parameterized by W (G(V,E)).

d2g(p)
d2p

= −|Ru→v|(|Sv| + 1)(1− p)|Sv|−1 − (|Sv| − 1)
(
|Ru→v| − (q − |Cu→v |)|Sv| − |Ru→v|(|Sv|+ 1)p

)
(1 − p)|Sv |−2

= −|Sv|
(
2|Ru→v| − (q − |Cu→v|)(|Sv| − 1) − |Ru→v|(|Sv| + 1)p

)
(1 − p)|Sv |−2.

dg(p)
dp = 0 for p = 1 and p = |Ru→v|−(q−|Cu→v|)|Sv|

|Ru→v|(|Sv|+1) ≡ p0,u→v. Since 0 < p ≤ 1, in order for p0,u→v to be a valid root it
is required that 0 < p0,u→v ≤ 1. p0,u→v > 0 when |Ru→v| > (q − |Cu→v |)|Sv|. Note that p0,u→v ≤ 1, when p0,u→v > 0.

If |Ru→v| < (q − |Cu→v|)|Sv| then dg(p)
dp < 0 for any value of p. Therefore the maximum value for g(p) is assumed for

p = 0 and it is g(0) = q − |Cu→v|.
If |Ru→v| > (q − |Cu→v|)|Sv| then for p = p0,u→v the second derivative is equal to

d2g(p)
d2p


p=p0,u→v

= −|Sv|(1 − p)|Sv|−2

(
2|Ru→v| − (q − |Cu→v|)(|Sv| − 1)

−|Ru→v|(|Sv| + 1)
|Ru→v| − (q − |Cu→v|)|Sv|

|Ru→v|(|Sv| + 1)

)

= −|Sv|(1 − p)|Sv|−2(2|Ru→v| − (q − |Cu→v |)(|Sv| − 1)− |Ru→v| + (q − |Cu→v|)|Sv|)
= −|Sv|(q − |Cu→v|+ |Ru→v|)(1 − p)|Sv|−2.

Since (q − |Cu→v|) + |Ru→v| > 0 and (1 − p)|Sv|−2 > 0 for p = p0,u→v, it is concluded that d2g(p)
d2p


p=p0,u→v

< 0. As a

result g(p) assumes a maximum value at p0,u→v.
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