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Abstract. The design of an efficient Medium Access Control (MAC) is challenging in ad-hoc networks where users
can enter, leave or move inside the network without any need for prior configuration. The existing topology-unaware
TDMA-based schemes are capable of providing a minimum guaranteed throughput by considering a deterministic
policy for the utilization of the assigned scheduling time slots. In an earlier work, a probabilistic policy that utilizes
the non-assigned slots according to an access probability, common for all nodes in the network, was proposed. The
achievable throughput for a specific transmission under this policy was analyzed. In this work, the system throughput
is studied and the conditions under which the system throughput under the probabilistic policy is higher than that
under the deterministic policy are established. In addition, the value for the access probability that maximizes the
system throughput is determined analytically, as well as simplified lower and upper bounds that depend only on
a topology density metric. Since the analysis of the system throughput is shown to be difficult or impossible in
the general case an approximation is introduced whose accuracy is investigated. Simulation results show that the
approximate analysis successfully determines the range of values for the access probability for which the system
throughput under the probabilistic policy is not only higher than that under the deterministic, but it is also close
to the maximum.

1 Introduction

Ad-hoc networks require no infrastructure and nodes are free to enter, leave or move inside the network without prior
configuration. This flexibility introduces new challenges and makes the design of an efficient Medium Access Control
(MAC) a challenging problem. CSMA/CA-based MAC protocols have been proposed, [1], [2], [3], whereas others have
employed handshake mechanisms like the Ready-To-Send/Clear-To-Send (RTS/CTS) mechanism [4], [5], to avoid the
hidden/exposed terminal problem.
Chlamtac and Farago, [6], have proposed an original TDMA-based scheme for topology transparent scheduling. The

mathematical properties of polynomials with coefficients from finite Galois fields are exploited to randomly assign
scheduling time slot sets to each node of the network. It is guaranteed that for each node at least one time slot in
a frame would be collision-free, [6]. Another scheme proposed by Ju and Li, [7], maximizes the minimum guaranteed
throughput. However, both schemes employ a deterministic policy for the utilization of the assigned time slots that fails
to utilize non-assigned time slots that could result in successful transmissions, as it is shown here.
In a previous work, [8], the general approach proposed in [6] and [7] (to be referred to as the Deterministic Policy)

was considered and the idea of allowing the nodes to utilize (according to a common access probability) scheduling slots
not originally assigned (according to the rules in [6], [7]) to them, was introduced. The proposed policy (to be referred to
as the Probabilistic Policy) was analyzed for a specific transmission and the conditions under which the throughput for a
specific transmission under the Probabilistic Policy is higher than that under the Deterministic Policy, were established.
In addition, it was shown that for “large networks” there is always a efficient range of values for the access probability
(a range of values such that the Probabilistic Policy outperforms the Deterministic). Simulation results had shown how
the topology density affects the size of the efficient range of values. In any case, the particular work did not determine
the maximum value of the system throughput and the corresponding value for the access probability.
In this work, the system throughput under the Probabilistic Policy is analyzed extensively and the conditions for the

existence of an efficient range of values for the access probability are established, based on a properly defined topology
density metric. In addition, this analysis determines the maximum value for the system throughput and the value for the



access probability that achieves it. Simple lower and upper bounds for this value that depend only on a simple topology
density metric are also determined. Part of the previous analysis is based on approximations since the exact analysis
of the system throughput appeared to be difficult or impossible in the general case. This approximate analysis assumes
that the number of neighbor nodes is the same for all nodes in the network and equal to the average number of neighbor
nodes. It turns out that this approximation leads to fairly accurate results under certain conditions that are studied
here.
In Section 2, a general ad-hoc network is described as well as both the Probabilistic Policy and the Deterministic

Policy. In Section 3, the preliminary system throughput analysis shows that it is difficult or impossible, in the general
case, to fully analyze it. An approximate analysis is presented in Section 4 that establishes the conditions for the existence
of an efficient range of values for the access probability. Furthermore, this analysis determines the maximum value for
the system throughput and the corresponding value for the access probability; bounds on the latter probability are
determined analytically as a function of the topology density. In Section 5, the accuracy of the approximate analysis
is studied. Simulation results, presented in Section 6, show that a value for the access probability that falls within
the bounds, as they are determined based on the topology density, results in a system throughput that is close to the
maximum. Section 7 presents the conclusions.

2 Scheduling Policies

An ad-hoc network may be viewed as a time varying multihop network and may be described in terms of a graph
G(V,E), where V denotes the set of nodes and E the set of links between the nodes at a given time instance. Let |X |
denote the number of elements in set X and let N = |V | denote the number of nodes in the network. Let Su denote
the set of neighbors of node u, u ∈ V . These are the nodes v to which a direct transmission from node u (transmission
u → v) is possible. Let D denote the maximum number of neighbors for a node; clearly |Su| ≤ D, ∀u ∈ V .
Suppose that a node u wants to transmit to a particular neighbor node v in a particular time slot i. In order for

the transmission u → v to be successful, two conditions should be satisfied. First, node v should not transmit in the
particular time slot i, or equivalently, no transmission v → ψ, ∀ψ ∈ Sv should take place in time slot i. Second, no
neighbor of v - except u - should transmit in time slot i, or equivalently, no transmission ζ → χ, ∀ζ ∈ Sv − {u} and
χ ∈ Sζ , should take place in time slot i. Consequently, transmission u → v is corrupted in time slot i if at least one
transmission χ → ψ, χ ∈ Sv ∪ {v} − {u} and ψ ∈ Sχ, takes place in time slot i.
The transmission(s) that corrupts transmission u→ v may or may not be successful itself. Specifically, in the presence

of transmission u → v, transmission χ → ψ, χ ∈ Sv ∪ {v} − {u} and ψ ∈ Sχ ∩ (Su ∪ {u}), is corrupted. If ψ ∈
Sχ − (Sχ ∩ (Su ∪ {u})), then transmission χ → ψ is not affected by transmission u→ v.
Under the Deterministic Policy, [6], [7], each node u ∈ V is randomly assigned a unique polynomial fu of degree k

with coefficients from a finite Galois field of order q (GF (q)). Polynomial fu is represented as fu(x) =
k∑
i=0

aix
i(mod q)

[7], where ai ∈ {0, 1, 2, ..., q − 1}; parameters q and k are calculated based on N and D, according to the algorithm
presented either in [6] or [7]. For both algorithms it is satisfied that k ≥ 1 and q ≥ kD + 1 (k and D are integers).
The access scheme considered is a TDMA scheme with a frame consisted of q2 time slots. If the frame is divided into

q subframes s of size q, then the time slot assigned to node u in subframe s, (s = 0, 1, ..., q − 1) is given by fu(s)mod q
[7]. Let the set of time slots assigned to node u be denoted as Ωu. Clearly, |Ωu| = q. The deterministic transmission
policy, [6], [7], is the following.
The Deterministic Policy: Each node u transmits in a slot i only if i ∈ Ωu, provided that it has data to transmit.
Depending on the particular random assignment of the polynomials, it is possible that two nodes be assigned over-

lapping time slots (i.e., Ωu ∩ Ωv �= ∅). Let Cu→v be the set of overlapping time slots between those assigned to node u
and those assigned to any node χ ∈ Sv ∪ {v} − {u}. Cu→v is given by:

Cu→v = Ωu ∩

 ⋃
χ∈Sv∪{v}−{u}

Ωχ


 . (1)

Let Ru→v denote the set of time slots i, i /∈ Ωu, over which transmission u → v would be successful. Equivalently,
Ru→v contains those slots not included in set

⋃
χ∈Sv∪{v}Ωχ. Consequently,

|Ru→v| = q2 −


⋃
χ∈Sv∪{v}

Ωχ

 . (2)



Ru→v is the set of non-assigned eligible time slots for transmission u→ v; if such slots are used by transmission u → v,
the probability of success for the particular transmission could be increased. The increased probability of success for
transmission u → v does not necessarily increase the average probability of success of all transmissions in the network
(system throughput); the presence of transmission u→ v in a slot i, i /∈ Ωu, may corrupt another, otherwise successful,
transmission χ → ψ, even though transmission u → v will be successful.

Theorem 1. |Ru→v| is greater than or equal to q(k − 1)D. ��

The proof of Theorem 1 can be found in Appendix 1.
From Theorem 1 it is obvious that for k > 1, |Ru→v| > qD. Consequently, the number of non-assigned eligible slots

may be quite significant for the cases where k > 1 (this case corresponds to large networks, [7]). Even for the case where
k = 1, |Ru→v| ≥ 0, that is, |Ru→v| can still be greater than zero. For those nodes for which the set of overlapping slots is
not the largest possible

(
i.e.,

⋃
χ∈Sv∪{v}Ωχ

 < (|Sv|+1)q
)
, |Ru→v| is greater than zero, even for k = 1. Furthermore,

if the neighborhood of node v is not dense, or |Sv| is small compared to D, then |Ru→v| is even higher.
In general, the use of slots i, i ∈ Ru→v, may increase the average number of successful transmissions, as long as

Ru→v is determined and time slots i ∈ Ru→v are used efficiently. The determination of Ru→v requires the existence of
a mechanism for the extraction of sets Ωχ, ∀χ ∈ Sv. In addition, the efficient use of slots in Ru→v by node u, requires
further coordination and control exchange with neighbor nodes χ, whose transmissions χ → ψ, with Rχ→ψ ∩Ru→v �= ∅,
may utilize the same slots in Rχ→ψ ∩Ru→v and corrupt either transmission u→ v or χ → ψ, or both.
Moreover, under non-heavy traffic conditions, there exist a number of idle slots, in addition to those in Ru→v, not used

by the node they are assigned to. In order to use all non-assigned time slots without the need for further coordination
among the nodes, the following probabilistic transmission policy is proposed.
The Probabilistic Policy: Each node u always transmits in slot i if i ∈ Ωu and transmits with probability p in slot i if

i /∈ Ωu, provided it has data to transmit.
The Probabilistic Policy does not require specific topology information (e.g., knowledge of Ru→v, etc.) and, thus,

induces no additional control overhead. The access probability p is a simple parameter common for all nodes. Under the
Probabilistic Policy, all slots i /∈ Ωu are potentially utilized by node u: both, those in Ru→v, for a given transmission
u → v, as well as those not in Ωu ∪ Ru→v that may be left by neighboring nodes under non-heavy traffic conditions.
On the other hand, the probabilistic transmission attempts induce interference to otherwise collision-free transmissions.
The following section establishes the conditions under which the loss due to the induced interference is more than
compensated for by the utilization of the non-assigned time slots.

3 System Throughput

The throughput for a specific transmission under the Probabilistic and Deterministic policies was investigated in [8]. In
this section the expressions for the system throughput under both policies are provided and the conditions under which
the Probabilistic Policy outperforms the Deterministic Policy are derived. When these conditions are satisfied it is shown
that there exists an efficient range of values for p (such that the system throughput under the Probabilistic Policy is
higher than that under the Deterministic Policy). The analysis assumes heavy traffic conditions; that is, there is always
data available for transmission at each node, for every time slot.
Let Pi,u→v denote the probability that transmission u → v in slot i is successful. Under the Deterministic Policy,

Pi,u→v = 0, ∀i /∈ Ωu. For i ∈ Ωu there are two distinct cases: for i ∈ Cu→v, Pi,u→v = 0, while for i /∈ Cu→v, Pi,u→v = 1(
note from Equation (1) that if i ∈ Cu→v then i ∈ Ωu

)
. Since |Ωu| = q, it is evident that under the Deterministic Policy

the average over a frame probability of success for transmission u → v (denoted by PD,u→v), is given by

PD,u→v =
q − |Cu→v|

q2
, (3)

where q2 is the frame size in time slots.
Under the Probabilistic Policy, it is evident that Pi,u→v = 0, for i ∈ Cu→v , as well as for i /∈ Ωu and i /∈ Ru→v.

On the other hand, Pi,u→v = (1 − p)|Sv|, for i ∈ Ωu and i /∈ Cu→v, whereas Pi,u→v = p(1 − p)|Sv|, for i ∈ Ru→v(
note from Equation (2) that if i ∈ Ru→v then i /∈ Ωu

)
. Consequently, Pi,u→v = (1 − p)|Sv | for q − |Cu→v| time slots,

while Pi,u→v = p(1 − p)|Sv| for |Ru→v| time slots. As a result, under the Probabilistic Policy the average over a frame
probability of success for transmission u → v (denoted by PP,u→v), is given by

PP,u→v =
q − |Cu→v|+ p|Ru→v|

q2
(1 − p)|Sv|. (4)



Let PD,succ (PP,succ) denote the probability of success of a transmission (averaged over all transmissions) under the
Deterministic (Probabilistic) Policy (be referred to as the system throughput for both policies) assuming that each node
u may transmit to only one node v ∈ Su in one frame. PD,succ and PP,succ are given by the following equations.

PD,succ =
1
N

∑
∀u∈V

q − |Cu→v|
q2

, (5)

PP,succ =
1
N

∑
∀u∈V

q − |Cu→v|+ p|Ru→v|
q2

(1 − p)|Sv|, (6)

where v ∈ Su. From Equation (6) it can be seen that for p = 0, PP,succ = PD,succ, while for p = 1, PP,succ = 0. In
general, PP,succ may or may not be greater than PD,succ. Consequently both equations have to be analyzed to establish
the conditions under which PP,succ ≥ PD,succ. The following theorem establishes the condition under which there exists
an efficient range of values for p of the form [0, pmax], for some 0 ≤ pmax < 1, such that PP,succ ≥ PD,succ.

Theorem 2. Provided that
∑

∀u∈V
(|Ru→v| − (q − |Cu→v|)|Sv|

) ≥ 0 is satisfied, there exist an efficient range of values
for p of the form [0, pmax], for some 0 ≤ pmax < 1.

Proof. The first derivative dPP,succ

dp is given by the following equation.

dPP,succ
dp

=
1
N

∑
∀u∈V

|Ru→v| − (q − |Cu→v|)|Sv| − |Ru→v|(|Sv|+ 1)p
q2

(1− p)|Sv |−1. (7)

It is obvious that for small values of p (close to 0 but positive) limp→0
dPP,succ

dp = 1
N

∑
∀u∈V

|Ru→v|−(q−|Cu→v|)|Sv|
q2 .

Consequently, if
∑

∀u∈V
(
|Ru→v| − (q− |Cu→v |)|Sv|

)
≥ 0 there exists a range of values for p such that dPP,succ

dp ≥ 0 and
since PP,succ = PD,succ, for p = 0, it is concluded that PP,succ ≥ PD,succ; since for some p ≥ 0, PP,succ is a continuous
function of p

(
see Equation (6)

)
, and since PP,succ = 0, for p = 1, there exists a value for p, denoted by pmax, such that

PP,succ = PD,succ and 0 ≤ pmax < 1. Consequently, if the particular condition is satisfied then there exists an efficient
range of values of the form [0, pmax]. ��
The following theorem is based on Theorem 2 for “large networks” (k > 1, see [7]).

Theorem 3. For k > 1, there always exists an efficient range of values for p of the form [0, pmax], for some 0 ≤ pmax <
1, for which PP,succ ≥ PD,succ. ��
The proof of Theorem 3 can be found in Appendix 2.
Theorem 2 and Theorem 3 establish the conditions for the existence of an efficient range of values for the access

probability p of the form [0, pmax], for some 0 ≤ pmax < 1. This does not necessarily imply that there are no other
efficient values of p outside [0, pmax]. Since PP,succ is a polynomial of degree D + 1

(
see Equation (6)

)
, dPP,succ

dp is a
polynomial of degree D

(
see Equation (7)

)
and may have up to D real roots. That is, PP,succ may assume up to D

extreme values. These extreme values correspond to a sequence of local maximum values immediately followed by a
local minimum value and so on. Consequently, PP,succ may occasionally become greater or smaller than PD,succ as p
increases. Given that Equation (6) and Equation (7) are difficult or impossible to be analyzed for D > 1 and D > 2,
respectively, any other value of p /∈ [0, pmax] cannot be determined. Furthermore, the maximum value of PP,succ cannot
be determined because the value of p that achieves it cannot be determined as well. In addition, the range [0, pmax]
cannot be determined analytically.
In order to avoid the aforementioned problems - (a) existence of a value of p /∈ [0, pmax] for which PP,succ ≥ PD,succ;

(b) maximum value of PP,succ; (c) analytical expression for pmax - an approximate analysis is considered and presented
in the following section. This analysis establishes the appropriate conditions for the existence of an efficient range of
values, based on a topology density metric. The maximum value for the system throughput is possible to be calculated,
since the corresponding value of p (p̃0) is analytically determined. The boundaries for p̃0 are also determined analytically
as a function of the introduced topology density metric.

4 Approximate Analysis

The problems mentioned in the previous section arise from the polynomial nature of Equation (6) that is difficult or
impossible to be analyzed for D > 2. The approximate analysis presented in this section is based on a polynomial that
is more tractable than that in Equation (6). Let the system throughput PP,succ, be approximated by P̃P,succ:

P̃P,succ =
1
N

∑
∀u∈V

q − |Cu→v|+ p|Ru→v|
q2

(1 − p)|S|, (8)



where |S| = 1
N

∑
∀u∈V |Su|, denotes the average number of neighbor nodes. Let |S|/D be referred to as the topology

density. For a given pair of N and D, numerous topologies exist that can be categorized according to the average
number of neighbor nodes. In the sequel, the conditions under which P̃P,succ ≥ PD,succ, are established and the value
for p (denoted by p̃0) that maximizes P̃P,succ is determined as well.

Let φu→v =
∑

χ∈Sv∪{v}−{u}|Ωχ∩Ωu|
|Sv|+1 denote the average number of overlapping slots of node u with each node χ ∈

(Sv ∪ {v} − {u}). As it can be seen from Appendix 3, the following inequality holds.

|Ru→v| ≥ q2 − (|Sv|+ 1)(q − φu→v). (9)

Let φ = 1
N

∑
∀u∈V φu→v .

Theorem 4. Provided that
∑

∀u∈V
(|Ru→v| − (q − |Cu→v |)|S|

) ≥ 0 is satisfied, there exists a range of efficient values

of p of the form [0, p̃max], for some 0 ≤ p̃max < 1. P̃P,succ assumes a maximum for p =
∑

∀u∈V

(
|Ru→v|−(q−|Cu→v|)|S|

)
∑

∀u∈V

(
|Ru→v|(|S|+1)

)
(≡ p̃0). ��
The proof of Theorem 4 can be found in Appendix 4.
Theorem 4 not only establishes the conditions for the existence of an efficient range of values for p, but also determines

the value of p (p̃0) that maximizes P̃P,succ. This is rather useful, but in the general case, knowledge of Cu→v and Ru→v

for all possible transmissions in the network, is not available. Theorem 5 establishes a condition equivalent to that of
Theorem 4, based on the average number of overlapping slots φ and the topology density |S|. In addition, Theorem 6
determines the lower and upper bounds of p̃0 as a function of |S| only.

Theorem 5. There exists an efficient range of values for p, provided that φ ≥ 2|S|+1
4 .

Proof. According to Theorem 4, there exists an efficient range of values of p if
∑

∀u∈V
(
|Ru→v| − (q − |Cu→v|)|S|

)
≥ 0

holds. From Equation (9), |Ru→v| ≥ q2 − (|S|+1)(q−φu→v). Therefore,
∑

∀u∈V
(
|Ru→v| − (q− |Cu→v|)|S|

)
≥ 0 always

holds if
∑

∀u∈V
(
q2 − (|S| + 1)(q − φu→v) − (q − |Cu→v|)|S|

)
≥ 0. Given that |Cu→v | ≥ φu→v (see Appendix 5), it is

enough to show that
∑

∀u∈V
(
q2 − (|S|+1)(q− φu→v)− (q− φu→v)|S|

)
≥ 0 or

∑
∀u∈V

(
q2 − (2|S|+1)(q− φu→v)

)
≥ 0

or
∑

∀u∈V
(
q2 − (2|S|+1)q+ (2|S|+1)φu→v)

)
≥ 0 or Nq2 −N(2|S|+1)q+ (2|S|+1)

∑
∀u∈V φu→v ≥ 0 or q2 − (2|S|+

1)q + (2|S|+ 1)φ ≥ 0.
Let ∆ be equal to (2|S|+1)2 − 4(2|S|+1)φ = (2|S|+1)(2|S|+1− 4φ). For ∆ ≤ 0, q2 − (2|S|+1)q+(2|S|+1)φ ≥ 0.

Since 2|S|+ 1 > 0, in order for ∆ ≤ 0, 2|S|+ 1− 4φ ≤ 0 should hold, or φ ≥ 2|S|+1
4 . ��

The condition of Theorem 5 (or Theorem 4) is sufficient but not necessary in order for P̃P,succ ≥ PD,succ. Notice also
that these theorems do not provide for a way to derive p̃max. In addition, p̃0 depends on parameters that are difficult
to know for the entire network. In the sequel, Theorem 6 not only provides for a range of efficient values for p but also
determines simple bounds (p̃0max , p̃0min : p̃0max ≤ p̃0 ≤ p̃0min) on the values of p̃0 (that maximizes P̃P,succ) as a function
of the simple topology density |S|.

Theorem 6. p̃0max = 1

|S|+1
, and p̃0min =

q2−(2|S|+1)

(
q− 2|S|+1

4

)
(
q2−(|S|+1)

(
q− 2|S|+1

4

))
(|S|+1)

, provided that there exists an efficient range of

values for p.

Proof. According to Theorem 4, there exists an efficient range of values of p, if
∑

∀u∈V
(
|Ru→v| − (q − |Cu→v|)|S|

)
≥ 0

holds. Then, p̃0 =

∑
∀u∈V

(
|Ru→v|−(q−|Cu→v|)|S|

)
∑

∀u∈V

(
|Ru→v|(|S|+1)

) = 1

(|S|+1)

(
1−

∑
∀u∈V

(q−|Cu→v|)|S|∑
∀u∈V

|Ru→v|

)
≤ 1

|S|+1
. Therefore, p̃0max = 1

|S|+1
.

From Equation (9), |Ru→v| ≥ q2 − (|S| + 1)(q − φu→v) and given that p̃0 = 1

(|S|+1)

(
1−

∑
∀u∈V

(q−|Cu→v|)|S|∑
∀u∈V

|Ru→v|

)
, it

is concluded that p̃0 ≥ 1

(|S|+1)

(
1−

∑
∀u∈V

(q−|Cu→v|)|S|∑
∀u∈V

(q2−(|S|+1)(q−φu→v))

)
=

∑
∀u∈V

(
q2−(|S|+1)(q−φu→v)−(q−|Cu→v|)|S|

)
∑

∀u∈V

(
q2−(|S|+1)(q−φu→v)

)
(|S|+1)

. Since



|Cu→v| ≥ φu→v (Appendix 5),

∑
∀u∈V

(
q2−(|S|+1)(q−φu→v)−(q−|Cu→v|)|S|

)
∑

∀u∈V

(
q2−(|S|+1)(q−φu→v)

)
(|S|+1)

≥
∑

∀u∈V

(
q2−(|S|+1)(q−φu→v)−(q−φu→v)|S|

)
∑

∀u∈V

(
q2−(|S|+1)(q−φu→v)

)
(|S|+1)

and consequently, p̃0 ≥
∑

∀u∈V

(
q2−(|S|+1)(q−φu→v)−(q−φu→v)|S|

)
∑

∀u∈V

(
q2−(|S|+1)(q−φu→v)

)
(|S|+1)

=

∑
∀u∈V

(
q2−(2|S|+1)(q−φu→v)

)
∑

∀u∈V

(
q2−(|S|+1)(q−φu→v)

)
(|S|+1)

. Finally, p̃0 ≥

q2−(2|S|+1)(q−
∑

∀u∈V
φu→v

N )(
q2−(|S|+1)(q−

∑
∀u∈V

φu→v

N
)

)
(|S|+1)

= q2−(2|S|+1)(q−φ)(
q2−(|S|+1)(q−φ)

)
(|S|+1)

= p̃′min(φ). From Appendix 6 it is concluded that dp̃
′
min(φ)

dφ
>

0, is always positive and therefore, p̃′min(φ) increases as φ increases. Consequently, the minimum value for p̃0, p̃0min ,
corresponds to the minimum value of φ for which there exists an efficient range of values for p. This value according to

Theorem 5, corresponds to φ = 2|S|+1
4 and as a result, p̃0min =

q2−(2|S|+1)

(
q− 2|S|+1

4

)
(
q2−(|S|+1)

(
q− 2|S|+1

4

))
(|S|+1)

. ��

Both Theorem 5 and 6 are important for the realization of a system that efficiently implements the Probabilistic
Policy. Given a polynomial assignment that satisfies Theorem 5, for a value of p between p̃0min and p̃0max , the achievable
system throughput is close to the maximum. For the determination of p̃0min and p̃0max it is enough to have knowledge
of the topology density |S|.

5 On the Accuracy of the Approximation

The analysis presented in Section 4 has established the conditions under which P̃P,succ ≥ PD,succ, as well as the range of
values of p for which P̃P,succ is maximized. This section presents the cases for which (a) P̃P,succ is close to PP,succ in the
sense that there exists a small number ε1 such that |PP,succ− P̃P,succ| ≤ ε1 and (b) if the condition, for which P̃P,succ ≥
PD,succ holds, is satisfied, then PP,succ ≥ PD,succ holds as well. In particular, according to Theorem 4, there exists an
efficient range of values such that P̃P,succ ≥ PD,succ, if

∑
∀u∈V

(|Ru→v|−(q−|Cu→v|)|S|
) ≥ 0 is satisfied and according to

Theorem 2, there exists an efficient range of values such that PP,succ ≥ PD,succ, if
∑

∀u∈V
(|Ru→v|−(q−|Cu→v |)|Sv|

) ≥ 0
is also satisfied. This section presents the case for which the aforementioned conditions are close in the sense that there
exists a small number ε2 such that

∑
∀u∈V

(|Ru→v| − (q − |Cu→v|)|S|
) − ∑

∀u∈V
(|Ru→v| − (q − |Cu→v|)|Sv|

) ≤ ε2.
It is also shown that as ε2 increases linearly, ε1 increases exponentially. For the case where ε1 is not small, it is possible
that ε2 is small and PP,succ ≥ PD,succ holds if the condition corresponding to P̃P,succ ≥ PD,succ is satisfied. In general,
ε1 reflects the accuracy of P̃P,succ while ε2 reflects the accuracy of the conditions that if satisfied, P̃P,succ ≥ PD,succ
holds.
First, it is enough to determine the cases when ε1 is close to zero. From Appendix 7 it is concluded that |PP,succ −

P̃P,succ| ≤ 1
N

∑
∀u∈V

(
q−|Cu→v|+p|Ru→v|

q2 (1− p)|S|
(1− p)|Sv|−|S| − 1

)
≤ ε1. Let V ar{|S|} = 1

ND

∑
v∈V

|S| − |Sv|


be defined as the topology density variation. It is evident that as V ar{|S|} increases, ε1 increases exponentially.
Consequently, P̃P,succ is a good approximation of PP,succ, for rather small values of V ar{|S|} (ε1 → 0). In partic-
ular for a network for which for all nodes v ∈ V , |Sv| = D, PP,succ = P̃P,succ (V ar{|S|} = 0). If |Sv| �= D but
|Sv| = |Sχ|, ∀v, χ ∈ V − {u} (only for node u ∈ V , |Su| = D), then PP,succ ≈ P̃P,succ, when N is large; for N → ∞,
limN→∞ V ar{|S|} = 0 and consequently, PP,succ = P̃P,succ (ε1 = 0).

Second, the absolute difference between the two conditions is calculated to be equal to
∑

∀u∈V (q − |Cu→v|)(|S| − |Sv|)
 ≤∑

∀u∈V (q − |Cu→v |)
|S| − |Sv|

 ≤ ε2. Consequently, as V ar{|S|} approaches zero, ε2 approaches zero linearly and

consequently, the condition under which P̃P,succ ≥ PD,succ holds, approaches linearly the condition under which
PP,succ ≥ PD,succ holds. On the other hand, as V ar{|S|} increases, ε2 increases linearly but ε1 increases exponen-
tially.

Let p0 denote that value for p that maximizes (global maximum) PP,succ. Obviously,
dPP,succ

dp

∣∣∣
p=p0

= 0. Equation

(7) is a polynomial of degree D and it is difficult or impossible to be solved to obtain an analytical form for p0. It is
obvious that for V ar{|S|} = 0, p̃0 ≡ p0 and therefore, p0 ∈ (p̃0,min, p̃0,max). In general p0 may or may not belong in
(p̃0,min, p̃0,max) but any value p ∈ (p̃0,min, p̃0,max) for which P̃P,succ ≥ PD,succ holds and P̃P,succ is close to its maximum
value, possibly (depending on the value of ε2) leads to PP,succ ≥ PD,succ and it is possible (depending on the value of
ε1) that PP,succ is close to its maximum value as well.



6 Simulation Results

For the simulation purposes four different topology categories are considered. The number of nodes in each topology
category is N = 100, while D is set to 5, 10, 15 and 20. These four topology categories are denoted as D5N100,
D10N100, D15N100 and D20N100 respectively. The algorithm presented in [7] that maximizes the minimum guaranteed
throughput, is used to derive the sets of scheduling slots. Time slot sets are assigned randomly to each node, for each
particular topology. The particular assignment is kept the same for each topology category throughout the simulations.
Three different topologies that correspond to different topology density values |S|/D are considered for each topology
category.
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Fig. 1. System throughput simulation results for different values of p (small topology density values |S|/D), for both the Deter-
ministic and the Probabilistic Policy.

According to Theorem 1, for k > 1 the number of non-assigned eligible time slots is expected to be higher for a higher
value of k and there exists an efficient range of values for p, as it has been proved in Theorem 3. Consequently, it is
expected that for k > 1 all transmissions will achieve a higher system throughput under the Probabilistic Policy for any
value of p within the efficient range. When k = 1, the Probabilistic Policy will outperform the Deterministic Policy if
the condition of Theorem 5 is satisfied and p belongs in the efficient range of values. If p ∈ (p̃0,min, p̃0,max) then the
achieved system throughput is possible to be close to the maximum, as it appears from Theorem 6.
The simulation results presented demonstrate the performance for k = 1 (the resulting value for k is equal to 1 for

the four topology categories, [7]), that is the case that the number of non-assigned eligible time slots is expected to
be rather small and, thus, the effectiveness of the Probabilistic Policy rather low. The value of φ calculated for each
topology satisfies the condition of Theorem 5 for all cases.
Figures 1, 2 and 3 depict simulation results for the system throughput (Psucc), under both the Deterministic and the

Probabilistic Policies, as a function of the access probability p. In Figure 1, |S|/D is small (around 0.2), in Figure 2,
|S|/D is around 0.6, while in Figure 3, |S|/D is high (around 0.85). For all cases the value for the topology density
variation V ar{|S|} is the highest possible since the number of nodes, for which the number of neighbors is equal to D,
is as high as possible and the rest of the nodes have the minimum number of neighbor nodes required (in order to allow
connectivity).
In all three sets of simulations it can be observed, as expected, that the system throughput achieved under the

Deterministic Policy is constant with respect to p. On the other hand, the system throughput under the Probabilistic
Policy is equal to that under the Deterministic Policy for p = 0 and equal to zero for p = 1, as it may also be concluded
from Equation (6). It can be observed that there exists an efficient range of values for the access probability p for all
cases. The range of values (p̃0min , p̃0max), as it is determined by Theorem 6, is shown as well. Obviously, (p̃0min , p̃0max)
determines a range of the values of p for which PP,succ > PD,succ and it appears that PP,succ is close to its maximum
value.
For the comparison between the two schemes, it is set p = p̃0min . From Figure 4, it can be seen that the achieved system

throughput under the Probabilistic Policy is higher than that under the Deterministic Policy. In particular, for small
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Fig. 2. System throughput simulation results for different values of p (medium topology density values |S|/D), for both the
Deterministic and the Probabilistic Policy.

values of the topology density |S|/D, the system throughput is almost double compared to that of the Deterministic
Policy. As |S|/D increases the system throughput under the Probabilistic Policy converges to that under the Deterministic
Policy. From Figure 4 it can also be observed that the achievable system throughput under the Probabilistic Policy
decreases exponentially as the topology density |S|/D increases. This is also concluded from Equation (6).

7 Summary and Conclusions

The Probabilistic Policy was introduced in [8] and the throughput for a specific transmission was studied. In this work,
this policy is considered and a system throughput analysis is presented in order to (a) identify the suitable range of
values for the access probability p for which the Probabilistic Policy outperforms the Deterministic Policy; (b) identify
the maximum value for the system throughput and the corresponding value of the access probability; (c) determine
simple bounds on the access probability that maximize the system throughput as a function of the topology density.
According to this analysis, even though the conditions for an efficient range of values of p of the form [0, pmax] are

established, it is shown that further analysis of the system throughput is difficult or impossible for certain cases. In
particular, (a) pmax could not be determined analytically; (b) the maximum value of the system throughput could not
be calculated as well as the corresponding value of the access probability p; (c) other existing values of p such that
p /∈ [0, pmax], where the performance under the Probabilistic Policy is higher than that under the Deterministic Policy,
could not be determined. The aforementioned problems motivated the continuation of the analysis based on certain
approximations. An approximate analysis establishes the conditions under which the achieved system throughput is
not only higher than that achieved under the Deterministic Policy, but it is also maximized. This analysis determines
all values for p such that the Probabilistic Policy outperforms the Deterministic Policy and the maximum value for
the system throughput under the former policy can be analytically derived since the corresponding value of the access
probability p is analytically expressed. In addition, bounds on the latter value of p are determined based on a the
topology density metric that is possible to be known in the general case.
Simulation results have been derived for four network topology categories

(
for four pairs (N,D)

)
and for three values

of the topology density (|Sv|/D) for each topology category; k = 1 and heavy traffic conditions have been assumed,
both of which are expected to induce only a small advantage of the Probabilistic Policy over the Deterministic Policy,
compared to the cases of networks with k > 1 and non-heavy traffic conditions. The derived results have supported the
claims and expectations regarding the comparative advantage of the Probabilistic Policy over the Deterministic Policy
and that the approximate system analysis determines the range of values that, under certain conditions, maximize the
system throughput under the Probabilistic Policy, or induce a system throughput close to the maximum.
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Fig. 3. System throughput simulation results for different values of p (high topology density values |S|/D), for both the Deter-
ministic and the Probabilistic Policy.
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Appendices

Appendix 1 Proof of Theorem 1

Notice that
⋃

χ∈Sv∪{v}Ωχ
 ≤ (|Sv|+ 1)q, since |Ωχ| = q, ∀χ ∈ V . From Equation (2) it is concluded that |Ru→v| ≥

q2 − (|Sv| + 1)q, or |Ru→v| ≥ q(q − |Sv| − 1). Given that D ≥ |Sv|, |Ru→v| ≥ q(q −D − 1). Since q ≥ kD + 1 (see [6],
[7]), q −D − 1 ≥ (k − 1)D. Consequently, |Ru→v| ≥ q(k − 1)D.
(This proof is included to help the review process. It also appears in [8]).
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Fig. 4. System throughput simulation results (Psucc), for both policies, for different values of the topology density |S|/D (p =
p̃0min).

Appendix 2 Proof of Theorem 3

It is enough to show that
∑

∀u∈V
(
|Ru→v| − (q − |Cu→v|)|Sv|

)
≥ 0 holds. From Theorem 1 and for any transmission

u → v, it is concluded that |Ru→v| ≥ qD, for k > 1. Since q ≥ q − |Cu→v | and |Sv| ≤ D, it is concluded that
(q − |Cu→v|)|Sv| ≤ qD, and, consequently, |Ru→v| ≥ (q − |Cu→v |)|Sv| holds for k > 1, for every transmission u → v.
Finally, for k > 1,

∑
∀u∈V

(
|Ru→v| − (q − |Cu→v |)|Sv|

)
≥ 0.

(This proof is included to help the review process. It is partially based on a theorem included in [8]).

Appendix 3 |Ru→v| ≥ q2 − (|Sv|+ 1)(q − φu→v)

⋃
χ∈Sv+{v}Ωχ

 can be written as
⋃|Sv|+1

j=1 Ωj

 by assigning numbers, j = 1, ..., |Sv|+ 1, to each node χ ∈ Sv ∪ {v}.
Without loss of generality, it is assumed that node u corresponds to number |Sv|+ 1 or Ωu ≡ Ω|Sv|+1.


|Sv|+1⋃
j=1

Ωj

 = |Ω1|+

|Sv|+1⋃
j=2

Ωj

 −
Ω1 ∩


|Sv|+1⋃

j=2

Ωj





|Sv|+1⋃
j=2

Ωj

 = |Ω2|+

|Sv|+1⋃
j=3

Ωj

 −
Ω2 ∩


|Sv|+1⋃

j=3

Ωj





...

...
|Sv|+1⋃
j=|Sv |−1

Ωj

 = |Ω|Sv |−1|+

|Sv |+1⋃
j=|Sv|

Ωj

 −
Ω|Sv |−1 ∩


|Sv |+1⋃
j=|Sv|

Ωj





|Sv|+1⋃
j=|Sv |

Ωj

 = |Ω|Sv ||+


|Sv|+1⋃
j=|Sv |+1

Ωj

 −
Ω|Sv| ∩


 |Sv|+1⋃
j=|Sv |+1

Ωj





|Sv|+1⋃
j=|Sv |+1

Ωj

 = |Ω|Sv |+1|.



Since |Ωj | = q, by adding all lines:


|Sv|+1⋃
j=1

Ωj

 = (|Sv|+1)q−
|Sv|∑
j=1

Ωj ∩

|Sv|+1⋃
l=j+1

Ωl




. Let θu→v =
∑|Sv|

j=1

Ωj∩
(⋃|Sv|+1

l=j+1
Ωl

)
|Sv|+1 .

The latter expression can be written as


|Sv|+1⋃
j=1

Ωj

 = (|Sv|+1)q− (|Sv|+1)θu→v = (|Sv|+1)(q− θu→v), and therefore,

given Equation (2), |Ru→v| = q2 − (|Sv|+ 1)(q − θu→v).

φu→v can be written as follows: φu→v =
∑|Sv|

j=1 |Ωj∩Ω|Sv|+1|
|Sv|+1 or φu→v =

∑|Sv |
j=1

|Ωj∩Ωu|
|Sv|+1 . Given that Ωu ≡ Ω|Sv|+1, it is

concluded that θu→v ≥ φu→v and consequently, Equation (9) is proved.

Appendix 4 Proof of Theorem 4

From Equation (8) it is concluded that P̃P,succ = 0 for p = 1. Consequently, the range of values for which PP,succ ≥ PD,succ
does not include 1. On the other hand, for p = 0, P̃P,succ = PD,succ and therefore, 0 is included.
The first derivative of P̃P,succ, with respect to p, is

dP̃P,succ
dp

=
1
N

∑
∀u∈V

|Ru→v| − (q − |Cu→v|)|S| − |Ru→v|(|S|+ 1)p
q2

(1− p)|S|−1. (10)

For 0 < p < 1 and
∑

∀u∈V
(|Ru→v| − (q − |Cu→v |)|S|

) ≥ 0, dP̃P,succ

dp = 0 when p =
∑

∀u∈V

(
|Ru→v|−(q−|Cu→v|)|S|

)
∑

∀u∈V

(
|Ru→v|(|S|+1)

)
(≡ p̃0). From Equation (10) it is obvious that dP̃P,succ

dp > 0 for p < p̃0 and dP̃P,succ

dp < 0 for p > p̃0. Consequently, PP,u→v

assumes a maximum at p̃0. Additionally, for every value p, 0 < p ≤ p̃0, P̃P,succ > PD,succ.
For p → 1, P̃P,succ → 0 and given that P̃P,succ is a continuous function of p, there exists a value p̃max (p̃0 < p̃max < 1)

such that P̃P,succ = PD,succ. Finally, it is evident that for any value p ∈ [0, p̃max], P̃P,succ ≥ PD,succ, provided that∑
∀u∈V

(|Ru→v| − (q − |Cu→v |)|S|
) ≥ 0.

Appendix 5 |Cu→v| ≥ φu→v

From Equation (1), |Cu→v | =
Ωu ∩

(⋃
χ∈Sv∪{v}−{u}Ωχ

) ≥ |Ωu ∩Ωj |, for all nodes χ ∈ (Sv ∪ {v} − {u}), de-
noted by numbers j = 1, ..., |Sv|, while node u is denoted by |Sv| + 1. Consequently, |Sv||Cu→v | ≥

∑|Sv|
j=1 |Ωu ∩Ωj |,

or |Cu→v| ≥
∑|Sv|

j=1
|Ωu∩Ωj |

|Sv | >

∑|Sv|
j=1

|Ωu∩Ωj|
|Sv |+1 , or |Cu→v| > φu→v . Consequently, |Cu→v | ≥ φu→v (the equality holds when

Ωu ∩
(⋃

χ∈Sv∪{v}−{u}Ωχ
)
= ∅ in which case |Cu→v| = φu→v = 0).

Appendix 6 dp̃′min(φ)

dφ
> 0.

dp̃′min(φ)
dφ

=
(2|S|+ 1)(|S|+ 1)

(
q2 − (|S|+ 1)(q − φ)

)
−

(
q2 − (2|S|+ 1)(q − φ)

)
(|S|+ 1)2

(|S|+ 1)2
(
q2 − (|S|+ 1)(q − φ)

)2

=
|S|q2

(|S|+ 1)
(
q2 − (|S|+ 1)(q − φ)

)2 > 0.

Appendix 7 |PP,succ − P̃P,succ|

From Equation (6) and Equation (8), |PP,succ − P̃P,succ| is calculated as follows.

|PP,succ − P̃P,succ| =

1
N

∑
∀u∈V

q − |Cu→v|+ p|Ru→v|
q2

(1 − p)|Sv| − 1
N

∑
∀u∈V

q − |Cu→v|+ p|Ru→v|
q2

(1− p)|S|


=


1
N

∑
∀u∈V

q − |Cu→v|+ p|Ru→v|
q2

(
(1− p)|Sv| − (1− p)|S|

)



≤ 1
N

∑
∀u∈V

q − |Cu→v|+ p|Ru→v|
q2

(
(1− p)|Sv| − (1− p)|S|

)
=

1
N

∑
∀u∈V

q − |Cu→v |+ p|Ru→v|
q2

(1− p)|Sv | − (1− p)|S|


=
1
N

∑
∀u∈V

q − |Cu→v |+ p|Ru→v|
q2

(1− p)|S|
(1− p)|Sv|−|S| − 1

 .


