
1

Optimal Call Admission Control on a Single Link
with a GPS Scheduler

Antonis Panagakis† , Nandita D‡ , Ioannis Stavrakakis†, Joy Kuri‡

Abstract— In this paper the problem of Call Admission
Control (CAC) is considered for leaky bucket constrained
sessions with deterministic service guarantees (zero loss and
finite delay bound), served by a Generalized Processor Shar-
ing scheduler at a single node in the presence of best effort
traffic. Based on an optimization process a CAC algorithm
capable of determining the (unique) optimal solution is de-
rived. The derived algorithm is also applicable, under a
slight modification, in a system where the best effort traf-
fic is absent and is capable of guaranteeing that if it does
not find a solution to the CAC problem, then a solution
does not exist. The numerical results indicate that the CAC
algorithm can achieve a significant improvement on band-
width utilization as compared to a (deterministic) effective
bandwidth-based CAC scheme.

I. Introduction

The Generalized Processor Sharing (GPS) scheduling dis-
cipline has been widely considered to allocate bandwidth
resources to multiplexed traffic streams. Its effectiveness
and capabilities in guaranteeing a certain level of Qual-
ity of Service (QoS) to the supported streams in both a
stochastic ([5], [6], [4]) and deterministic ([1], [2], [3], [7])
sense have been investigated. Traffic management based on
deterministic guarantees is expected to lead to lower net-
work resource utilization compared to that under stochas-
tic guarantees. Nevertheless, such considerations are nec-
essary when deterministic guarantees are required by the
applications. In addition they can provide valuable insight
and methodology for the consideration of stochastic guar-
antees.

Under the GPS scheduling discipline traffic is treated as
an infinitely divisible fluid. A GPS server that serves N ses-
sions is characterized by N positive real numbers φ1, ..., φN ,
referred to as weights. These weights affect the amount
of service provided to the sessions (or, their bandwidth
shares). More specifically, if Wi(τ, t) denotes the amount
of session i traffic served in a time interval (τ, t] then the
following relation will hold for any session i that is contin-
uously backlogged in the interval (τ, t]; session i is consid-
ered to be backlogged at time t if a positive amount of that
session traffic is queued at time t.

Wi(τ, t)

Wj(τ, t)
≥

φi

φj

, j = 1, 2, ...N (1)
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In their seminal papers [1], [2] on GPS, Parekh and Gal-
lager have analyzed the GPS scheduling discipline in a de-
terministic setting where the traffic of each session is reg-
ulated by a leaky bucket regulator. In the single node and
the multiple node cases they obtained closed form expres-
sions for bounds on the delay and backlog for a certain
class of GPS schedulers called Rate Proportional Proces-
sor Sharing (RPPS) schedulers. In [7], Zhang et al ob-
tained closed-form expressions for the end-to-end perfor-
mance bounds for a broader class of GPS networks known
as Consistent Relative Session Treatment (CRST) GPS
networks. In [12], Yaron and Sidi studied GPS networks
with exponentially bounded burstiness arrivals. In [5] Zhang
et al investigated the behavior of GPS in a stochastic set-
ting. The above mentioned papers derive delay and backlog
bounds for a session in GPS schedulers, given a particular
weight allocation for the session.

The inverse problem of mapping the QoS requirements
of the sessions to weight allocations in GPS schedulers is of
practical importance. Kesidis et al in [13] and Zhang et al
in [6] address this problem in a stochastic setting (stochas-
tic arrival processes and statistical guarantees) employing
packet loss probability as the QoS metric. In [14] the above
problem is addressed for leaky bucket regulated connec-
tions and statistical delay guarantees. The work most rel-
evant to ours is that of [3], where tight delay bounds (also
reported in [10]) have been presented in conjunction with
a CAC algorithm for the single node case, which aims to
calculate a weight assignment for the sessions that would
not result in an over-achievement of session delays. In or-
der to do so, the dependencies among the sessions must
be considered. The CAC procedure in [3] does not address
this problem directly since it employs an exhaustive search,
having performance bound calculations as an intermediate
step. More specifically, the maximum delay experienced
by the sessions is determined for a weight assignment and
the assignment is modified trying to maximize an objective
function. While the search in [3] terminates after a finite
number of steps, it does not guarantee that an acceptable
assignment does not exist if it is not found. This could
result in an over allocation of bandwidth and sometimes
a call block, even if the bandwidth necessary to guarantee
the call’s QoS requirements is available.

A major contribution of this paper is a CAC algorithm
for the single node case which fully exploits the bandwidth
sharing mechanism of GPS and determines the optimal
weights φ directly from the QoS requirements of the ses-
sions, rather than through a recursive computation of the
induced delay bounds and weight re-assignment. In addi-
tion, it turns out that the optimal scheme is less complex
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than that of [3].
The major results are derived by considering a mixed

traffic environment in which the bandwidth resource con-
trolled by the GPS server is assumed to be shared by a
number of QoS sensitive streams and best effort traffic.
This system will be referred to as a Best Effort Traffic
Aware Generalized Processor Sharing (BETA-GPS) sys-
tem. The developed algorithm determines the minimum
φ assignments for the QoS sensitive streams which are
just sufficient to meet their QoS and, consequently, maxi-
mizes the (remaining) φ assignment to the best effort traf-
fic. Based on the main results an optimal CAC scheme
is proposed in this paper for a decoupled system of GPS-
controlled QoS sensitive traffic and best effort traffic (re-
ferred to as pure QoS system, see section IV). The formu-
lation of the pure QoS system facilitates the derivation of
the minimum required GPS scheduler capacity to support
N QoS sensitive streams, which is, in itself, an interesting
problem.

In section II some basic definitions are presented and
the BETA-GPS environment is described. In section III
an optimization process for the assignment is developed,
the properties of the optimal assignment are studied and
the proposed optimal CAC algorithm is derived. In sec-
tion IV it is described how the results of section III can be
utilized in the pure QoS GPS system. In section V some
numerical results are presented. Section VI concludes the
paper.

II. Definitions and description of the

BETA-GPS system

A. GPS-related definitions

QoS sensitive sessions will be assumed to be leaky bucket
constrained. That is, the amount of session i traffic arriving
at the GPS server over any interval (τ, t] -referred to as the
(assumed to be left continuous as in [1]) session i arrival
function Ai(τ, t)- will be bounded as follows: Ai(τ, t) ≤
σi+ρi(t−τ),∀t ≥ τ ≥ 0 ; σi and ρi represent the burstiness
and long term maximum mean arrival rate of session i. A
session i is characterized as greedy starting at time τ , if
the aforementioned bound is achieved, that is if Ai(τ, t) =
σi + ρi(t − τ),∀t ≥ τ .

A GPS system busy period is defined to be a maximal
time interval during which at least one session is backlogged
at any time instant in the interval.

An all-greedy GPS system is defined as a system in which
all the sessions are greedy starting at time 0, the beginning
of a system busy period. The significance of the all-greedy
system follows from [1] (Theorem 3): If the input link speed
of any session i exceeds the GPS service rate, then for ev-
ery session i, the maximum delay D∗

i and the maximum
backlog Q∗

i are achieved (not necessarily at the same time)
when every session is greedy starting at time zero, the be-
ginning of a system busy period.

This implies that if the server can guarantee an upper
bound on a session’ s delay under the all greedy system
assumption this bound would be valid under any (leaky
bucket constrained) arrival pattern. In view of the previous

observation and by examining only all greedy systems, the
CAC problem for a GPS system is simplified.

Let t = 0 denote the beginning of a system busy period in
an all greedy system. For each session i the arrival function
takes the form Ai(0, t) = σi +ρi · t,∀t ≥ 0. If Qi(t) denotes
the amount of session i traffic queued in the server at time t,
then Qi(t) = Ai(0, t)−Wi(0, t) and Qi(t) = 0 for all t ≤ 0
by assumption. Let ei denote the backlog clearing time of
session i, then:

ei = sup{t > 0 : Qi(t) > 0} (2)

and Bi = (0, ei), corresponds to the session i busy period.
The delay experienced by a session i “bit” arriving at time
t is given by: Di(t) = inf{τ ≥ 0 : Ai(0, t) = Wi(0, t + τ)}.

As indicated in the next section, the BETA-GPS system
will “jointly” support QoS sensitive and best effort traffic.
In addition to beeing leaky bucket constrained and greedy,
the QoS sensitive sessions will be assumed to have a strin-
gent delay requirement, denoted by Di for session i. Thus,
a QoS sensitive session i will be characterized by the triplet
(σi, ρi,Di).

To ensure that the delay constraint for the QoS sensitive
session i is met, a minimum amount of service Ni(0, t) must
be provided by the GPS server to session i over the interval
(0, t] , where

Ni(0, t) =

{

σi + ρi(t − Di) t ≥ Di

0 t < Di

(3)

That is the actual amount of service (work) Wi(0, t) pro-
vided by the GPS server to session i over the interval (0, t]
must satisfy:

Wi(0, t) ≥ Ni(0, t),∀t ≥ 0 (4)

The function Ni(0, t)
1 is referred to as session i require-

ments.

B. Description of the system and problem formulation

The Best Effort Traffic Aware (BETA) GPS system is
depicted in Figure 1. The BETA-GPS server capacity CG

is assumed to be shared by N QoS sensitive sessions with
descriptors (σi, ρi,Di), i = 1, . . . , N and best effort traffic
represented by an additional session. Each session is pro-
vided a buffer and the input links are considered to have
infinite capacity. Quantities associated with a QoS sen-
sitive session (best effort session) will be identified by a
subscript i (be), i = 1, . . . , N . To avoid degenerate cases
and be consistent with the GPS definitions it is assumed
that σiρiDi 6= 0, i = 1, . . . , N and that the φ assignment
of the BETA-GPS scheduler to a session can not be zero
(φi > 0, i = 1, . . . , N, be).

Generally, the task of CAC is to determine whether the
network can accept a new session without causing QoS re-
quirement violations. In the case of a GPS scheduler it

1This function is treated as right continuous to simplify the presen-
tation. Since Ai(0, t) is considered left continuous it is implied that

QoS sensitive session i delay requirement is considered to be D−
i .
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Fig. 1. Functional Diagram of the BETA-GPS system.

should also provide the server with the weight assignment
which will be used in the actual service of the admitted
calls. A CAC scheme for a GPS server is considered to
be optimal if its incapability to admit a specific set of ses-
sions implies that no φ assignment exists under which the
server could serve this set of sessions (respecting all QoS
requirements even under the worst case arrival scenario
(all greedy system)). In addition, an optimal CAC scheme
for the BETA-GPS system should seek to maximize the
amount of service provided to the (traffic unlimited) best
effort session under any arrival scenario and over any time
horizon, while satisfying the QoS requirement of the (traf-
fic limited) QoS sensitive sessions. That is, it should seek
to maximize the normalized2 weight assigned to the best
effort traffic (φbe), while satisfying the QoS requirement of
QoS sensitive sessions.

Obviously, maximizing the weight assigned to the best
effort traffic is equivalent to minimizing the sum of weights
assigned to the QoS sensitive sessions. In view of this dis-
cussion, the following definition may be provided.

Definition 1:
(a) The optimal CAC scheme for the BETA-GPS system
is the one that is based on the optimal φ assignment for
the BETA-GPS system.
(b) The optimal φ assignment for the BETA-GPS system
is the one that allows the QoS sensitive sessions to meet
their QoS requirements - provided that it is possible - and
achieves: max{φbe} = max{1 −

∑N
i=1 φi} or, equivalently,

min{
∑N

i=1 φi}, where φi ∈ R∗
+, i = 1, . . . , N, be, according

to the definition of GPS.
In an all greedy system all QoS sensitive sessions are

backlogged at time t = 0+. Let B(t) denote the set of ses-
sions that are backlogged in the interval (0, t] and let E(t)
denote the set of sessions which have emptied their back-
log before time t, that is, B(t) = {i : ei ≥ t, i = 1, . . . , N},
E(t) = {i : ei < t, i = 1, . . . , N}, where ei is defined in (2).
Each session k ∈ E(t) requires a rate equal to ρk. Conse-
quently, the bandwidth that can be considered to be avail-
able for allocation to the sessions i, i ∈ B(t) is equal to
(CG−

∑

k∈E(t) ρk). Session i ∈ B(t) will be allocated a share

of that bandwidth equal to φi(1−
∑

k∈E(t) φk)−1 and will be

served with a rate φi(CG −
∑

k∈E(t) ρk)(1−
∑

k∈E(t) φk)−1.
Let

Ĉ(t) ,
CG −

∑

j∈E(t) ρj

1 −
∑

j∈E(t) φj

(5)

be referred to as the Normalized Backlogged Sessions Allo-

2Without loss of generality, it is assumed that
∑N

i=1 φi + φbe = 1

cated (NBSA) bandwidth (this quantity is called “univer-

sal slope” in [1]). Clearly Ĉ(t) changes value each time a
session empties its backlog and remains constant between
two consecutive backlog clearing times. Thus, Ĉ(t) is a
piecewise constant function with the discontinuity points
coinciding with the backlog clearing times of the sessions.

Let {bi}
L
i=1, L ≤ N denote the ordered set of distinct

backlog clearing times and let b0 = 0 be the beginning
of the system busy period.3 For two consecutive backlog
clearing times bj−1 and bj , Ĉ( b+

j−1) = Ĉ( b−
j ). Treating

the NBSA bandwidth as a left continuous function implies
that Ĉ( bj) = Ĉ( b−

j ) and

Ĉ(t) =
CG −

∑

k∈E( bj)
ρk

1 −
∑

k∈E( bj)
φk

∀t ∈ ( bj−1, bj ] (6)

Ĉ(t) is an increasing function of time since it preserves a
constant value between two consecutive backlog clearing
times and Ĉ( bj)<Ĉ( b+

j ) for a backlog clearing time bj
4.

The amount of scheduler’s work that is shared among
the backlogged sessions i ∈ B( bj) over the time interval
( bj−1, bj ] is equal to (CG −

∑

i∈E( bj)
ρi)( bj − bj−1).

Let
Ŵ ( bj−1, bj) , Ĉ( b+

j−1)( bj − bj−1) (7)

be referred to as the Normalized Backlogged Sessions Al-
located (NBSA) work. Then - in view of (6) and (7) -,
session i ∈ B( bj) is allocated an amount of work equal to

φiŴ ( bj−1, bj) over ( bj−1, bj ].
In the next section a process is presented that converts

any acceptable policy to the optimal policy, that is the pol-
icy which assigns the maximum possible weight to the best
effort traffic. Although subsection III-A addresses a com-
plete problem in itself, it is used more as an intermediate
step of the proof that the algorithm presented in subsec-
tion III-C is optimal. In particular, the optimality of
the presented algorithm follows from the properties of the
optimization process presented in section III-A.

III. Optimal Call Admission Control for the

BETA-GPS system

A. Optimizing an acceptable φ assignment

In this section a process that converts an acceptable φ as-
signment into a more efficient acceptable one is developed.
An acceptable φ assignment is one which is feasible
(that is

∑N
i=1 φi < 15) and delivers the required QoS to

3Notice that ei refers to the backlog clearing time of session i while
bj refers to the jth of the ordered backlog clearing times.
4Proof: Assume, without loss of generality, that only one session,

session k, empties its backlog at bj . The fact that session k empties
its backlog at bj implies that it was served with a rate greater than

ρk at t = b−
j , i.e.: ρk < φkĈ( b−

j ) ⇔ ρk Pj < φk Rj⇔ Pj Rj −

ρk Pj > Pj Rj − φk Rj ⇔ Pj(Rj − ρk) > (Pj − φk)Rj ⇔

Pj R
+
j > P+

j Rj ⇔ Ĉ( bj) = Ĉ( b−
j ) < Ĉ( b+

j )

where Rj = CG −
∑

i∈E
(

bj

)ρi, Pj = 1 −
∑

i∈E
(

bj

)φi,

R+
j = CG −

∑

i∈E
(

b
+
j

)ρi, P+
j = 1 −

∑

i∈E
(

b
+
j

)φi

5Strict inequality is assumed to avoid the degenerate case which
under equality would not leave any remaining φ to be assigned to the
best effort traffic.



4

each of the supported QoS sensitive sessions. A φ assign-
ment is more efficient than another if the sum of φ’s
∑N

i=1 φi under the former assignment is smaller than that
under the latter.

The aforementioned process will be referred to as the
XMF (eXpand Minimum busy period First) process. Ac-
cording to the XMF process each QoS sensitive session’s
busy period is expanded as much as its QoS would per-
mit, starting from the set of QoS sensitive sessions that
empty their backlog first in order. A very important prop-
erty of the XMF process is that it converts any acceptable
φ assignment into the optimal one. That is, the process
generates the φ assignment that maximizes the weight as-
signed to the best effort traffic (or, minimizes

∑N
i=1 φi, for

the N QoS sensitive sessions).
Let Π denote the set of acceptable policies (or equiva-

lently, φ assignments) and let πa ∈ Π. The application
of the XMF process to πa results in an acceptable pol-
icy πo = XMF (πa), which is not less efficient than πa;
XMF(π) denotes a policy that is generated by applying
the XMF process to π. In particular, it will be shown that
πo is unique and more efficient than πa, except for the case
in which πa = πo.

Let aIk denote the set of QoS sensitive sessions that
empty their backlog k-th in order under πa and let abk be

the time instant when this happens. Let aIPk =
⋃k−1

s=1
aIs

and aIFk =
⋃

s≥k+1
aIs denote the sets of sessions that empty

their backlog before (past) and after (future) abk, respec-
tively. The following definitions will be needed:

Definition 2:
(a) A session i is compressed (decompressed) in φ- space
if its weight is decreased (increased).
(b) A session i is decompressed in t- space, or its busy
period is expanded, if its backlog clearing time is increased.
(c) Sessions in aIk are uniformly decompressed in t- space,
or their busy periods are uniformly expanded, if their back-
log clearing times are equally increased.
(d) A session i preserves its position in φ-(t-) space if its
weight (backlog clearing time) remains unchanged.
(e) A set A ⊆ aIk is compressible in φ- space if ∀i ∈ A
dφi > 0 exists, such that sessions i ∈ A do not violate their
delay bounds when they are assigned a weight φi − dφi,
under the conditions: a) sessions in aIPk ∪{ aIk \A} preserve
their position in φ- space; b) sessions which emptied their
backlog after sessions in A still empty their backlog after
sessions in A.

A.1 Description of the XMF process.

The XMF process applied to an acceptable policy πa ∈ Π
is described next (its flowchart is depicted in Figure 2).
Throughout the description no reference is made to the
best effort traffic. Only the treatment of the QoS sensitive
sessions is considered, and this is sufficient since the weight
assigned to best effort traffic is given by 1−

∑N
i=1 φπ

i under
a policy π.

At this point the following should be noted. XMF is
a conceptual process which is not directly applicable at a
computational level. The weights assigned to sessions and
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Fig. 2. Flowchart of the XMF process

their busy periods change in a continuous way under this
process. In addition, and in order to keep the presenta-
tion clear and simple, each time that the process modifies
the policy it is applied to, the process is presented to be
reapplied in its entirety to the modified policy, although
not necessary. The rationale for this approach is that since
XMF is a conceptual process it is not a concern how many
times it will be applied, as long as it terminates (generates
results) after a finite number of steps.

(0) Initially, k = 0.
(I) k=k+1.6 If aIk = ∅ goto (III).
(II) Sessions in aIk are considered. Sessions in aIPk preserve
their position in φ- space. This implies that the sessions in
aIPk preserve their position in t- space as well7.
(II.1) If aIk is compressible the sessions in aIk are com-

pressed in φ- space in such a way that their busy periods
are uniformly expanded. At the same time the sessions in
aIFk are decompressed in φ- space in such a way (under the
condition) that they receive the same amount of work up to
the end of the (modified) busy periods of sessions in aIk as
they did under πa

8. This “conditional exchange of weights”
is possible7 and does not alter the backlog clearing times
of the sessions in aIFk , that is the sessions in aIFk preserve
their position in t- space7. The “conditional exchange of
weights” between sessions in aIk and sessions in aIFk takes
place continuously until one of the following happen:
(II.1.a) The backlog clearing time of sessions in aIk be-

comes equal to the backlog clearing time of sessions which
empty their backlog k+1-th in order under πa (sessions in

6Since policy πa ∈ Π is known, the sets of sessions, aIk, that empty

their backlog kth in order under policy πa, k ≥ 1 (in an all greedy
system) are well defined and can be considered to be known.

7see proof of Proposition 1 in the Appendix.
8This increase of their weights is necessary for sessions in aIFk in

order to receive the same amount of work up to the end of the (mod-
ified) busy periods of sessions in aIk, since the expansion of the busy
periods of sessions in aIk leads to a reduction of the NBSA bandwidth
in the interval between the original and the modified backlog clearing
time of sessions in aIk.
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aIk+1), or
(II.1.b) sessions in aIk can not be compressed any further

in φ-space (their busy periods be uniformly expanded), be-
cause some session will miss its delay bound.
At the end of step (II.1) new φ’s will have been assigned to
(all) streams in aIk and aIFk while streams in aIPk will have
maintained their original φ’s under πa. Thus, a new policy
πb is defined in terms of the new φ’s which is shown7 to be
acceptable and more efficient than πa

9. At the end of step
(II.1), the XMF process is applied to policy πb (modified
πa) from the beginning (from step (0)).
(II.2) Else i f aIk is not compressible then a uniform ex-

pansion of the busy period of sessions in aIk is not feasi-
ble. In this case, aIk is divided into two subsets, that is
aIk = aICk ∪ aINC

k , where: aICk is the maximum subset of aIk
which is compressible in φ- space and aINC

k = aIk \
aICk .

(II.2.a) If aICk 6= ∅ then the two sets aICk and aINC
k are

separated by performing an infinitesimal uniform expan-
sion of the busy periods of sessions in aICk (at the same
time the weights of sessions in aIFk are increased in such
a way that they receive the same amount of work up to
the end of the (modified) busy periods of sessions in aICk
as they did under πa (as at step (II.1))), resulting in a new
policy πb.

10 After step (II.2.a), the XMF process is applied
to policy πb (modified πa) from the beginning (from step
(0)).
(II.2.b) If aICk = ∅ then no stream in aIk may be com-

pressed in φ- space any further and the next set aIk+1 needs
to be considered. Thus the XMF process continues from
step (I).
(III) End of the XMF process. At this step the unique op-
timal policy πo (see Proposition 3) has been determined,
that is the original acceptable policy πa has been opti-
mized. Under the resulting policy πo the QoS sensitive
sessions are assigned some weights φπo

i , i = 1, . . . , N and

the best effort traffic is assigned weight φπo

be = 1−
∑N

i=1 φπo

i .

A.2 Properties of the XMF process

The XMF process forces all sessions to empty their back-
log as late as possible. The only parameters that impose
an upper limit on the expansion of the busy periods are
the sessions’ delay bounds, which do not depend on πa.
Thus, one could expect πo not to depend on πa. The fol-
lowing propositions hold. Their proofs may be found in the
Appendix.

Proposition 1: The (intermediate) policy πb that is de-
fined at the end of steps (II.1.a), (II.1.b) or (II.2.a) is ac-
ceptable and more efficient than πa.

9Under πb
bIk = aIk ∪ aIk+1 and bbk > abk if step (II.1.a) is

followed, or bIk = aIk but bbk > abk if step (II.1.b) is followed.
10Under πb

bIk = aINC
k , bbk = abk and bIk+1 = aICk , abk+1 >

bbk+1 = abk +dt > abk, dt > 0 arbitrary but such that (a) the

inequality holds and (b) bIk+1 = aICk is still compressible. This

formulation is used to express the fact that sessions in aICk do not
violate their requirements during the infinitesimal uniform expansion
of their busy periods and that the infinitesimal “conditional exchange
of weights” between sessions in aICk and aIFk is used just to separate

sets aICk and aINC
k .

Proposition 2: The final policy that results when the
application of the XMF process to an arbitrary original
acceptable policy is terminated, is acceptable and does
not depend on the original policy. That is, ∀πa1, πa2 ∈
Π, XMF (πa1) = XMF (πa2) = πo, πo ∈ Π.
From Propositions 1 and 2 it is easily concluded that a) πo

is the only policy that remains unchanged under the XMF
process; that is, ∀πa ∈ Π,XMF (πa) = πa ⇔ πa = πo and
b) for any πa ∈ Π, XMF(πa)= πo is more efficient than πa,
except the case where πa = πo. In view of the above the
following proposition is self-evident.

Proposition 3: Policy πo, πo = XMF (π) for any π ∈ Π
is optimal and unique.

B. Properties of the optimal φ assignment

In this section some properties of the optimal policy πo

are provided. These properties help establish in the next
section that the proposed CAC algorithm is optimal. It is
shown that in order to determine the optimal policy it is
sufficient to observe the all greedy system at certain time
instances, which coincide with either the delay bound or
the backlog clearing time of some session. For this reason
the notion of the checkpoints is introduced.

Definition 3: Let τ0 = 0, that is τ0 coincides with the
beginning of the system busy period of an all greedy sys-
tem. Let {τm}M

m=1, M ≤ 2N denote the ordered set of
distinct time instances which coincide with either the de-
lay bound or the backlog clearing time of some session.
The time instant τm, m = 0, . . . ,M will be referred to as
the mth ordered checkpoint11.

Definition 4: Let di = {m : τm = Di}. That is, check-
point τdi

coincides with the time instant at which the dead-
line of session i expires. Then the following quantities are
defined for session i, i = 1, . . . , N at all checkpoints τm

such that Di ≤ τm < ei (that is, checkpoints at which ses-
sion i is still backlogged and its requirements (as defined
in equation (3)) are greater than zero.

φ−
i (τm) =

Ni(0, τm)

Ŵ (0, τm)
(8)

φ+
i (τm) =

ρi

Ĉ(τ+
m)

(9)

where Ŵ (0, τm) =
∑m

k=1 Ŵ (τk−1, τk).
The quantity φ−

i (τm) is expressed in terms of the values of
the associated quantities (session ’s requirements, NBSA
work ) left of τm and refers to the evolution of the system
for t less than τm. On the other hand, the quantity φ+

i (τm)
is expressed in terms of the value of the NBSA bandwidth
right of τm.

The quantity φ−
i (τm) represents the fraction of the total

NBSA work that must be assigned to session i in order for
session i to be assigned work exactly equal to Ni(0, τm)
up to time τm, given that session i has not emptied its

11Equation (6) which holds for time instances ∈ {bm}L
m=1 does

hold for all time instances in {τm}M
m=1 ⊇ {bm}L

m=1 as well, with

the observation that the time instances in {τm}M
m=1\{bm}L

m=1 are
degenerate points of discontinuity of the NBSA bandwidth.
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backlog before time τm
12. In particular, the denominator

of the right hand side of equation (8) is the total amount
of NBSA work which is assigned to backlogged sessions up
to time τm, including sessions which cleared their backlog
earlier and are no longer backlogged at time τm. Each
session i, which is still backlogged at τm gets a fraction of
this work equal to φi, that is, it is assigned work equal to
φi ·

∑m
k=1 Ŵ (τk−1, τk) .

The quantity φ+
i (τm) represents the fraction of the NBSA

bandwidth just after τm that must be assigned to session
i in order for session i to be served with rate equal to ρi.
It is easily seen that this is sufficient to ensure that its re-
quirements are satisfied for t > τm, if session i is assigned
work at least equal to Ni(0, τm) up to time τm.

The usefulness of these quantities follows from Proposi-
tion 5.

Proposition 4: Under πo, ei > Di, ∀i ∈ QoS ( QoS ,

{1, 2, . . . , N} ). That is, each QoS sensitive session empties
its backlog after checkpoint τdi

= Di.
Proof: For t < Di session i requirements have zero

value and, thus, they do not impose a restriction on the
expansion of session i busy period. This means that if ei <
Di session i would be compressible in φ- space and, thus,
πo would not remain unchanged under XMF. If ei = Di,
since for Diρi 6= 0 Ai(0,Di) − Ni(0,Di) > 0, it is implied
that an infinitesimal decrease of session ’s weight would be
possible (session i would be compressible in φ- space).

Proposition 5: Under πo, QoS sensitive session i is as-
signed weight:

φπo

i =











φ−
i (τk) if ∃k such that

k = min{m : φ−
i (τm) ≥ φ+

i (τm)}

φ+
i (τk), k = max{n : τn < ∞}, otherwise

(10)

Proof: As proved in section III-A.2 the optimal pol-
icy for the BETA-GPS system (πo) is the unique acceptable
policy that remains “unchanged” under the XMF process.
This implies that the weight φπo

i assigned to QoS sensitive
session i under πo is such that the following two conditions
are fulfilled.
(C1) QoS requirements of session i are met. In particular,
for an arbitrary time instant t:
(C1a) QoS requirements of session i up to time t are met.
(C1b) QoS requirements of session i ∀t′ > t are met.

(C2) session i is not compressible in φ-space.
Let τf denote the last checkpoint with finite value, that is
τf = max{τm : τm < ∞}. In order for condition (C1a) to
hold for t = τf it is sufficient:

φπo

i ≥ max
τm≤τf

{φ−
i (τm)} (11)

In particular (11) implies that for two consecutive check-
points τ j−1 and τ j with finite value: (a) Wi(0, τ j−1) ≥
Ni(0, τ j−1) and (b) Wi(0, τ j) ≥ Ni(0, τ j). Since Ni(0, t)
and Wi(0, t) are both linear in [τ j−1, τ j ], (a) and (b) imply
that Wi(0, t) ≥ Ni(0, t), ∀t ∈ [τ j−1, τ j ].

12It should be emphasized that the previous does not imply that
session ’s requirements are satisfied for all t < τm (see Prop. 5).

Now it is easily seen that:

φπo

i = max{ max
τm≤τf

{φ−
i (τm)}, φ+

i (τf )} (12)

where the “external” max takes into account condition
(C1b) (session ’s requirements must be met not only up
to τf but also for t ≥ τf ) and equality holds due to con-
dition (C2)(that session i is not compressible in φ-space
under πo).
In order to proceed the following must be proved:

Claim 1: For two consecutive checkpoints τ j−1 and τ j

with finite value (τ j ≤ τf ) φ+
i (τ j) ≤ φ+

i (τ j−1).
13

Claim 2: For two consecutive checkpoints τ j−1 and τ j

with finite value (τ j ≤ τf ), φ−
i (τ j−1) < φ+

i (τ j−1) ⇒
φ−

i (τ j−1) < φ−
i (τ j).

14

Claim 1 implies that:

φ+
i (τf ) = min

τm≤τf

{φ+
i (τm)} (13)

• If ∃k such that k = min{m : φ−
i (τm) ≥ φ+

i (τm)} Claim 2
holds for every τ j−1, τ j , τ j ≤ τk and implies that φ−

i (τk) =
max

τm≤τk

{φ−
i (τm)}. Obviously φ−

i (τk) ≥ φ+
i (τk) implies that

φ−
i (τk) ≥ φ−

i (τ j), k ≤ j ≤ f , since φ−
i (τk) is sufficient

to ensure that session’s QoS requirements are met for t >
τk. So φ−

i (τk) = max
τm≤τf

{φ−
i (τm)} and (12), in conjunction

with (13)), implies that φπo

i = φ−
i (τk). This means that

Proposition 5 holds.
• If @k such that k = min{m : φ−

i (τm) ≥ φ+
i (τm)} Claim

2 holds for every τ j−1, τ j with τ j ≤ τf and implies that
φ−

i (τf ) = max
τm≤τf

{φ−
i (τm)}. Since φ−

i (τf ) < φ+
i (τf ) (12)

implies that φπo

i = φ+
i (τf ) and Proposition 5 holds.

Proposition 6: Assume that τk, Ĉ(τ+
k ), ∀k ≤ j − 1, are

known. τ j is given by 15:

τ j = min( min
i∈Nexj−1

Di , min
i∈Phij−1

vcti(τj−1)) (14)

where Nexj−1 is the set of sessions with delay bound greater
than τ j−1, Phij−1 is the set of sessions for which ∃k ≤
j−1 : φ−

i (τk) ≥ φ+
i (τk) and have not cleared their backlog

up to time τ j−1 and

vcti(τj−1) = τ j−1 +
Ai(0, τ j−1) − Wi(0, τ j−1)

φπo

i · Ĉ(τ+
j−1) − ρi

(15)

13Proof: Ĉ(τj−1)≤Ĉ(τj)⇔φ+
i (τj−1)= ρi

Ĉ(τj−1)
≥ ρi

Ĉ(τj)
=φ+

i (τj)

14Proof: φ−
i (τj−1) < φ+

i (τj−1) ⇔
N

j−1

i

W
j−1
1

<
ρi

C
+
j−1

⇔

N
j−1
i C+

j−1τ
j
j−1 + N

j−1
i Wj−1

1 < τ
j
j−1ρiW

j−1
1 + N

j−1
i Wj−1

1 ⇔

N
j−1
i

(

C+
j−1τ

j
j−1 + Wj−1

1

)

<
(

N
j−1
i + τ

j
j−1ρi

)

Wj−1
1 ⇔

N
j−1
i Wj

1 <
(

N
j−1
i + τ

j
j−1ρi

)

Wj−1
1 ⇔ N

j−1
i Wj

1 < N
j
i W

j−1
1 ⇔

φ−
i (τj−1) < φ−

i (τj) where Nx
i = Ni(0, τx), τx

x−1 = τx − τx−1, C
+
x =

Ĉ(τ+
x ), Wx

1 =
∑x

k=1 Ŵ (τk−1, τk).
15It is noted that in order to avoid unnecessary complexity it is

assumed that min(∅) = ∞, that is the min function returns ∞ when
applied to an empty set.
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is the virtual clearing time of session i at τ j−1, that is the
backlog clearing time of session i assuming that no other
session is going to empty its backlog before session i does.

Proof: Let the QoS sensitive sessions be divided in
the following disjoint sets at τ j−1 :

• Emptyj−1: contains sessions which have emptied their
backlog at the current or a previous checkpoint, i.e.
Emptyj−1 = {i ∈ QoS : ei ≤ τ j−1}.
• Nexj−1: contains sessions with a delay bound greater
than τ j−1, i.e. Nexj−1 = {i ∈ QoS : Di > τ j−1}.
• Phij−1: contains sessions for which ∃k ≤ j−1 : φ−

i (τk) ≥
φ+

i (τk) and have not cleared their backlog up to time τ j .
• Transj−1: contains sessions for which @k ≤ j − 1 :
φ−

i (τk) ≥ φ+
i (τk) and have Di ≤ τ j−1.

According to the definition of checkpoints τ j coincides with
either the delay bound or the backlog clearing time of some
session.

Obviously no future checkpoint is associated with ses-
sions i ∈ Emptyj−1, since ei ≤ τ j−1 and according to
Proposition 4, Di < ei ∀i ∈ Emptyj−1.

According to Proposition 4 all sessions i ∈ Nexj−1 have
ei > min

i∈Nexj−1

Di. It is implied that if τ j is associated

with a session in Nexj−1 it will have to be the session k,
k : Dk = min

i∈Nexj−1

Di. This “justifies” the first term of

equation.

Claim 3: For two consecutive checkpoints τ j−1 and τ j

with finite value (τ j ≤ τf ), φ−
i (τ j−1) < φ+

i (τ j−1) ⇒
φ+

i (τ j−1) > φ−
i (τ j).

16

From Proposition 5, in conjunction with Claim 3, it is easily
concluded that sessions in Transj−1 are assigned weight
less than or equal to φ+

i (τj−1) under πo , i.e. they are
served with a rate less than ρi in the interval (τ j−1, τ j ].
This means that the slope of their service curve is less than
the slope of their (greedy) arrival curve. Both curves are
linear in (τ j−1, τ j ] and it is obvious that these two lines
can not cross each other, i.e. sessions in Transj−1 do not
empty their backlog at τ j .

All sessions in Phij−1 are served with a rate greater than
or equal to ρi for t > τ j−1 so they could empty their back-
log at τ j . For every session i ∈ Phij−1 the line with slope

φπo

i Ĉ+(τ j−1) which passes from point (τ j−1,Wi(0, τ j−1)
represents Wi(0, t) for t ≥ τ j−1 and has the form y1(t) =

φπo

i Ĉ+(τ j−1)(t−τ j−1)+Wi(0, τ j−1). The line y2(t) = σi+
ρit represents the arrivals of the greedy session. These two

lines cross each other at t =
σi+φ

πo
i

Ĉ+(τj−1) τj−1 −Wi(0,τj−1)

φ
πo
i

Ĉ+(τj−1)−ρi

= τ j−1 +
Ai(0,τj−1)−Wi(0,τj−1)

φ
πo
i

·Ĉ+(τj−1)−ρi

= vcti(τj−1). It is obvious

that the only sessions for which their virtual clearing time
represents their real backlog clearing time are the sessions
whose virtual clearing time is equal to the minimum virtual
clearing time.

16Proof: φ−
i (τj−1) < φ+

i (τj−1) ⇔
N

j−1

i

W
j−1
1

<
ρi

C
+
j−1

⇔ N
j−1
i C+

j−1 +

ρiτ
j
j−1C

+
j−1 < ρiW

j−1
1 + ρiτ

j
j−1C

+
j−1 ⇔ C+

j−1

(

N
j−1
i + ρiτ

j
j−1

)

<

ρi

(

Wj−1
1 + τ

j
j−1C

+
j−1

)

⇔ C+
j−1N

j
i < ρiW

j
1 ⇔ φ+

i (τj−1) > φ−
i (τj)

The notations are the same as in proof of Claim 2.

C. Optimal Call Admission Control Algorithm

The CAC algorithm presented in this section determines
progressively the optimal policy πo, based on Propositions
5 and 6. It includes two conceptually distinct functions.
One which (based on Proposition 5) examines whether the
optimal weights of the QoS sensitive sessions can be deter-
mined at a specific checkpoint and another which (based
on Proposition 6) determines the next checkpoint.

Assume that all the checkpoints (τk) and the correspond-

ing values of the NBSA bandwidth (Ĉ(τ+
k )) were known.

Proposition 5 could be used in order to determine the opti-
mal weights of the QoS sensitive sessions. A sequential con-
sideration of all the checkpoints would be required since,
according to (the first case of) Proposition 5, for each QoS
sensitive session i the first checkpoint τ j at which the con-
dition φ−

i (τj) ≥ φ+
i (τj) would hold should be determined

in order to determine the optimal weight of session i; if
τm denotes this particular checkpoint for session i the op-
timal weight of session i is φπo

i = φ−
i (τm). The weights

of the QoS sensitive sessions not fulfilling the aforemen-
tioned condition at any checkpoint (with a finite value)
would be determined at the last checkpoint with a finite
value, as prescribed by the second case of Proposition 5; if
τm denotes the maximum checkpoint, the optimal weights
of such sessions i are φπo

i = φ+
i (τm).

In the sequel, it is said that session i is examined at τ j ,
when it is checked whether the condition φ−

i (τj) ≥ φ+
i (τj)

(in the first case of Proposition 5), referred to as the con-
dition, holds for session i at τ j . The interval [Di, ei) is
referred to as the examination interval of session i; notice
that the quantities φ−

i (τj), φ+
i (τj) used in the condition

are defined for session i at τ j only if Di ≤ τ j < ei (see Def-
inition 4). In addition, it is said that session i is assigned
an appropriate weight, when session i meets the condition
at τ j and is assigned the optimal weight φπo

i = φ−
i (τ j).

The algorithm presented in this section employs Propo-
sition 5 in a similar way as that described above in or-
der to determine the optimal weights of the QoS sensitive
sessions. That is, the checkpoints are considered sequen-
tially and each session i is examined at the checkpoints
that are within the examination interval of session i. At
the checkpoint that the condition is met for session i for the
first time, session i is assigned an appropriate weight. At
the last checkpoint with a finite value, sessions that have
not been assigned a weight are assigned a weight equal to
that prescribed by the second case of Proposition 5. How-
ever, in the framework of the algorithm the checkpoints
(τk) and the corresponding values of the NBSA bandwidth

(Ĉ(τ+
k )) are determined on the fly (by using Proposition

6), since they are not a priori known; only the first check-
point (τ0 = 0) and the initial value of the NBSA bandwidth

(Ĉ(τ+
0 ) = CG) are known.

The pseudocode of the algorithm is provided in Figure
3, while Figure 4 illustrates the flowchart of the algorithm.
CG is the bandwidth controlled by the GPS scheduler and
QoS is the set of QoS sensitive sessions under investiga-
tion. The algorithm iterates over the checkpoints starting
at τ0 = 0; index j runs over the checkpoints, while index
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i runs over the QoS sensitive sessions. At each iteration a
checkpoint (τ j) is considered, and each QoS sensitive ses-
sion i belongs to one of the following disjoint sets Phij ,
Emptyj , Nexj , Transj . These are the same sets of ses-
sions as those defined in the proof of Proposition 6. How-
ever, in the framework of the algorithm their conceptual
interpretation is slightly different. More specifically:

• Set Phij contains sessions that fulfil the condition at τ j

or some previous checkpoint and have not emptied their
backlog yet (up to τ j). In the framework of the algorithm
these are the sessions whose weights have been determined
(since, according to the algorithm, when the condition is
met for a session at a checkpoint this session is assigned an
appropriate weight).
• Set Emptyj contains sessions which have emptied their
backlog at (or before) τ j . Their weights are known, since
(as explained in the sequel, at Step B.3 of the description)
sessions that empty their backlog at τ j belonged in Phik
for some 0 < k ≤ j − 1, that is their weights have been
determined at some previous checkpoint.
• Set Nexj contains sessions whose delay bound is less
than τ j . In the framework of the algorithm this set is also
referred to as the set of not examined sessions, since these
sessions need not to be examined at τ j ; τ j is not within the
examination interval of any session in Nexj and, thus, the
condition is definitely not met by any of them at τ j .
• Set Transj contains the rest of the sessions, that is ses-
sions that have been examined at a previous checkpoint,
but their weights have not been determined.

Next a detailed description of the algorithm is provided.
In the description it is assumed that all the checkpoints
up to τ j−1 are known, as well as the sets of sessions Phik,
Emptyk, Nexk, Transk, for k ≤ j − 1 and the weights of
the sessions in Phij−1 and in Emptyj−1 (these weights are
determined during previous iterations). Notice that this
holds for j = 1, since τ0 = 0 and C(τ+

0 ) = CG; at τ0 all
QoS sensitive sessions belong to Nex0 (since their delay
bounds are greater than τ0 = 0), while all other sets are
empty.

Step A: Initialization of the algorithm. Initially, the check-
point which corresponds to the beginning of the system
busy period of the all greedy system (that is, τ0 = 0)
is considered. At τ0 steps B.2-B.6 of the algorithm are
not executed, since the sets of sessions are already known
(as explained, at the beginning all sets are empty except
Nex0).
Step B Main loop (B1.-B6.) is executed until the weights
of all QoS sensitive sessions are determined.
Step B1 Using Proposition 6 the value of time at the cur-
rent checkpoint τ j is computed. The weights of sessions
in Phij−1, which are needed in order to determine τ j ,
have been determined using Proposition 5 at some previous
checkpoint, since Phij−1 contains sessions which fulfill the
condition at some previous checkpoint. Thus, the quanti-
ties needed to determine the next checkpoint are known or
can be computed17.

17More specifically, Ai(0, τ j−1) = σi + ρi τj−1, Wi(0, τ j−1) =

φ
πo
i Ŵ (0, τ j−1), Ŵ (0, τj−1) =

∑j−1
k=1 Ŵ (τk−1, τk), Ŵ (τk−1, τk) =

Step B2 If τ j = ∞, the previous checkpoint (τ j−1) was
the one with the maximum finite value of time and accord-
ing to the second case of Proposition 5 the weights of the
sessions whose weight has not been determined yet must
be determined at τ j−1. Thus, sessions i in Transj−1 are
assigned a weight equal to φ+

i (τj−1). Such sessions (whose
optimal weight is determined according to the second case
of Proposition 5) have a backlog clearing time which tends
to infinity. If the sum of the weights assigned to QoS sen-
sitive sessions is greater or equal to 1 then the sessions are
not schedulable and the algorithm terminates.18

Step B3 Sessions which empty their backlog at the cur-
rent checkpoint are moved to set Emptyj . This is necessary
in order to compute the value of the NBSA bandwidth at
τ j (Ĉ(τ+

j )); according to equation (5) the set of sessions
that empty their backlog up to τ j and their weights must
be known.
As shown in the proof of Proposition 6, only sessions in
Phij−1 may empty their backlog at τ j , and from the ses-
sions in Phij−1 these whose virtual clearing time at τ j−1

is equal to τ j empty their backlog at τ j . Thus, set PEj ⊆
Phij−1 corresponds to the set of sessions which have been
examined at a previous checkpoint, their weights have been
determined at a previous checkpoint and empty their back-
log at τ j .
Step B4 As mentioned, the algorithm uses Proposition
5 in order to determine the optimal weights of the QoS
sensitive sessions. According to Proposition 5, if τ j is the
first checkpoint, within the examination interval of session
i, at which the condition is met for session i (that is, φ−

i (τj)
≥ φ+

i (τj) holds) then the optimal weight for session i is
φπo

i = φ−
i (τj). At this step the algorithm checks whether

the condition is met for two kind of sessions:
• Sessions which have already been examined at some pre-

vious checkpoint but did not fulfil the condition (that is,
sessions in Transj−1). Set TPj ⊆ Transj−1 contains the
sessions that fulfil the condition for the first time at τ j .
TPj is moved into set Phij at step B.6; the rest of the
sessions in Transj−1 remain in set Transj .
• Sessions which are examined for the first time at τ j (ses-

sions for which τ j = Di, that is τ j is the beginning of their
examination interval). From these sessions, those fulfilling
the condition form the set NPj ⊆ Nexj−1 (sessions which
are examined for the first time at τ j and their weights can
be determined at τ j since they meet the condition at τ j),
while the rest of these sessions form the set NTj ⊆ Nexj−1

(sessions which are examined for the first time at the cur-
rent checkpoint (τ j) but their weights cannot determined
at τ j). At steps B.5 and B.6 the main sets are properly
updated.
Step B5 The sets Nexj and Transj are determined by
properly updating the corresponding sets at τ j−1. More
specifically, all sessions in Nexj−1 that are examined at τ j

(sets NPj and NTj) are removed from Nexj−1; sessions

Ĉ(τ+
k−1)(τk − τk−1).

18All φ’s are considered to be initially undefined.
∑

i∈QoSφi de-

notes the summation over all sessions that have been assigned weight
by the algorithm.
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Determine πo(CG, QoS)
A. j=0, Trans0=Phi0=Empty0=∅, Nex0 = QoS, τ0 = 0
B. repeat (B1.-B6.) until (φi = φ

πo
i ∀i ∈ Nex0)

B1. j = j + 1, τ j = min{ min
i∈Nexj−1

Di , min
i∈Phij−1

vcti(τj−1)}

B2. If (τj = ∞) then
{ ∀i∈Transj−1

{φi =φ
πo
i = φ+

i (τj−1), if
∑

i∈QoSφi ≥ 1 then error},
goto C.
}

B3. PEj = {i ∈ Phij−1 : vcti(τj−1) = τj},
Emptyj = Emptyj−1 ∪ PEj

B4. TPj = {i ∈ Transj−1 : φ−
i (τj) ≥ φ+

i (τj)},

NPj = {i ∈ Nexj−1 : Di = τj , φ−
i (τj) ≥ φ+

i (τj)},

NTj = {i ∈ Nexj−1 : Di = τj , φ−
i (τj) < φ+

i (τj)}
B5. Nexj = Nexj−1 \(NPj ∪ NTj),

Transj = (Transj−1\TPj) ∪ NTj

B6. ∀i ∈ NPj ∪ TPj

{φi = φ
πo
i = φ−

i (τj), if
∑

i∈QoS φi ≥ 1 then error}

Phij = (Phij−1\PEj) ∪ NPj ∪ TPj

C. φbe = 1 −
∑

i∈QoS φi

Fig. 3. Pseudocode of the optimal CAC algorithm. At step A. the al-
gorithm initializes. Proposition 6 is applied at step B1. in order to
determine the next checkpoint. At step B2. it is checked whether
the second case of Proposition 5 is applicable. At step B3. the set
of sessions that empty their backlog up to the current checkpoint is
determined. At steps B4.-B6. it is checked for which sessions the
first case of Proposition 5 applies (and thus, their optimal weights
are determined). In addition, the sets used by the algorithm are
properly updated. At step C. the weight of the best effort traffic
session is computed.

in Transj−1 that fulfill the condition at τ j (set TPj) are
removed from Transj−1, while sessions in Nexj−1 that are
examined at τ j and do not meet the condition at τ j (set
NTj) are added to Transj−1.
Step B6 At this step the weight assignment for the ses-
sions whose weight is determined at τ j (those fulfilling the
condition for the first time at τ j , that is, sessions in NPj

and sessions in NTj) is performed. If the sum of the weights
assigned to QoS sensitive sessions is greater or equal to 1
then the sessions are not schedulable and the algorithm
terminates. In addition, set Phij is determined by remov-
ing from Phij−1 the sessions that empty their backlog at
τ j (set PEj) and by adding the sessions whose weights are
determined at τ j (sets NPj and TPj).
Step C The weight of the best effort traffic session (φπo

be )
is computed.

At this point the following should be noted. For the
sake of simplicity in the presentation, all checkpoints are
treated “equally” in the pseudocode of the algorithm, in
the sense that all sets of sessions are examined at all check-
points. However, if the current checkpoint τ j coincides
with the delay bound of some session, without coincid-
ing with the backlog clearing time of some session (that
is τ j = min

i∈Nexj−1

Di, τ j 6= min
i∈Phij−1

vcti(τ j−1) ), then:

• Sessions i ∈ Transj−1 need not be examined at τ j , since
TPj is an empty set, that is, φ−

i (τ j) ≥ φ+
i (τ j) cannot

hold for any session i ∈ Transj−1. By definition (con-
struction) φ+

i (τ j−1) > φ−
i (τ j−1), ∀i ∈ Transj−1 holds,

and from Claim 3 it is implied that φ+
i (τ j−1) > φ−

i (τ j),
∀i ∈ Transj−1. In addition – and because no session

empties its backlog at τ j – Ĉ(τ+
j ) = Ĉ(τ+

j−1) holds, im-
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Fig. 4. Flowchart of the optimal CAC algorithm. The steps of the
pseudocode at which the corresponding actions take place are il-
lustrated within square brackets.

plying that φ+
i (τ j) = φ+

i (τ j−1), ∀i ∈ Transj−1. Thus,
φ+

i (τ j) > φ−
i (τ j), ∀i ∈ Transj−1 and TPj is an empty set.

• It is not necessary to compute the virtual clearing time
of sessions in Phij−1 since they are exactly the same as

those computed at τ j−1. (As explained Ĉ(τ+
j ) = Ĉ(τ+

j−1)
holds and given this condition it is straightforward to con-
clude from equation (15) that vcti(τ j−1) = vcti(τ j), ∀i ∈
Phij−1.) Thus, in order to determine the minimum virtual
clearing time at τ j , it is sufficient to compute the virtual
clearing time of sessions in NPj and compare it with the
minimum virtual clearing time of sessions in Phij−1 as
computed at τ j−1. The minimum of these quantities is the
minimum virtual clearing time at τ j .

Thus, when τ j does not coincide with the backlog clear-
ing time of some session, only sessions i for which τ j = Di

need to be examined and to be included in the proper set.
(These sessions have not been examined up to that point
by the algorithm.)

Finally it is noted that best effort traffic will not only be
granted φπo

be CG but will receive more service on larger time
scales, as QoS sensitive sessions empty their backlog.

IV. Pure QoS System

In a system where only QoS sensitive sessions are present
the existence of an extra session, denoted as “dummy”,
may be assumed and the presented algorithm be applied.
The modified algorithm for the pure QoS system is referred
to as Modified Optimal CAC Algorithm (MOCA).

The MOCA is exactly the same as the optimal CAC al-
gorithm for the BETA-GPS system except the check of the
sum of the weights assigned to QoS sensitive sessions at
steps B.2 and B.6, which should be replaced by ...“if
(
∑

i∈QoS φi > 1 or φi = 019) then error”... , since the

19according to the definition of GPS.
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“dummy” session can be assigned a weight equal to zero.
In addition, at step C. φbe should be replaced by φd, d for
“dummy”.

The input of the MOCA is a traffic mix consisting only of
QoS sensitive sessions i, i = 1, . . . , N . If the MOCA finds
a solution it returns as output a φ assignment (φ1, φ2, ..., φN ,
φd). Obviously the QoS sensitive sessions can be admit-
ted being assigned weights (φ1, φ2, ..., φN )(or normalized
to sum to one (φ1, φ2, ..., φN ) · (1 − φd)

−1). If the MOCA
does not find a solution then this implies that a solution
does not exist, since the MOCA minimizes

∑N
i=1 φi. In

this sense the MOCA can be considered as optimal for the
pure QoS system.

A. Minimal bandwidth requirement

Another capability that could be required by a CAC
scheme for the pure QoS system is to be able to compute
the minimum capacity of the GPS server CG(min) required
to support the N QoS sensitive sessions 20 (and the appro-
priate φ assignment). In this case the following proposition
is useful.

Proposition 7: Suppose that an acceptable policy is com-
puted by the MOCA in a pure QoS system where the
GPS scheduler controls capacity CG. QoS sensitive ses-
sions, assigned the computed weights and being served by
a GPS scheduler (of a pure QoS system) controlling capac-
ity CG(1 − φd), do meet their QoS requirements.

Proof: Assume that an acceptable policy (φ1, φ2, ...,
φN , φd) has been computed by the MOCA. If φd = 0 the
proposition holds. If φd 6= 0 any (σd, ρd,Dd) can be chosen
to describe the “dummy” session as long as it does con-
form to the assumption that the “dummy” session emp-
ties its backlog last in order and to the stability condition
(
∑

i∈QoS∪dρi ≤ 1). Let ρd = φdCG and let σd and Dd

be arbitrary but properly selected so that the “dummy”
session empties its backlog last in order.

Since the greedy system corresponds to the worst case
arrival scenario resulting in the maximum delay experi-
enced by the QoS sensitive sessions, their requirements are
satisfied under any other arrival scenario including the fol-
lowing: Consider the “dummy” session not starting greedy
at the beginning of the system busy period but with σd = 0
and transmitting with a constant rate equal to ρd = φd·CG.
It is easily seen that this scenario is equivalent to a pure
QoS system where the GPS server controls capacity equal
to CG(1 − φd).
Proposition 7 states that the QoS sensitive sessions would
meet their requirements even in a more stringent environ-
ment, where the capacity controlled by the GPS server is
equal to CG(1 − φd). This indicates that if it is desir-
able to compute the minimum capacity of the GPS server
(CG(min)) required to support the N QoS sensitive ses-
sions the following recursive process can be followed, which
amounts to cutting slices of size φd(n)Cn from the capacity
Cn (with C1 = CG) controlled by the GPS scheduler at the

20The capacity not used by the GPS server could be used by another
server. The scheme under which such a partitioning could be realized
is out of the scope of this paper.

n-th iteration, until the last cutted slice becomes smaller
than an arbitrary predefined small quantity ε.
compute CG(min)(Nex0, CG)
n = 1, C(1) = CG

for(; ; )
{φd(n) = φd(MOCA(Nex0, C(n)))
C(n+1) = C(n)(1 − φd(n))
if (φd(n)C(n) < ε) then {CG(min) = C(n+1), exit}
n = n + 1}
where Nex0 is the traffic mix (consisting only of QoS sen-
sitive sessions) and ε is an arbitrary small positive number.
φd(n) is the weight assigned to the “dummy” session by the
MOCA, assuming that the GPS scheduler controls capac-
ity C(n). The process stops when φd(n)C(n) becomes less
than a predefined quantity ε. The feasibility of this process
and the fact that it can approximate as closely as desired
the minimum GPS capacity required to support the N QoS
sensitive sessions can be easily concluded. In particular, let
φd(1) be the weight assigned to the “dummy” session at the
first iteration of the process. The weight assigned to the
“dummy” session is the weight not needed by the QoS sen-
sitive sessions. If φd(1) = 0 then obviously the optimal so-

lution is determined, since the MOCA minimizes
∑N

i=1 φi.
If φd(1) 6= 0 then according to Proposition 7 bandwidth
(1 − φd(1))CG is sufficient to satisfy QoS sensitive sessions
requirements.

Applying MOCA at the second iteration leads to the
computation of the maximum φ not needed by the Qos sen-
sitive sessions for the more stringent system (φd(2), φd(2) ≤
φd(1)

21). If φd(2) = 0 the optimal solution is determined,
else the process is repeated.

Due to the fact that φd(n) becomes smaller at each iter-
ation the aforementioned process approximates as closely
as desired the solution to the problem of minimization of
the required capacity to admit the QoS sensitive sessions.

V. Discussion - Numerical results

A. Relation to the effective bandwidth-based CAC

Deterministic effective bandwidth ([9]) can be used in
a straightforward way to give a simple and elegant CAC
scheme. A similar approach is followed in [4] for the de-
terministic part of their analysis. The deterministic effec-
tive bandwidth of a (σi, ρi,Di) session is given by weff

i =
max{ρi,

σi

Di
}. It is easy to see that the requirements of

the QoS sensitive sessions are satisfied if they are assigned

weights such that φiCG = weff
i ( φi

φj
=

weff
i

weff
j

,∀i, j ∈ QoS).

In this section the presented algorithm is compared with

21It is easy to prove that φd(2) ≤ φd(1) by contradiction. In partic-
ular, suppose that φd(2) > φd(1). Since QoS sensitive sessions meet

their delay bounds under (φ1(2), . . . , φN(2)),
∑N

i=1 φi(2) = 1 − φd(2)

when the GPS server controls capacity CG(1 − φd(1)) they will not
miss their delay bound when the GPS server controls capacity CG,
that is the policy (φ1(2), . . . , φN(2)) is an acceptable policy for the
case where the GPS server controls capacity CG. This implies that

(φ1(1), . . . , φN(1)),
∑N

i=1 φi(1) = 1 − φd(1) computed by MOCA at

the first iteration was not the policy with the minimum
∑N

i=1 φi

(contradiction).
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the effective bandwidth-based CAC scheme. The effective
bandwidth-based CAC is tighter than the CAC which is
based on rate proportional weighting ( φi

φj
= ρi

ρj
), which is

used for comparison in [3] (see also [11]).
In addition, it is noted that the effective bandwidth-

based CAC scheme can be considered as a special case of
the presented algorithm. If the presented algorithm is de-
nied the ability to “remember” which sessions and when
they empty their backlog, the NBSA bandwidth, as com-
puted by the algorithm, has a constant value which is equal
to CG and each checkpoint coincides with some session ’s
delay bound. It is easily seen that in this special case
the algorithm would assign to session i weight equal to
max{φ−

i (τdi
), φ+

i (τdi
)}, since the algorithm would be com-

pletely unable to keep track of the evolution of the greedy
system. This implies 22 that φiCG = max{ρi,

σi

Di
} = weff

i ,
that is the algorithm would assign to each session the same
weight as the effective bandwidth-based CAC would.

B. Graphical interpretation

In this section an intuitive examination of the algorithm
is attempted. The examination is based on the graphical
representation of the mean values of the associated quan-
tities.

Since the GPS scheduler is work conserving, CG · t =
∑

i∈TF Wi(0, t) ,where TF = QoS ∪ be in the best effort
aware system and TF = QoS in the pure QoS system,
holds for arbitrary t in the system busy period. This im-
plies that:

CG =
∑

i∈TF
W i(0, t) (16)

where W i(0, t) = Wi(0, t)/t is the mean work assigned to
session i in (0, t]. The mean requirements of session i in
the interval (0, t] are:

N i(0, t) =

{

σi+ρi(t−Di)
t

t ≥ Di

0 t < Di

(17)

which implies:

∂N i(0, t)/∂t = (ρiDi − σi)/t2 t ≥ Di (18)

Although session i requirements are always an increasing
function of time (for t ≥ Di), the mean requirements of
a session are an increasing (decreasing) function of time if
ρiDi > σi (ρiDi < σi).

In Figure 5(a) the mean requirements of two sessions
with (σ1, ρ1,D1) = (2, 0.2, 8) and (σ2, ρ2,D2) = (1, 0.2, 8)
(arbitrary units) and in Figure 5(b) the mean requirements
of two sessions with (σ2, ρ2,D2) = (1, 0.2, 8) and (σ3, ρ3,D3)
= (1, 0.05, 8) are shown. It is evident that in the frame-
work of the deterministic effective bandwidth-based CAC
scheme, CAC decisions are based on the maximum (or more
precisely, the supremum) of the mean requirements of the
sessions, since the dependencies among the sessions are not

22From Definition 4 it is concluded that in this special case
(where the NBSA bandwidth is considered equal to CG) φ−

i (τdi
) =

σi
CGDi

and φ+
i (τdi

) = ρi
CG

for all QoS sensitive sessions .
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Fig. 5. Mean requirements and deterministic effective bandwidth of
(a) two sessions with (σ1, ρ1, D1) = (2, 0.2, 8) and (σ2, ρ2, D2) =
(1, 0.2, 8) (b) two sessions with (σ2, ρ2, D2) = (1, 0.2, 8) and
(σ3, ρ3, D3) = (1, 0.05, 8).
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Fig. 6. (I.) Mean service received by the session which empties its
backlog 1st in order under the optimal policy πo and under the
policy πa. (II.) Mean work assigned to other sessions under the
optimal policy πo and under some other policy πa.

considered, that is, the fact that more bandwidth becomes
available to the still backlogged sessions as some sessions
empty their backlog. This is the main strength (due to the
implied simplicity) and at the same time the main weak-
ness (due to resource under-utilization) of this scheme.

Condition Wi(0, t) ≥ Ni(0, t), t ≥ Di, which must hold
in order for QoS sensitive session i requirements to be sat-
isfied, implies that W i(0, t) ≥ N i(0, t), t ≥ Di. For t ≥ ei,
where ei is the backlog clearing time of session i, session i
is served with a constant rate (equal to ρi). Thus,

W i(0, t) =
σi + ρit

t
=

σi

t
+ ρi, t ≥ ei (19)

In Figure 6-(I.) the mean service received by the QoS
sensitive session which empties its backlog first in order (it
is assumed that it is only one for simplicity and will be
referred to as session 1) under the optimal policy πo (curve
EFG) and under some other policy, πa (curve HIG), are
shown23.

W 1(0, t) is constant (linear parts EF and HI for policies
πo and πa respectively), as long as the session is back-
logged. According to equation (19) the service curve of the
session coincides with the curve σ1

t
+ ρ1 for t ≥ e1 = b1.

This implies that the backlog clearing time of the session
corresponds to point F under πo and I under πa. From Fig-
ure 6-(I.) it is evident that session ’s requirements (curve
ABCD) are satisfied under both policies.

23It is noted that it is straightforward to prove, using the properties
of πo, that under the optimal policy for the BETA-GPS system, the
session which empties its backlog first in order has mean requirements
which are a decreasing function of time for t ≥ Di (given that such a
session is part of the traffic mix).
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TABLE I

Sessions under investigation

Case 1 s1 s2 s3

Case 2 s1 s2 s3

σi 0.04 0.16 0.04 0.64
ρi 0.01 0.01 0.04 0.01
Di 1 4 4 16
weff

i 0.04 0.04 0.04 0.04

In Figure 6-(II.) the quantity CG−W 1(0, t) (curve ABCD
under πa, curve ECD under πo), which represents the mean
work available to other sessions, is shown. On this figure
the following observations can be made.
1. Under πo the requirements of a session with mean re-
quirements of the form (i) can be satisfied, while under πa

they can not.
2. Under both policies a sessions with mean requirements
of the form (ii) can be admitted. In addition, under both
policies the best effort traffic is assigned the same fraction
of CG −W 1(t) for t >ob1 but this corresponds to a greater
weight under πo. The former observations illustrated the
optimality of the presented algorithm.
3. It may also be observed that under both policies a ses-
sion with mean requirements of the form (iii) can be admit-
ted. In this example the minimum required server capacity
has the same value under both policies and

∑2
i=1 φi = 1.

This illustrates that the optimal solution for the pure QoS
system is, in general, not unique, since there exist more
than one policies under which

∑N
i=1 φi is minimized.

Finally, it should be mentioned that no session with a
deterministic effective bandwidth greater than that corre-
sponding to the straight line AB . . . in Figure 6-(II.) would
be admitted along with session 1 (whose deterministic ef-
fective bandwidth corresponds to the straight line ECF . . .
in Figure 6-(I.)).

C. Numerical results

In this section some numerical results are presented for
the BETA-GPS system and for the pure QoS system.

BETA-GPS system: Although the algorithm can sup-
port an arbitrary number of delay classes the numerical
investigation is limited to the case of three delay classes.
The analysis for this case is simple enough to follow and
provide some insight. Two cases are investigated.
Case 1: The traffic mix consists only of QoS sensitive ses-
sions whose mean requirements are a decreasing function
of time for t ≥ Di,∀i. The sessions under investigation for
this case are shown in Table I. All quantities are considered
normalized with respect to the link capacity C.
In order to compare the presented algorithm with the effec-
tive bandwidth-based CAC scheme the following scenario
is considered. The effective bandwidth-based CAC scheme
admits the maximum number of sessions under the con-
straint that a nonzero weight remains to be assigned to
best effort traffic. From Table I it can be seen that the
effective bandwidth of each QoS sensitive session is 1/25 of
the server’s capacity (which is considered to be equal to the

 

Case 1
 

Case 2
Fig. 7. Weight assigned to the best effort traffic according to the

(1) optimal BETA-GPS CAC (2) effective bandwidth-based CAC
scheme, both under the constraint N1 + N2 + N3 = 24. The
minimum guaranteed rate to the best effort traffic is φbeCG

link capacity (CG = C)), implying that for the BETA-GPS
system at most 24 QoS sensitive sessions can be admitted
under the effective bandwidth-based CAC scheme. This
means that N1 + N2 + N3 = 24 must hold and that the
best effort traffic is assigned weight equal to 0.04 for each
such triplet (N1, N2 and N3 denote the number of admitted
sessions of type s1,s2 and s3 respectively).
For each triplet (N1, N2, N3), N1 + N2 + N3 = 24, the
weight assigned to the best effort traffic by the optimal
BETA-GPS CAC scheme is computed. The results are
illustrated in Figure 7.
It is easily seen that the improvement achieved by the op-
timal algorithm depends on the diversity of the traffic mix.
For heterogeneous traffic mixes a significant improvement
is achieved. On the other hand for pure homogeneous traf-
fic mixes (only one type of session) the optimal algorithm
can not result in any improvement.
Case 2: The traffic mix consists of both types of QoS sensi-
tive sessions (with increasing and decreasing mean require-
ments). To demonstrate this case session s2 is replaced by
a session with the same effective bandwidth but with mean
requirements which are an increasing function of time (see
Table I) under the deterministic effective bandwidth-based
CAC scheme.
The same scenario as in Case 1 is followed. The results
are illustrated in Figure 7. The achieved improvement is
less than in Case 1, in particular when sessions of type s1

are a minor part of the traffic mix.

The above results suggest that the presented algorithm for
the BETA-GPS system may achieve a significant improve-
ment, compared to the effective bandwidth-based CAC
scheme, when the traffic mix is heterogeneous and consists
of bursty sessions24, that is sessions whose mean require-
ments are a decreasing function of time.

Pure QoS system: For this system the comparison is

24At this point it should be noted that sessions are characterized
as “burtsy” and “non-bursty” from the perspective of the required
service rate (and not from the perspective of the arrival rate); as a
threshold the mean rate of the session is used. More specifically, the
service rate of a session whose mean requirements are a decreasing
function of time must exceed (for some time interval) its mean rate
in order for the QoS requirements of the sessions to be met and, thus,
some kind of burstiness is expected to occur in the session’s service
rate; such sessions are characterized as bursty.
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Case 1

 
 
 
 

 

Case 2
Fig. 8. Maximum number of s3 sessions that can be admitted as a

function of the number of s1 and s2 sessions according to (1) MOCA
and (2) the effective bandwidth-based CAC scheme.
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Case 2
Fig. 9. Difference of the maximum number of s3 sessions that can be

admitted according to MOCA minus the maximum number of s3

sessions that can be admitted according to the effective bandwidth-
based CAC, as a function of the number of s1 and s2 sessions. The
underlined numbers indicate cases in which the effective bandwidth-
based CAC scheme would not accept even the corresponding num-
ber of s1 and s2 sessions; in such cases the underlined numbers are
the maximum number of s3 sessions that can be admitted accord-
ing to MOCA. Bolded numbers correspond to the triplets for which
∑

i∈QoS φi = 1 according to MOCA.

based on the maximum number of sessions that can be ad-
mitted for a given capacity of the server. For the traffic
mix the same cases as for the BETA-GPS system are con-
sidered. It is easily seen from Table I that for the pure
QoS system the maximum number of sessions that can be
admitted by the effective bandwidth-based CAC scheme is
25, i.e.: N1 + N2 + N3 = 25 holds.

Case 1: In Figure 8 the maximum number of s3 sessions
(N3) that can be admitted are shown as a function of
the number of s1 sessions (N1) and s2 sessions (N2) ac-
cording to the presented algorithm (1) and according to
the effective bandwidth-based CAC (2). For some triplets
(N1, N2, N3) the sum of the weights assigned to QoS sen-
sitive sessions is equal to one implying that the best ef-
fort traffic can not be assigned a nonzero weight. Such
triplets are valid for a pure QoS system but not for a
BETA-GPS system. Any of the (N1−1, N2, N3), (N1, N2−
1, N3), (N1, N2, N3−1) triplets would be valid for a BETA-
GPS system. It is noted that all triplets for the effective
bandwidth-based CAC are such (

∑

i∈QoS φi = 1) and that
the triplets for which

∑

i∈QoS φi = 1 according to the pre-
sented algorithm are denoted with M.
Case 2: The acceptable triplets (N1, N2, N3) for this case
are shown in Figure 8. It is obvious that the achieved
improvement is less due to the less bursty nature of s2

sessions.

Figure 9 provides an alternative illustration of the data
presented in Figure 8. More specifically, it depicts the dif-
ference of the maximum number of s3 sessions that can be
admitted according to MOCA minus the maximum number
of s3 sessions that can be admitted according to the effec-
tive bandwidth-based CAC, as a function of the number of
s1 and s2 sessions. The underlined numbers indicate cases
in which the effective bandwidth-based CAC scheme would
not accept even the corresponding number of s1 and s2 ses-
sions; in such cases the underlined numbers are the maxi-
mum number of s3 sessions that can be admitted according
to MOCA. Bolded numbers correspond to the triplets for
which

∑

i∈QoS φi = 1 according to MOCA.
Finally, it is noted that the case where the traffic mix

consists of QoS sensitive session whose mean requirements
are an increasing function of time for t ≥ Di, ∀i is not
considered, since in this special case the problem of CAC
is trivial, that is the stability condition is sufficient to en-
sure that the QoS sensitive sessions do not violate their
delay bounds and obviously the described optimal CAC
algorithm does not improve the resource utilization.

D. Complexity of the algorithm

Consider the following simplistic implementation of the
algorithm, which is in direct correspondence with the pseu-
docode of the algorithm. The state of the QoS sensitive
sessions is kept in a N × 6 matrix.25 Each row of the ma-
trix corresponds to a QoS sensitive session i ∼ (σi, ρi,Di)
and includes the following fields: σi, ρi, Di, φi, vcti(τ j−1),
seti(τ j−1), seti(τ j), where φi is the weight assigned to ses-
sion i, vcti(τ j−1) is the virtual clearing time of session i at
the j − 1 iteration and seti(τ j−1) (seti(τ j)) indicates the
set that session i belongs to at the j−1 (j) iteration. In ad-

dition, assume that the values of the quantities τ j , Ĉ(τ+
j ),

Ŵ (0, τ j),
∑

i∈QoS φi for each checkpoint are stored.
Initially, the sessions are sorted with respect to delay in

ascending order, incurring a complexity of O(N log N). At
each iteration of the algorithm a checkpoint is examined.
It can easily be verified that each step of each iteration is
of complexity O(N) (or less). More specifically, comput-
ing the quantities φ−

i (τ j), φ+
i (τ j), vcti(τ j−1) for a session

i can be done in O(1) and, thus, computing these quanti-
ties for all sessions examined at an iteration can be done
in O(N). The update of a set corresponds to properly ad-
justing the values of seti(τ j−1) and seti(τ j) and is of com-
plexity O(N). Finding the minimums at step B.1 and the

update of Ĉ(τ+
j ) (which can also take place during step

B.3), are of complexity O(N), while the update of Ŵ (0, τ j)
is an O(1) operation.

Thus, the update of the system at each checkpoint is
performed in O(N) complexity. There are at most 2N
checkpoints, implying that the computational complexity
of the presented algorithm is O(N2).

The increased complexity of the proposed algorithm as
compared to the deterministic effective bandwidth-based

25A more realistic implementation would be based on linked lists
and would execute some steps concurrently and not sequentially (for
example, steps B.4-B.6).
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CAC scheme (complexity of O(N)), although not prohibit-
ing in practice (especially for a small number of sessions
N), makes necessary to further investigate the tradeoff be-
tween the cost in terms of complexity and the gain in terms
of performance.

Finally, it should be noted that the problem of the op-
timal weight assignment in the multiple node case is ex-
pected to be far more complex. This is mainly due to the
fact that in order to retain optimality the φ assignment
must be modified every time a new connection arrives to
the system.

VI. Conclusions

In this paper the problem of allocating optimal weights
to sessions being served according to the Generalized Pro-
cessor Sharing scheduling discipline at a single node has
been addressed. The derivation of the optimal solution is
based on a procedure capable of transforming any accept-
able weight allocation to the optimal one; based on this
procedure, a CAC algorithm that computes the optimal
weight assignment directly has been derived.

Since the proposed CAC scheme is optimal it bounds the
resource utilization that can be achieved by a GPS sched-
uler at a single node and, thus, helps in comparing the effi-
ciency of other simpler CAC schemes and the comparison
of GPS with other scheduling disciplines. For example it
can be used to investigate how much worse GPS is as com-
pared to Earliest Deadline First (EDF), which is known to
be the optimal scheduler for the single node case.

Apart from its value as a performance bound, whether
the O(N2) optimal algorithm retains enough gain to be
used in practice in place of O(N) deterministic effective
bandwidth-based algorithm, remains to be investigated.

In addition, it should be noted that in order to be able
to sustain an optimal performance in a dynamic environ-
ment (new sessions arriving, other ending) the algorithm
has to be re-executed upon any change in the traffic mix in
order to recompute the optimal weights. This requirement
emphasizes an inherent drawback of the GPS scheduling
discipline, which is that it cannot fully exploit the avail-
able bandwidth under a static allocation of weights.
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VII. Appendix

Due to space limitations the following notations are used
in the proof of Proposition 1.
y
xP

w
z =

∑

i∈
yIwz

xφi,
y
xF

w
z =

∑

i∈
yIwz

xfi,
yRw

z =
∑

i∈
yIwz

ρi

y
xP

w
z = 1 − y

xP
w
z , y

xP
w
z + q

pP
r
s = 1 − y

xP
w
z − q

pP
r
s

yRw
z = CG − yRw

z , yRw
z + qRr

s = CG − yRw
z − qRr

s
y
xC

w
z =

y
Ĉ( xbw

z ), lz,x
w,k = zbw − xbk

y
Ŵ

x,k

z,w =
y
Ŵ( zbw, xbk), y

xW
w
z =

∑w
m=z

y
Ŵ

x,m

x,m−1

Proof of Proposition 1 (Section III-A)

Only the proof for steps (II.1.a) and (II.1.b) is provided.
The proof for step (II.2.a) is similar.
First it is proved that the “conditional exchange of weights”
between sessions in aIk and sessions in aIFk is feasible, that
is, the total decrease of the weights of sessions in aIk is suf-
ficient to balance the necessary total increase of the weights
of sessions in aIFk so that the condition (see (II.1)) is met.
It is also shown that the best effort traffic is assigned a
greater weight under πb, that is πb is more efficient than
πa. Then it is shown that the QoS sensitive sessions do not
miss their delay bound under πb.

Assume that the described “conditional exchange of weights”
between sessions in aIk and sessions in aIFk is feasible. Let
aφi denote the weight assigned to session i under πa. Un-
der πb sessions in aIPk preserve their position in φ- space,
sessions in aIk are compressed in φ- space and sessions in
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aIFk are decompressed in φ- space, i.e.:

bφi = aφi , i ∈ aIPk ; bφi = aφi −
bfi , i ∈ aIk;

bφi = aφi + bfi , i ∈ aIFk ; bfi > 0 ∀i ∈ QoS (20)

–Sessions inaIk∪
aIFk are backlogged at abk−1under πb

If step (II.1.a) is followed bIk = aIk ∪
aIk+1 and bbk >

abk holds for the (intermediate) policy πb. If step (II.1.b)
is followed aIk = bIk but bbk > abk. In both cases sessions
in aIk empty their backlog at bbk under πb,

bbk > abk and
sessions in aIFk are assigned the same amount of work under
πb and under πa over the interval (0, bbk]. This means
that since sessions in aIk ∪

aIFk are still backlogged at time
abk−1 under πa they are backlogged at time abk−1 (and
∀t < abk−1) under πb too.

–Sessions in aIPk preserve their position in t- space
Sessions in aIPk preserve their position in φ-space (they

are assigned the same weights under πa and πb) and all ses-
sions in aIk ∪

aIFk (and the best effort traffic) empty their
backlog for t ≥ abk > abk−1, under πa and under πb, by

assumption. Obviously ab0 = bb0 = 0 and
b
Ĉ( ab+

0 ) =
a
Ĉ( ab+

0 ) = CG. Since bφi = aφi ,∀i ∈ aIPk it is implied

that bb1 = ab1,
bI1 = aI1 and

b
Ĉ( ab+

1 ) =
a
Ĉ( ab+

1 ). Mak-
ing similar thoughts it is easily concluded that:

bbm = abm ∧ bIm = aIm ,m = 0, . . . , k − 1 (21)

and b
bC

+
m = a

aC
+
m ,m = 0, . . . , k − 1 (22)

This means that in both cases (step (II.1.a) or (II.1.b))
sessions in aIPk preserve their position in t- space.
–Computation of weight differences ( bfis’)

CASE A: abk+1 < ∞. Sessions in aIk empty their back-
log at abk under πa. This implies Wi(0,

abk) = Ai(0,
abk)

∀i ∈ aIk, i.e.:

aφi
a
aW

k
1 = σi + ρi

abk , i ∈ aIk (23)

Sessions in bIk empty their backlog at bbk under πb, i.e.:

bφi
b
bW

k
1 = σi + ρi

bbk , i ∈ bIk (24)

In both cases (steps (II.1.a) and (II.1.b)) under examina-
tion aIk ⊆ bIk, implying that equation (24) holds ∀i ∈ aIk.
Subtracting (23) from (24) implies:

Cond. 1: bφi
b
bW

k
1 −

aφi
a
aW

k
1 = ρil

a,b
k,k, i ∈ aIk (25)

Sessions in aIFk are assigned the same amount of work up
to time bbk under πa and under πb, i.e.:

Cond. 2: bφi
b
bW

k
1 = aφi

(

a
aW

k
1 +

a
Ŵ

b,k

a,k

)

, i ∈ aIFk (26)

From (21) and (22) it is implied that:

b
Ŵ

b,m

b,m−1 =
a
Ŵ

a,m

a,m−1 ,m = 1, . . . , k − 1 (27)

Using (22):
b
Ŵ

b,k

b,k−1 = a
aC

+
k−1 la,b

k,k +
a
Ŵ

a,k

a,k−1 (28)

(27), (28) imply that: b
bW

k
1 = a

aW
k
1 + a

aC
+
k−1 la,b

k,k (29)

In addition it is obvious that:
a
Ŵ

b,k

a,k = a
aC

+
k la,b

k,k (30)

Conditions 1 and 2, using (29) and (30) become:

bfi

(

a
aW

k
1 + a

aC
+
k−1 la,b

k,k

)

=
(

aφi
a
aC

+
k−1 −ρi

)

la,b
k,k, i∈aIk (31)

bfi

(

a
aW

k
1+a

aC
+
k−1 la,b

k,k

)

= aφi

(

a
aC

+
k −

a
aC

+
k−1

)

la,b
k,k, i∈aIFk (32)

Conditions 1 and 2 (equations (31) and (32)) provide the
necessary relations to determine the bfi ’s under the as-
sumption that the “conditional exchange of weights” is
feasible. In order to prove that the assumption holds it
is sufficient to show that the total decrease of the weights
of sessions in aIk is sufficient to balance the total increase
of the weights of sessions in aIFk .

–The decrease of the weights of sessions in aIk is
greater than the increase of the weights of sessions
in aIFk

Summing over all i ∈ aIk equation (31) gives:

a
bFk

(

a
aW

k
1 + a

aC
+
k−1 la,b

k,k

)

=
(

a
aPk

a
aC

+
k−1 −

aRk

)

la,b
k,k (33)

After some algebra the following equality can be verified:

a
aPk

a
aC

+
k−1 −

aRk =
(

a
aC

+
k − a

aC
+
k−1

) (

1 − a
aPk −

a
aP

P
k

)

(34)

Dividing (32) by (33), due to (34), results in:

bfi = aφi
a
bFk

(

1 − a
aPk −

a
aP

P
k

)−1
, i ∈ aIFk (35)

Equation (35) is the main result of this section. Summing
over all sessions in aIFk (and using

∑

i∈QoS
aφi + aφbe = 1):

a
bF

F
k = a

aP
F
k

(

aφbe + a
aP

F
k

)−1 a
bFk ⇔ a

bF
F
k < a

bFk (36)

This means that the total decrease of the weights of sessions
in aIk is greater than the total increase of the weights of
sessions in aIFk . So the described “conditional exchange
of weights” is feasible. In addition the best effort traffic is
assigned a greater weight under the intermediate policy πb:

bφbe = 1 −
∑

i∈QoS

bφi = 1 − b
bP

P
k − b

bPk −
b
bP

F
k =

a
aP

P
k−

a
aPk+a

bFk−
a
aP

F
k −

a
bF

F
k =aφbe−

a
bF

F
k +a

bFk>
aφbe (37)

(35) imply that: bfi(
bfj)

−1 = aφi(
aφj)

−1, i, j ∈ aIFk
(38)

Under πa and πb the same sessions empty their backlog in

(0, bbk] (implying that
b
Ĉ( bb+

k ) =
a
Ĉ( bb+

k )) and sessions

in aIFk receive, by assumption, the same amount of work
over (0, bbk] under both policies. In conjunction with equa-
tion (38) it can be concluded that sessions in aIFk preserve
their position in t− space under πb. It is easy to show that
this holds for the best effort traffic too.

CASE B: abk+1 = ∞. This case is examined only for

step (II.1.a) ( bIk = aIk ∪
aIk+1 and bbk > abk), since the

proof for step (II.1.b) is exactly the same as in CASE A.
–Equation (35) holds for CASE B too
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In CASE B (and assuming that step (II.1.a) was fol-
lowed) the following equations hold under πb and πa, since
bbk = ∞ and abk+1 = ∞.

bφi
b
bC

+
k−1 = ρi i ∈ aIk ∪

aIFk (39)
aφi

a
aC

+
k = ρi i ∈ aIFk (40)

From (21), (22): abk−1 = bbk−1 ∧ a
aC

+
k−1 = b

bC
+
k−1 (41)

Subtracting (39) from (40) implies:

aφi

(

a
aC

+
k − a

aC
+
k−1

)

= bfi
a
aC

+
k−1 i ∈ aIFk (42)

Summing over all i ∈ aIk equation (39) gives:

a
bFk

a
aC

+
k−1 = a

aPk
a
aC

+
k−1 −

aRk (43)

Dividing (42) by (43), due to (34), results in (35).
–πb is acceptable

It has been shown that the “conditional exchange of
weights” between sessions in aIk and sessions in aIFk is fea-
sible and that πb is more efficient than πa. It is easily seen
that the requirements of the QoS sensitive sessions are not
violated under πb (that is πb is acceptable). In particular :
• For t < abk: The NBSA bandwidth of the system is the
same under the two policies (see equation (22)). Sessions in
aIPk are assigned the same weight under πb and πa so they

get the same service under both policies, i.e.
b
Ŵi(0, t) =

a
Ŵi(0, t), ∀i ∈ aIPk . Sessions in aIFk are assigned a greater

weight under πb than under πa so they get better service

under πb, i.e.
b
Ŵi(0, t) >

a
Ŵi(0, t), ∀i ∈ aIFk . Sessions in

aIk are assigned a smaller weight under πb than under πa so

they get worse service, i.e.
b
Ŵi(0, t) <

a
Ŵi(0, t) ∀i ∈ aIk,

but by assumption they do not violate their delay bound.
• For abk < t < bbk: All sessions in aIPk have cleared their
backlog under πa and πb so they get the same service under

both policies, i.e.
b
Ŵi(0, t) =

a
Ŵi(0, t), ∀i ∈ aIPk . Sessions

in aIk are assigned a smaller weight under πb than under

πa so they get worse service, i.e.
b
Ŵi(0, t) <

a
Ŵi(0, t)

∀i ∈ aIk, but by assumption they do not violate their delay
bound. Sessions in aIFk are assigned a greater amount of

work in (0, abk] (
b
Ŵi(0,

abk) >
a
Ŵi(0,

abk)) and at bbk

the amount of work they have received is the same under

both policies (
b
Ŵi(0,

bbk) =
a
Ŵi(0,

bbk)). So
b
Ŵi(0, t) >

a
Ŵi(0, t) holds ∀t ∈ ( abk, bbk), ∀i ∈ aIFk .

• For bbk < t: All sessions in aIPk ∪ aIk have cleared their
backlog under πa and πb so they get the same service under

both policies, i.e.
b
Ŵi(0, t) =

a
Ŵi(0, t), ∀i ∈ aIPk ∪ aIk.

The NBSA bandwidth of the system is the same under
the two policies at bbk

+. This implies, in conjunction
with equation (38), that sessions in aIFk are assigned the

same amount of work under πb and πa, i.e.
b
Ŵi(0, t) =

a
Ŵi(0, t), ∀i ∈ aIFk .

Finally it is noted that the best effort traffic is assigned a
greater weight under πb and the same conclusions as for
the sessions in aIFk hold for it.

Note: Since the exchange of φ ’s takes place in a con-
tinuous way, it is sufficient to show that the final policy is

acceptable in order to ensure that every intermediate policy
is acceptable. bbk can be replaced by any t abk > t > bbk

and the proof that the intermediate policy is acceptable
and more efficient still holds.

Proof of Proposition 2 (Section III-A)

According to Proposition 1 each time that the XMF pro-
cess modifies the original policy the resulting policy (πb) is
acceptable and more efficient. This implies that the gener-
ated by the XMF process policy is acceptable and more ef-
ficient than the original policy, except from the case where
XMF does not modify the original policy.
Two policies are identical (all sessions are assigned the
same weights under both policies) if and only if the backlog
clearing time of each session in an all greedy system is the
same under both policies. In particular, in the all greedy

system ab0 = 0 and
a
Ĉ( ab+

0 ) = CG hold under any policy
πa. If bb1 = ab1 = b1 for two policies πa and πb, it is con-
cluded that bφi = aφi for all sessions i for which ei = b1

(where ei is defined as aei = bei = ei for all sessions i for
which aei = bei). If the same set of sessions empty their

backlog at b1 under both policies
a
Ĉ(b+

1 ) =
b
Ĉ(b+

1 ) (the
NBSA bandwidth has the same value right of the first back-
log clearing time under both policies). If ab2 = ab2 = b2,
it is concluded that bφi = aφi for all sessions i for which
ei = b2. If the same set of sessions empty their backlog at

b2 under both policies
a
Ĉ(b+

2 ) =
b
Ĉ(b+

2 ) holds. Making
similar thoughts for all backlog clearing times the validity
of the claim becomes clear.

Now suppose that there were two policies, πa1 and πa2,
for which XMF (πa1) = πo1 6= πo2 = XMF (πa2). Let
o1Im, o2Im denote the set of sessions that empty their back-
log mth in oder under πo1 and πo2, respectively. Suppose
further that the two policies coincide for the set of sessions
in o1In = o2In, n = 0, 1, . . . , k − 1 and their first difference
occurs for the sets o1Ik

o2Ik, k ≥ 1, i.e. the first backlog
clearing time on which the two policies differ is considered.
The differentiation between the two policies can have one
of the following forms:
•

o1Ik = o2Ik, that is under both policies the same sessions
empty their backlog kth in order but they differ on the
backlog clearing time of these sessions. Suppose o1bk <
o2bk. This means that under πo1 sessions in o1Ik are not
compressible in φ- space (else the XMF process would have
expanded their busy periods) and under πo2 they are (con-
tradiction).
•

o1Ik 6= o2Ik. It is easily seen that a session which emp-
ties its backlog at a different time instance under the two
policies exists. Such a session is not compressible in φ-
space under the one policy (the policy under which it emp-
ties its backlog first) and is compressible under the other
(contradiction).


