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Abstract

This paper studies a resource allocation problem in a graph, concerning the joint optimiza-

tion of capacity allocation decisions and object placement decisions, given a single capacity

constraint. This problem has applications in internet content distribution and other domains.

The solution to the problem comes through a multi-commodity generalization of the single

commodity k-median problem. A two-step algorithm is developed that is capable of solving the

multi-commodity case optimally in polynomial time for the case of tree graphs, and approx-

imately (within a constant factor of the optimal) in polynomial time for the case of general

graphs.
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1 Introduction

This paper studies a joint placement and dimensioning problem in a content distribution network

(CDN) for the dissemination of internet content. A CDN operator has at its disposal a total storage

capacity for S unit-sized information objects. The target is to use this storage budget to selectively

replicate information objects drawn from a set of available information objects, such that the average

distance from all clients to all the requested objects be minimized. Producing the required object

placement not only identifies the set of information object for each node but also returns the fraction

of the total storage capacity that must be allocated to each node. In [6] we have formulated a specific

instance of this problem and proposed heuristic algorithms for it.

The discussed problem will henceforth be called the capacity allocation problem, abbreviated

CAP. At an abstract level, the goal of CAP is to select appropriate locations for the installment

of different types of facilities, under known topological and demand pattern information and the

constraint that the maximum number of opened facilities (of all types) does not exceed a given

capacity. The name CAP owes much to its application in allocating generic capacity units in a

network, with each capacity unit being able to host a single facility chosen among a set of available

types.

Multi-commodity placement problems that have appeared in the literature differ substantially

from the stated CAP problem. Korupolu at al. [5] have studied a multi-commodity object placement

problem in a tree and given an exact polynomial time algorithm for it. This work differs from our’s
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in that it considers per-node capacity constraints and assumes a specific distance metric called

ultra-metric. Under the ultra-metric, the distance between any two nodes equals the diameter of

the smallest subtree containing both nodes. This is actually an approximate notion of distance and

is not as precise as the usually employed notion of distance (length of a shortest path connecting two

nodes). Here we allow for an additional degree of freedom by allowing the algorithm to dimension

the nodes along with the placement of objects and assume a general metric space for distance. Notice

that a solution to CAP does not stem from a trivial extension of [5], as the latter cannot guarantee

a total allocated capacity. More recently Baev and Rajaraman [2] have provided approximation

algorithms for multi-commodity placement in general graphs. Their work too considers per-node

capacity constraints.

In the sequel the k-median problem is introduced, followed by a formal statement of CAP and

the presentation of the two-step algorithm for its solution. A distinctive characteristic of the two-

step algorithm is that it depends on the specific properties of the studied graph only through the

specific k-median algorithm that it uses as a building block. This allows for a unified treatment

of trees and general graphs. Using a polynomial time exact algorithm for the k-median in a tree

in conjunction with the two-step algorithm leads to a polynomial time exact algorithm for CAP

in a tree. For general graphs, the combination of a polynomial time approximation algorithm for

k-median and the two-step algorithm leads also to a polynomial time approximation algorithm for

CAP. In view of the fact that CAP is NP-hard for general graphs (it reduces to k-median when

considering only one type of facility) the resulting approximation becomes particularly interesting

as it has the property of retaining the good properties of the employed k-median algorithm. It

is in fact possible to directly construct a constant factor approximation algorithm for CAP by

employing a constant factor approximation algorithm for k-median. Arya et al. [1] have given the

first polynomial constant factor approximation algorithm for the k-median in a general graph, with

an approximation ratio of 3 + 2/p (p is a parameter of the local search heuristic employed in the

work of Arya et al.). Using this algorithm in conjunction with the two-step algorithm leads to a

3 + 2/p approximation for CAP in a general graph. In effect, the two-step algorithm is able to

guarantee for CAP an approximation ratio that is as good as the one for the k-median.

2 The k-median problem

Consider an undirected connected graph G = (V,E) with node set V = {v1, . . . , vn} and edge set

E. Each edge is associated to a non-negative weight and the length of a path in G is equal to the

sum of the weights of all edges in the path. Let d(vi, vi′) denote the distance between a pair of

nodes (vi, vi′), given by the length of a shortest length path connecting vi and vi′ . Each node has

a demand for ri units of service from its closest supply node. A k-placement, P (k), is a set of no

more than k nodes out of the total n that are selected to act as supply nodes, offering service to the

client nodes (a node may be both a client and a supply node). Let P(k) denote the set of all possible

k-placements. The k-median problem amounts to selecting an optimal k-placement, P (k) ∈ P(k),

that minimize the weighted sum of distances from all nodes (clients) to the their closest supply

node, i.e., minimize

φ(P (k)) =
∑

vi∈V

ri · min
u∈P (k)

d(vi, u) , P (k) ∈ P(k) (1)
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This is equivalent to maximizing

ψ(P (k)) =
∑

vi∈V

ri ·
(

dw − min
u∈P (k)

d(vi, u)
)

, P (k) ∈ P(k) (2)

where dw is a constant. Kariv and Hakimi [3] have proved that k-median is NP-hard for general

graphs. They showed however that for undirected trees the problem can be solved in O(k2n2). More

recently the complexity of the undirected tree version has been reduced to O(kn2) by Tamir [10].

For directed trees the problem has been solved in O(k2P ) by Vigneron et al. [11], for the specific

type of directed trees where all edges are directed upwards towards the root (here P denotes the

path length of the tree which is O(n2) in the worst case). For the case of k-median in a general

graph and metric distance, Lin and Vitter [7] gave a (2(1 + ε), 1 + (1/ε))-approximation algorithm

and Korupolu et al. [4] gave a (1+ ε, 3+5/ε) and a (1+5/ε, 3+ ε)-approximation algorithm.1 More

recently Arya et al. [1] gave a (3 + 2/p) polynomial time approximation algorithm using no more

than k supply nodes (p is the maximum swap of facilities allowed by their local search procedure);

this appears to be the first constant factor approximation algorithm without blowup in the number

of supply nodes.

3 The capacity allocation problem

The capacity allocation problem (CAP) is a generalization of the k-median problem, involving

multiple types of service and the requirement that all nodes receive all types of service, either

locally, or from the closest supply node for a given type of service. As the number of different

services may exceed the total number of allowed medians, an additional node w is introduced that

lays outside G and is capable of offering all the types of service. Node w is accessible by all nodes

in G at the same distance dw = d(v, w), v ∈ V , that is larger than the diameter of G. For the

purpose of this paper it will be assumed that a service is the ability to offer a certain information

object (e.g., a web page) that is stored locally but this does not limit the applicability of the model

to other circumstances as well. There exist N distinct unit-sized objects comprising the object set

O = {o1, . . . , oN}, oj denoting the jth object. The demand of each node vi is described by a rate

vector over O, ri = {ri1, . . . , riN}, rij denoting the rate at which node vi requests object oj . The

origin node w is assumed to be holding the entire object set O. A (j, k)-placement, P
(k)
j , is a set

of no more than k nodes out of the total n that are selected as supply nodes for object oj . Let

P(k)
j denote the set of all possible (j, k)-placements. An S-placement, P (S) = {P

(kj1
)

j1
, . . . , P

(kjR
)

jR
},

is a set of (jh, kjh
)-placements, P

(kjh
)

jh
, 1 ≤ h ≤ R ≤ S, with R members, having the property:

∑R
h=1 kjh

≤ S, kjh
> 0,∀h. A node-object pair (u, oj) is said to belong to P

(S), (u, oj) ∈ P
(S), if

and only if there exists h : 1 ≤ h ≤ R, jh = j, u ∈ P
(kjh

)

jh
. Let P(S) denote the set of all possible

S-placements. CAP amounts to identifying an optimal S-placement, P (S) ∈ P(S), that minimizes

the weighted sum of distances from all nodes to their closest supply node, for all objects in O, i.e.,

minimize

f(P (S)) =
∑

vi∈V

∑

oj∈O

rij · min
(u,oj)∈(P (S)∪w)

d(vi, u) , P (S) ∈ P(S) (3)

1A (a, b)-approximation algorithm is a polynomial time algorithm that computes a solution using at most b · k supply

nodes and with distance at most a times worse than the distance under the optimal algorithm using k supply nodes.
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P(S) has the property of maximizing the following expression.

g(P (S)) =
∑

vi∈V

∑

oj∈O

rij ·
(

dw − min
(u,oj)∈(P (S)∪w)

d(vi, u)
)

=
∑

vi∈V

∑

oj∈O:

∃u∈G:(u,oj)∈P (S)

rij ·
(

dw − min
(u,oj)∈P (S)

d(vi, u)
)

, P (S) ∈ P(S)

(4)

min{f(P (S))} is equivalent to max{g(P (S))} because g(P (S)) =
(

dw ·
∑n

i=1

∑N
j=1 rij

)

−f(P (S)). The

transition from the first to the second line of (4) is because
(

dw − min(u,oj)∈(P (S)∪w) d(vi, u)
)

= 0

when min(u,oj)∈(P (S)∪w) d(vi, u) = dw, i.e., for all objects oj that do not have a replica in G (i.e., for

objects oj that there does not exist a u ∈ G such that (u, oj) ∈ P
(S)). Using the function,

ψj(P
(k)
j ) =

∑

vi∈V

rij ·
(

dw − min
u∈P

(k)
j

d(vi, u)
)

, P
(k)
j ∈ P(k)

j (5)

and the definition of P (S), g(P (S)) may be re-written as:

g(P (S)) =

R
∑

h=1

ψjh
(P

(kjh
)

jh
) (6)

Notice that the ψj() function of (5) is a k-median objective function for object oj ; its sole difference

to the ψ() function of (2) is that ri is replaced by rij . In effect ψj(P
(k)
j ) captures the total gain in

terms of reduced access distance achieved by placing k replicas of object oj in G thus not having to

fetch oj from the origin node but rather from a node in G. The function g(P
(S)) sums all the gains

for the R individual objects ojh
, 1 ≤ h ≤ R that get to have at least one replica in the context of

an S-placement P (S).

4 An exact algorithm for CAP

This section describes an exact solution algorithm for CAP. The algorithm involves two steps: (1)

a decomposition step involving the solution of a series of k-median problems relating to the original

CAP problem; (2) a composition step involving the selection of a number of optimal solutions from

the first step, that when combined together yield the exact optimal solution for the original CAP.

The decomposition step solves a sufficient number of single commodity k-median location problems.

The composition step is a packing problem that selects among the optimally solved k-medians to

construct an optimal S-placement.

4.1 Decomposition step: k-medians

In this step N ·S′ k-medians, where S′ = min{n, S}, are solved and their solutions stored for use in

the second step. Specifically for each object oj ∈ O a series of S
′ k-medians, 1 ≤ k ≤ S′, is solved

using an appropriate algorithm for the given type of graph G. In fact the largest possible median

of the oj series, i.e., the one with k = n, occurring only when S ≥ n, does not have to be solved

because its solution is trivial – replicate one copy of object oj in each of the n nodes. Let Gjk denote

the gain under P
(k)
j , the optimal placement of k replicas of object oj in G. Gjk is defined to be the

difference between the maximum sum of distances incurred when all nodes fetch oj from w minus
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Graph solution single k-median decomposition composition overall CAP

undirected tree exact O(kn2) (Tamir) O(n3N) O(n2N2) O(max{n3N, n2N2})

directed tree exact O(k2n2) (Vigneron ) O(n4N) O(n2N2) O(max{n4N, n2N2})

general approx. O(np) (Arya) O(np+1N) O(n2N2) O(max{np+1N, n2N2})

Table 1: The six columns of the table contain the following information: (1) type of the studied graph G; (2) type of

available solutions for the k-median and CAP for the given type of G; (3) complexity of best k-median algorithm for G; (4)

complexity of the decomposition step of CAP that uses the k-median algorithm of the previous column; (5) complexity of

the composition (packing) step of CAP using the general dynamic programming algorithm; (6) overall complexity of CAP.

the minimum sum of distances incurred when k replicas of oj are installed in G optimally, thus:

Gjk = max
P

(k)
j ∈P

(k)
j

ψj(P
(k)
j ) (7)

The Gjk values are the input of the subsequent step that decides how many replicas from each

object to include in the final S-placement.

The complexity of the decomposition step depends on the properties of the studied graph. Let

FG(k, n) denote the asymptotic complexity of solving the k-median problem in a graph G with n

nodes, using the best algorithm for the specific type of G. Then solving S ′ ≤ n − 1 k-medians for

each object oj , 1 ≤ j ≤ N , independently, would lead to an overall complexity O(nN ·FG(n− 1, n))

for the decomposition step. This complexity can be reduced to O(N · FG(n− 1, n)) for algorithms

that solve the k-median using dynamic programming which by construction solves all the smaller

k′-medians, 1 ≤ k′ < k, in order to solve the k-median. The algorithms of Tamir and Vigneron et al.

fall in this category and thus allow to solve the entire series of k-medians for a given object oj – “all-

in-once” – by solving only the largest problem, i.e., the S ′-median. The third and the fourth columns

of Table 1 summarize the complexity of the k-median (FG(k, n)) and of the resulting decomposition

step (that uses the k-median algorithm of the previous column), for the following cases: directed

tree, undirected tree, and general graph.

4.2 Composition step: a packing problem

In this step the following packing problem, which is a special type of integer linear program (ILP),

is solved optimally by appropriate polynomial time algorithms.

Maximize:
N
∑

j=1

S′

∑

k=1

Gjk · Yjk (8)

Subject to:
S′

∑

k=1

Yjk ≤ 1 , 1 ≤ j ≤ N (9)

and,
N
∑

j=1

S′

∑

k=1

k · Yjk ≤ S (10)

Yjk ∈ {0, 1}, 1 ≤ j ≤ N, 1 ≤ k ≤ S′ is a binary integer variable taking the value one if and only

if the optimal (j, k)-placement, P
(k)
j , is selected for inclusion in the optimal S-placement, P (S), for

CAP. For this packing problem two exact polynomial time algorithms are described; the first is a
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Figure 1: The packing problem involved in the composition step.

dynamic programming algorithm appropriate for all instances of CAP, while the second is a greedy

algorithm that yields the exact optimal solution for a broad family of CAP instances having concave

Gjk’s. When applicable, the greedy algorithm provides for a substantial reduction of complexity as

compared to the more general dynamic programming algorithm.

4.2.1 Exact dynamic programming algorithm for the packing problem

Figure 1 gives an illustrative abstraction of the packing problem described in the aforementioned

ILP formulation. There are N “boxes” with indices j, 1 ≤ j ≤ N , and each box contains S ′

“objects” of type j with indices (j, k), 1 ≤ k ≤ S ′. Object (j, k) of box j has a value Gjk and a

weight k. There is also a knapsack that can hold a weight that is at most equal to S. The packing

problem amounts to filling the knapsack (constraint (10)) by selecting at most one object from each

box (constraint (9)) such that the total value of the objects that fit in the knapsack be maximized

(objective function (8)). This description resembles much the 0/1 knapsack problem [8, 9] with

the main difference be that whereas in the 0/1 knapsack there is only one object of type j, here

there are S′ objects of type j each having its own weight and value. This packing problem can be

solved by an appropriately modified version of the dynamic programming algorithm that solves the

original 0/1 knapsack [9].

Define V [j, s] to be the maximum value of the objects that fit into a knapsack of size s when

the selection is confined among objects of type 1, . . . , j, 1 ≤ j ≤ N and 0 ≤ s ≤ S. The objective is

to identify V [N,S] and the selection of objects that leads to it. First define the initial conditions:

V [j, 0] = 0 , 1 ≤ j ≤ N

V [1, s] =

{

G1,s , if 1 ≤ s ≤ S′

G1,S′ , if S′ < s ≤ S

Now define the recursive relationship for the cases 2 ≤ j ≤ N, 1 ≤ s ≤ S:

V [j, s] = max

{

V [j − 1, s], max
1≤k≤min{s,S′}

{V [j − 1, s− k] +Gjk}

}

(11)

Proposition 1 The dynamic programming algorithm defined by the recursive equation (11) solves

optimally the packing problem defined by equations (8), (9), (10).

The proof is a straightforward generalization of the proof of the correctness of the dynamic

programming solution for the standard 0/1 knapsack problem and is, thus, omitted.

Since there are NS subproblems V [j, s] to be solved and each subproblem requires at most

S′ comparisons to identify whether to add to the knapsack one of the objects (j, k) of box j,
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the time complexity of the packing problem is O(NSS ′). In general such an algorithm is called

pseudopolynomial as its running time depends not only on the size of the input (hereN,n) but on the

magnitude of some of the parameters as well (here on S). In the context of the stated CAP problem,

however, the parameter S is upper bounded by S ≤ nN , capturing the fact that CAP becomes

meaningless when the available storage capacity is larger than the minimum required to store all N

objects on all n nodes of the graph. The upper bound guarantees that the dynamic programming

algorithm will terminate in polynomial time. Using S ≤ nN and S ′ ≤ n the complexity of the

packing becomes O(n2N2). Notice that this complexity does not depend upon the type of graph G.

4.2.2 Exact greedy algorithm for the packing problem under concave Gjk’s

It is possible to reduce the complexity of the packing problem to O(nN logN), for an interesting

family of CAP instances involving Gjk’s that are concave with respect to k, for all oj ∈ O. This

can be achieved by replacing the dynamic programming algorithm with a faster greedy algorithm

that, however, when operating on concave Gjk’s is guaranteed to be leading to an optimal solution

for the packing problem.

The concaveness of Gjk’s implies that the “value” of adding more capacity is progressively

declining. This is the case under many topologies and request patterns. The test for concaveness

may be implemented at no additional cost while computing the Gjk’s at the first step. When the

test succeeds, the following sketched greedy algorithm may be employed for solving the packing

problem.

The algorithm assigns the total capacity in exactly S iterations, with each iteration assigning

an additional capacity unit. The first unit goes to the object that has the largest Gj1, 1 ≤ j ≤ N .

Then each additional unit goes to an object of type j∗, if and only if the incremental gain for j∗,

Gj∗k+1 − Gj∗k, is larger than any other available incremental gain for any other type of object.

Referring back to figure 1, this amounts to selecting object (j∗, k + 1) instead of object (j∗, k), so

as to maximize Gjk+1 − Gjk, 1 ≤ j ≤ N , where (j, k) is the object of maximum weight that has

already been chosen from box j at a prior iteration.

The greedy mode of operation combined with the concaveness of Gjk’s guarantee the identifi-

cation of the optimal solution. By using a max-heap data structure to store the largest available

incremental gain for an unselected unit of each of the N distinct objects, the algorithm can be

implemented at a complexity of O(nN logN) (O(N) for the initial creation of the max-heap plus

S ≤ nN iterations with each iteration requiring O(logN) complexity to re-organize the max-heap).

Notice that the greedy solution for the fractional knapsack problem is not applicable here because

the current packing problem involves objects with a non-constant per-unit value (the normalized

per-unit value of (j, k) decreases with k).

4.3 Correctness of the two-step algorithm

In this section it is established that the solution obtained from the aforementioned two-step algo-

rithm is an optimal solution to the CAP problem defined in Sect. 3. Informally, a description of the

correctness proof goes as follows. First it is shown that the objective function of CAP is separable

with regard to the different objects. Then it is shown that an optimal S-placement for CAP must

contain only (j, k)-placements that are optimal solutions to k-median problems (for different objects

oj). The last argument allows to limit the search for an optimal S-placement to S-placements that
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contain only optimal k-median (j, k)-placements. This reduces the original CAP to the packing

problem solved in the composition step.

Observation 1 The optimal (j, k)-placement, P
(k)
j ∈ P(k)

j , depends only on j for a given k and

graph G.

This can be verified by looking at equation (7) that defines the gain under P
(k)
j to be the maximum

of ψj(P
(k)
j ), P

(k)
j ∈ P(k)

j . Under given k and graph G the function ψj(P
(k)
j ) depends only on j

through rij ’s, 1 ≤ i ≤ n (see (5) for the definition of ψj(P
(k)
j )).

Proposition 2 Let the optimal S-placement be P (S) = {Ṗ
(kj1

)
j1

, . . . , Ṗ
(kjR

)

jR
}. Then Ṗ

(kjh
)

jh
= P

(kjh
)

jh

for 1 ≤ h ≤ R.

Proof : This can be shown via contradiction. Since P (S) has been assumed to be optimal it must

be that g(P(S)) ≥ g(P (S)) for all P (S) ∈ P(S). Suppose that there exists h′ : 1 ≤ h′ ≤ R such

that Ṗ
(kj

h′
)

jh′
6= P

(kj
h′

)

jh′
. A new solution P(S) may then be constructed by setting P

(kjh
)

jh
= Ṗ

(kjh
)

jh

for 1 ≤ h ≤ h′ − 1 and h′ + 1 ≤ h ≤ R and setting P
(kj

h′
)

jh′
= P

(kj
h′

)

jh′
. Since ψjh′

(P
(kj

h′
)

jh′
) =

ψjh′
(P

(kj
h′

)

jh′
) > ψjh′

(Ṗ
(kj

h′
)

jh′
) it turns that g(P(S)) > g(P(S)) which is a contradiction as P (S) has

been assumed to be optimal. Thus it must be that Ṗ
(kj

h′
)

jh′
= P

(kj
h′

)

jh′
for all 1 ≤ h′ ≤ R. ¥

Having established that an optimal S-placement P (S) contains only optimal (j, k)-placements

P
(k)
j it becomes possible to limit the search for P (S) in P̃(S) ⊂ P(S) where P̃(S) denotes the set

of S-placements that contain only optimal (j, k)-placements. Thus for the identification of P (S)

it suffices to look for the S-placement that maximizes the following re-written expression for the

g(P (S)) of (6):

g(P (S)) =

R
∑

h=1

Gjhkjh
, P (S) ∈ P̃(S) (12)

Proposition 3 Let the optimal S-placement be P (S) = {P
(kj1

)
j1

, . . . ,P
(kjR

)

jR
}. Then,

P(S) = {P
(kj1

)
j1

, . . . ,P
(kjR

)

jR
} ⇐⇒ Yjhkjh

= 1, 1 ≤ h ≤ R.

Proof : The equivalence is a direct consequence of the following two facts: (1) The objective function

of CAP given in equation (12) is equivalent to the objective function of the composition step given

in equation (8) (by way of constraint (9)); (2) the optimal solution of CAP is known to be included

in P̃(S) which matches exactly the feasible region defined by constraints (9), (10) of the composition

step. ¥

5 Concluding remarks

The two-step algorithm finds an optimal solution to CAP in polynomial time, in the case of a

tree graph, while it obtains a constant factor approximation in polynomial time, in the case of an

arbitrary graph. The last column of Table 1 summarize the exact overall complexity for the various

cases. Notice that the final complexity is dominated by the complexity of the most complex step,

which in turn depends on the relative magnitude of n,N for specific applications. In problems

having N >> n (e.g., web caching, content distributions, see Sect. 1) it will be the packing problem

that dominates the overall complexity. In such cases the greedy solution to the packing problem,

when applicable, will offer a valuable speedup.
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