
STORAGE CAPACITY ALLOCATION
ALGORITHMS FOR HIERARCHICAL
CONTENT DISTRIBUTION∗

Nikolaos Laoutaris, Vassilios Zissimopoulos, Ioannis Stavrakakis
Dep. of Informatics and Telecommunications, University of Athens, 15784 Athens,

Greece

{laoutaris,vassilis,istavrak}@di.uoa.gr

Abstract The addition of storage capacity in network nodes for the caching or
replication of popular data objects results in reduced end-user delay,
reduced network traffic, and improved scalability. The problem of al-
locating an available storage budget to the nodes of a hierarchical con-
tent distribution system is formulated; optimal algorithms, as well as
fast/efficient heuristics, are developed for its solution. An innovative
aspect of the presented approach is that it combines all relevant sub-
problems, concerning node locations, node sizes, and object placement,
and solves them jointly in a single optimization step. The developed al-
gorithms may be utilized in content distribution networks that employ
either replication or caching/replacement.

Keywords: content distribution; web caching; storage allocation; heuristic algo-
rithms.

1. INTRODUCTION

This paper attempts to answer the question of how to allocate a given
storage capacity budget to the nodes of a generic hierarchical content dis-
tribution system. Such a system can materialize as any one of the follow-
ing: a hierarchical cache comprising cooperating proxies from different
organizations; a content distribution network offering hosting services or
leasing storage to others that may implement hosting services on top of
it; a dedicated electronic media system that has a hierarchical structure
(e.g., video on demand distribution). The dimensioning of web caches
and content distribution nodes has received a rather limited attention

∗This work and its dissemination efforts have been supported in part by the IST Program of
the European Union under contract IST-2001-32686 (Broadway).



2

as compared to other related issues such as replacement policies Cao
and Irani, 1997; Fan et al., 2000, proxy placement algorithms Krishnan
et al., 2000; Li et al., 1999, object placement algorithms Korupolu et al.,
1999; Kangasharju et al., 2002, and request redirection mechanisms Pan
et al., 2003. In fact, the only published paper on the dimensioning of
web proxies that we are aware of is due to Kelly and Reeves, 2001,
whereas the majority of related works in the field have disregarded stor-
age dimensioning issues by assuming the existence of infinite storage
capacity Rodriguez et al., 2001; Gadde et al., 2002.

2. OUR APPROACH TOWARDS STORAGE
CAPACITY ALLOCATION

The current work addresses the problem of allocating a storage re-
source differently than previous attempts, taking into consideration re-
lated resource allocation subproblems that affect it. Previous attempts
have broken the problem of designing a content distribution network
into a number of subproblems consisted of: (1) deciding where to install
proxies (and possibly their number too); (2) deciding how much stor-
age capacity to allocate to each installed proxy; (3) deciding on which
objects to place in each proxy. Solving each one of the problems in-
dependently (by assuming a given solution for the others) is bound to
lead to a suboptimal solution, due to the dependencies among them.
For instance, a different storage allocation may be obtained by assum-
ing different object placement policies and vice versa. The dependencies
among the subproblems are not neglected under the current approach
and, thus, an optimal solution for all the subproblems is concurrently
derived, guaranteeing optimal overall performance.
Our methodology can be used for the optimization of existing sys-

tems (e.g. to re-organize more effectively the allocation of storage in a
hierarchical cache) but hopefully will be the approach to be followed in
developing future systems where the memory resource will be utilized
dynamically and on-demand. The current work makes the following
contributions towards the above mentioned uses:
The work focuses on hierarchical topologies. There are several reasons

for this: (1) many information distribution systems have an inherent
hierarchical structure owing to administrative and/or scalability reasons
(examples include hierarchical web caching Wessels and Claffy, 1998,
hierarchical data storage in Grid computing Ranganathan and Foster,
2001, hierarchical peer-to-peer networks Garces-Erice et al., 2003); (2)
although the internet is not a perfect tree as it contains multiple routes
and cycles, parts of it are trees (due to the actual physical structure, or
as a consequence of routing rules) and what’s more, overlay networks on
top of it have no reason not to take the form of a tree if this is called for;



Storage Capacity Allocation Algorithms for Hierarchical Content Distribution3

(3) it is known that once good algorithms exist for a tree they may be
applied appropriately to handle general graph topologies Bartal, 1996.

3. THE STORAGE CAPACITY ALLOCATION
PROBLEM

3.1 Problem statement

The storage capacity allocation problem is defined here as that of the
distribution of an available storage capacity budget to the nodes of a
hierarchical content distribution system, given known access costs and
client demand patterns. The proposed algorithms allocate storage units
that may contain any object from a set of distinct objects (thus this
is a multi-commodity problem as opposed to the single commodity k-
median) and employ objective functions that are representative of the
exact content of each node. Additionally, it is not assumed that a node
can hold the entire set of available objects; in fact, this set need not con-
tain objects from a single web-server, but it potentially includes object
from different web-servers outside the hierarchy. As compared to works
that study the object placement problem Kangasharju et al., 2002; Ko-
rupolu et al., 1999 where each proxy has a known capacity, the current
approach adds an additional degree of freedom by performing the dimen-
sioning of the proxies along with the object placement. Note that this
may lead to a significant improvement in performance because even an
optimal object placement policy will perform poorly if poor storage ca-
pacity allocation decisions have preceded (e.g., a large amount of storage
has been allocated to proxies that receive only a few requests, whereas
proxies that service a lot of requests have been allocated a limited storage
capacity).
The input to the problem consists of the following: a set of N distinct

unit-sized objects, O; an available storage capacity budget of S storage
units; a set ofm clients, J , each client j having a distinct request rate λj

and a distinct object demand distribution pj : O → [0, 1]; a tree graph T
with a node set of n nodes, V, and a distance function dj,v : J ×V → R+

associated with the jth leaf node and node v; this distance captures the
cost paid when client j retrieves an object from node v. Each client
is co-located with a leaf node and represents a local user population
(with size proportional to λj). A client issues a request for an object
and this request must be serviced by either an ancestor node that holds
the requested object or by the origin server. In any case, a client always
receives a given object from the same unique node. The storage capacity
allocation problem amounts to identifying a set A ⊆ A with no more
than S elements (node-object pairs) (v, k), v ∈ V, k ∈ O; A is the set
that contains all node-object pairs. A must be chosen so as to minimize



4

the following expression of cost:

min
A⊆A:|A|≤S

∑

j∈J

λj

∑

k∈O

pj(k) · d
min
j (k), (1)

where dmin
j (k) = min{dj,os, dj,v} : v ∈ ancestors(j), (v, k) ∈ A; dj,os is

the distance between the jth client (co-located with the jth leaf node)
and the origin server, while dj,v is the distance between the jth leaf
node and an ancestor node v. This cost models only “read” operations
from clients. Adding “write” (update) operations from content creators
is possible but as stated in Rabinovich, 1998 the frequency of writes
is negligible compared to the frequency of reads and, thus, it does not
seriously affect the placement decisions.
The output of the storage capacity allocation problem prescribes where

in the network to place storage, how much of it, and which objects to
store, so as to achieve a minimal cost (in terms of fetch distance) sub-
ject to a single storage constraint. This solution can be implemented
directly in a real world content distribution system that performs repli-
cation of content. Notice that the exact specification of objects for a
node also produces the storage capacity that must be allocated to this
node. Thus, an alternative strategy is to disregard the exact object
placement plan and just use the derived per-node capacity allocation
in order to dimension the nodes of a hierarchical cache that operates
under a dynamic caching/replacement algorithm (e.g., LRU, LFU and
their variants). Recently there has been concern that current hierarchi-
cal caches are not appropriately dimensioned Williamson, 2002 (e.g., too
much storage has been given to underutilized upper level caches). Thus,
the produced results can be utilized by systems that employ replication
as well as by those that employ caching.

3.2 Integer linear programming formulation of
an optimal solution

In this section the storage capacity allocation problem is modeled with
an integer linear program (ILP). Let Xj,v(k) denote a binary integer
variable which is equal to one if client j gets object k from node v
where v is an ancestor of client j (including the co-located jth leaf node,
excluding the origin server), and zero otherwise. Also let δv(k) denote
an auxiliary binary integer variable which is equal to one if object k is
placed at the ancestor node v, and zero otherwise. The two types of
variables are related as follows:

δv(k) =







1 if
∑

j∈leaves(v)

Xj,v(k) > 0

0 otherwise

(2)



Storage Capacity Allocation Algorithms for Hierarchical Content Distribution5

Equation (2) expresses the obvious requirement that an object must be
placed at a node if some clients are to access it from that node. The fol-
lowing ILP gives an optimal solution to the storage capacity allocation
problem.

Maximize:

z =
∑

j∈J

λj

∑

k∈O

pj(k) ·
∑

v∈ancestors(j)

(dj,os − dj,v) ·Xj,v(k) (3)

Subject to:
∑

v∈ancestors(j)

Xj,v(k) ≤ 1 j ∈ J , k ∈ O (4)

∑

j∈leaves(v)

Xj,v(k) ≤ U · δv(k) v ∈ V, k ∈ O, U ≥ |J |(5)

∑

v∈V

∑

k∈O

δv(k) ≤ S (6)

Xj,v(k), δv(k) binary decision variables v ∈ V, j ∈ J , k ∈ O

The maximization of (3) is equivalent to the minimization of (1) (the two
objectives differ by sign and a constant). Notice that only the Xj,v(k)’s
contribute to the objective function and the δv(k)’s do not.
In the sequel, the above mentioned ILP will only be employed for

the purpose of obtaining a bound on the performance of an optimal
storage capacity allocation. Such a bound is derived by considering the
LP-relaxation of the ILP (removing the requirement that the decision
variables assume integer values in the solution) which can be derived
rapidly by a linear programming solver.

3.3 Complexity of an optimal solution

The ILP formulation of Sect. 3.2 is generally NP-hard thus cannot be
used for practical purposes. In Laoutaris et al., 2004a we have shown
that the optimal solution to the problem discussed here can be obtained
in O(max{n4N,n2N2}). From a theoretical point of view, this result is
attractive as it involves small powers of the input. In practice, however,
such a result might be difficult to apply due to the quadratic dependence
of complexity on the number of distinct objects N , which may assume
very big values. For this reason, this work is primarily focused on the
development of efficient heuristic algorithms. The developed algorithms
are easy to implement, incur lower complexity, provide for a close ap-
proximation of the optimal in all our scenarios, and lend themselves to
incremental use (such need arising when the available storage changes
dynamically).



6

3.4 The Greedy heuristic

The Greedy heuristic begins with an empty hierarchy and enters a
loop placing one object in each iteration, thus, in exactly S iterations all
the storage capacity is allocated. Objects are placed in a globally greedy
fashion according to the gain that is produced with each placement and
past placement decisions are not subject to future placement decisions in
subsequent iterations. The gain of an object at a certain node depends
on the location of the node, the popularity of the object, the aggregate
request rate for this object from all clients on the leaves of the subtree
rooted at the selected node, and on prior iterations that have placed the
same object elsewhere in the tree. In the first iteration the algorithm
selects an node-object pair (v1, k1) that yields a maximum gain and
places k1 at v1. Subsequent decisions place an object k in node v when
the gainv(k) is maximum among all (v, k) pairs that have not been
selected yet; gainv(k) is defined as:

gainv(k) =
∑

j∈leaves(v)
k/∈path(j,v)

(dj,parv(k) − dj,v) · pj(k) · λj (7)

The parenthesized quantity in (7) is the distance reduction that is achieved
by client j when fetching object k from node v instead from node parv(k),
i.e., v’s closest parent that caches k; initially it is the origin server that
is the closest parent for all objects and all nodes but this changes as
additional copies get replicated elsewhere in the tree.
Greedy is presented in detail in Table 1. Lines 1-7 describe the ini-

tialization of the algorithm. For each node v the gain of placing object
k in v is computed and these values are inserted in a max-heap Cormen
et al., 2001 data structure g(v, ·) (n max-heaps, one for its node v); the
max-heaps are used so as to allow locating the most valuable object for
each node in O(1) (this does not require sorting the N objects). In the
S iterations of the algorithm the following three steps are executed: (1)
(v∗, k∗), the node-object pair that produces the maximum gain among
the set of node-object pairs that have not been placed, P, is selected,
removed from P, and the max-heap g(v∗, ·) is re-organized (lines 9-10);
(2) for each ancestor u of v∗ up to parv(k) that does not hold k∗, the
(potential) gain incurred if k∗ is selected for u at a later iteration is
updated and the corresponding max-heap is re-organized (lines 11-14) –
the update of the potential gain g(u, k∗) is necessary because the clients
belonging to the subtree below v∗ will not be fetching k∗ from u but
from v∗ or its subtree, thus effectively reducing its previous potential
gain at u; (3) for each descendant u of v∗ that does not hold k∗ and has
v∗ as closest parent with k∗, the potential gain incurred if k∗ is selected
for u at a later iteration is updated and the corresponding max-heap is
re-organized (lines 15-18) – the update is in this case necessary because
v∗ becomes now the closest ancestor with k∗ for some of its descendants,



Storage Capacity Allocation Algorithms for Hierarchical Content Distribution7

thus effectively reducing the previously computed gain for them that was
based on a more distant parent. Notice that the various affected max-
heaps need to be re-organized since one of their elements changes value;
this must be done so as to maintain the max-heap property (i.e., have
the maximum value accessible in O(1) from the root of the max-heap).
A straightforward evaluation of the gain function gainv(k) requires

O(n) complexity. Since there are n nodes, evaluating gainv(k) for a
given k for all nodes v would require O(n2) complexity, if each evaluation
were to be carried out independently. Such an independent operation
would involve however much overhead due to unnecessary repetitious
work. See that the evaluation of the gain function depends on knowing
the request rate that goes into the node and the closest parent that
stores the object. To obtain the request rate for object k at node v,
it suffices to know the corresponding rates at its children, and then
sum the rates that go into children that do not cache k; knowing these
rates, makes re-examining the entire subtree of v down to the leaf level
redundant. Similar observation can be made regarding the identification
of the closest parent. We make use of these observations in order to be
able to evaluate gainv(k) for a particular pair (v, k) in O(1). This allows
calculating the gain for placing k in each of the n nodes in O(n) instead
of O(n2). In Laoutaris et al., 2004b we show how this can be achieved by
first pre-computing information pertaining to request rates and closest
parents and then using it to calculate up to n gain function for a given
object in just O(n). Since the gain function is O(1) following the pre-
computation step (occurring once at the beginning of each iteration),
the complexity of each iteration of the Greedy algorithm depends on the
number of nodes that are involved in the iteration and the update of the
corresponding data structures.
The initial creation of the n max-heaps can be done in O(nN) (each

max-heap containing N values). At the beginning of each iteration there
is the pre-processing step to get ratev(k) and parv(k) in O(n) as ex-
plained in the appendix of Laoutaris et al., 2004b. The first step of each
iteration requires that the highest value in all n max-heaps be selected.
Finding the largest value in a max-heap requires O(1) time thus the
largest value in all n max-heaps can be identified in O(n) by a simple
linear search or in O(log n) if an additional max-heap is maintained, con-
taining the highest value from each of the n max-heaps g(v, ·) (the latter
might be unnecessary since n is typically rather small). The second step
requires in the worst case the update of L−1 ancestors that do not cache
k∗, L being the height of the tree. The function gainv(k

∗) is re-evaluated
for these nodes (each evaluation in O(1)) and the corresponding max-
heap is re-organized in order to maintain the heap property; this can be
done in O(logN) for a heap with N objects. The third step requires
updating the descendants of v∗ that are affected by storing k∗ at v∗; this
can be done in O(n logN). As a result the S iterations of the algorithm
require O(S · (n+L logN + n logN)), which simplifies to O(S · n logN)



8

1: for each v ∈ V
2: for each k ∈ O
3: g(v, k) = gainv(k)
4: insert g(v, k) in max-heap g(v, ·)
5: end for

6: end for

7: i = 1,P = {(v, k) : v ∈ V, k ∈ O}
8: while i ≤ S
9: select (v∗, k∗) ∈ P : g(v∗, k∗) ≥ g(v, k)∀(v, k) ∈ P
10: P = P − {(v∗, k∗)}, re-organize max-heap g(v∗, ·)
11: for each u ∈ path(v∗, parv∗(k

∗)) not caching k∗

12: g(u, k∗) = gainu(k∗)
13: re-organize max-heap g(u, ·)
14: end for

15: for each u ∈ subtree(v∗) not caching k∗

with paru(k∗) = v∗

16: g(u, k∗) = gainu(k∗)
17: re-organize max-heap g(u, ·)
18: end for

19: i = i+ 1
20: end while

Table 1. The Greedy algorithm.

by noting that L is at most n. Thus the overall complexity of Greedy
(initialization + iterations) is O(max{nN, Sn logN}) which is linear in
either N or S.
A salient feature of Greedy is that it can be executed incrementally,

i.e., if the available storage budget changes from S to S ′ (e.g., because
more storage has become available) and the user access patterns have not
changed significantly then no re-optimization from scratch is required;
it suffices to continue Greedy from its last iteration and add (or remove)
|S′ − S| objects. This can present a significant advantage when the
algorithm must be executed frequently for different S.

3.5 The improved Greedy heuristic (iGreedy)

In the previous Greedy algorithm one can make the following simple
observation. Since clients are located at the leaves of the tree, if an
object is placed at all children of a node u, then it is meaningless to
also store it in u since no request will reach it there. This situation
leads to the “waste” of storage units in “barren” objects. The Greedy
algorithm often introduces barren objects as a result of its greedy mode
of operation; an object is at some point placed at the father u while at
that time not all children store it but with subsequent iterations it is
also placed at all children thus rendering barren the copy at the father.
This situation is not an occasional one but it is repeated quite frequently,
resulting in wasting a substantial amount of the storage budget. The
situation may be resolved by executing an additional check when placing
an object k∗ at a node v∗. The improved algorithm checks all peer nodes



Storage Capacity Allocation Algorithms for Hierarchical Content Distribution9

of v∗ (at the same level, belonging to the same father) and if it finds that
all store k∗ then it also check whether their father u also stores it. In
such a case it removes it from u freeing one storage unit; the resulting
algorithm is called improved Greedy (iGreedy). The additional step of
iGreedy is given in Table 2 and is executed between lines 10 and 11 of
the basic Greedy algorithm.
iGreedy performs slightly more processing as compared to Greedy due

to the following two additional actions: (1) in each iteration a maximum
of Q peers need to be examined against k∗, Q denoting the maximum
node degree of the tree; (2) each eviction of a barren object increases
the number of iterations by one by freeing one storage unit which will
have to be allocated in a subsequent iteration. Searching the Q peers
does not affect the asymptotic per-iteration complexity of Greedy which
is O(n logN). The increase in the number of iteration has a somewhat
larger impact on the required processing. The following proposition es-
tablishes an exact upper bound on the number of iterations performed by
iGreedy (the proof is included in a longer version of this article Laoutaris
et al., 2004b).

Proposition 1 The maximum number of iterations performed by iGreedy
cannot exceed T (S) = 2 · S − 1.

Thus in the worst case iGreedy will perform 2 · S − 1 iterations, with
each iteration incurring the same complexity as with the basic Greedy.
This means that the asymptotic complexity of iGreedy is identical to
that of Greedy.

3.6 Numerical results under iGreedy

In this section the presented numerical results attempt to accomplish
the following: (1) demonstrate the effectiveness of iGreedy in approx-
imating the optimal performance; (2) present possible applications of
the developed algorithms. When not stated otherwise, the clients are
assumed to be sharing a common Zipf-like demand distribution pj over
O with a typical skewness parameter a = 0.9 and equal request rates
λj = 1, ∀j ∈ J . A Zipf-like distribution is a power-law dictating that
the ith most popular object is requested with a probability C/ia, where

C = (
∑N

j=1
1
ja )−1. The skewness parameter a captures the degree of

concentration of requests; values approaching 1 mean that few distinct
objects receive the vast majority of requests, while small values indicate
progressively uniform popularity. The Zipf-like distribution is generally
recognized as a good model for characterizing the popularity of various
types of measured workloads, such as web objects Breslau et al., 1999
and multimedia clips Chesire et al., 2001. The popularity of P2P Saroiu
et al., 2002 and CDN content has also been shown to be quite skewed



10

10.1: allpeers=1
10.2: for each v ∈ peers(v∗)
10.3: if k∗ not cached in v
10.4: allpeers = 0
10.5: break
10.6: end if

10.7: end for

10.8: if k∗ cached in u=father(v∗)
and allpeers=1

10.9: remove k∗ from u
and set i = i− 1

10.10:end if

Table 2. Additional step of the iGreedy algorithm. It is executed between lines 10 and 11 of the
basic Greedy algorithm.

towards the most popular documents, thus approaching a Zipf-like be-
havior.
As far as the topology of the experiments is concerned, regular Q-

ary trees are used in all examples. Regular Q-ary trees are commonly
used for the derivation of numerical results for algorithms operating on
trees Rodriguez et al., 2001. The entire set of parameters (demand
and topology) for each experiment is indicated in the title of the corre-
sponding graph. The distance function dj,v capture the number of hops
between client j (co-located with the jth leaf thus dj,j = 0) and node v.
The distance of the origin server is dj,os = L for an L level hierarchy.
Figure 1 shows the average cost per request for Greedy and iGreedy

(expressed in number of hops to reach an object). The performance of
the heuristic algorithms is plotted against the bound of the correspond-
ing optimal performance obtained from the LP-relaxation of the ILP of
Sect.3.2. The x-axis indicates the number of available storage units in
the hierarchy (S) with each storage unit being able to host a single ob-
ject. From the graph it may be seen that iGreedy is no more than 3%
away from the optimal while Greedy may deviate as much as 14% in the
presented results. The performance gap between the two owes to the
waste of a significant amount of storage in barren objects under Greedy.

Figure 2 illustrates the effect of the degree of homogeneity in the ac-
cess patterns of different clients. Two clients are non-homogeneous if
they employ different demand distributions. In the presented results
each client j references N objects; βN objects are common to all clients
while the remaining (1−β)N are only referenced by client j. A Zipf-like
distribution is created for each client by randomly choosing an object
from its reference set and assigning it the next higher value from a Zipf-
like distribution and then repeating the same action until all objects
have been assigned probabilities. The parameter β will be referred to as
the overlap degree; values of β approaching 1 mean that most objects
are common to all clients (although each client may request a common
object with a potentially different probability) while small values of β



Storage Capacity Allocation Algorithms for Hierarchical Content Distribution11

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e 

co
st

 (
nu

m
be

r 
of

 h
op

s)

S (storage capacity allocated)

N=10000, L=3, Q=2, a=0.9, lambda=ones

Greedy
iGreedy

LP relaxation

Figure 1. The average cost of Greedy,
iGreedy and LP-relaxation.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

to
ta

l l
ev

el
 c

ap
ac

ity

N=10000, S=10000, L=3, Q=4, a=0.7, lambda=ones

level-1
level-2
level-3

P
S
frag

rep
lacem

en
ts

β (overlap degree)

Figure 2. The effect of non-homogeneous
demand on the per-level allocation of storage
under iGreedy.

mean that each client references a potentially different set of objects.
Figure 2 shows that the root level (level-3) of a hierarchical system is
assigned more storage when there is a substantial amount of overlap
in client reference patterns. Otherwise most of the storage goes to the
lower levels. This behavior is explained as follows. Storage is effectively
utilized at the upper levels when each placed object receives an aggre-
gate request stream from several clients. Such an aggregation may only
exist when a substantial amount of objects are common to all clients;
otherwise it is better to allocate all the storage to the lower levels – thus
sacrificing the (ineffective) aggregation effect – and instead reduce the
distance between clients and objects.

4. CONCLUSIONS

In this paper the storage capacity allocation problem has been con-
sidered and a linear time efficient heuristic algorithm, iGreedy, has been
developed for its solution. iGreedy has been shown to provide for a good
approximation of the optimal by means of numerical comparison against
the bound of the optimal (obtained using LP-relaxations).

References

Bartal, Y. (1996). On approximating arbitrary metrics by tree metrics. In Proceedings
of the 37th Annual IEEE Symposium on Foundations of Computer Science (IEEE
FOCS).

Breslau, Lee, Cao, Pei, Fan, Li, Philips, Graham, and Shenker, Scott (1999). Web
caching and Zipf-like distributions: Evidence and implications. In Proceedings of
the Conference on Computer Communications (IEEE Infocom), New York.

Cao, Pei and Irani, Sandy (1997). Cost-aware WWW proxy caching algorithms. In
Proceedings of the USENIX Symposium on Internet Technologies and Systems,
pages 193–206.



12

Chesire, Maureen, Wolman, Alec, Voelker, Geoffrey M., and Levy, Henry M. (2001).
Measurement and analysis of a streaming-media workload. In Proceedings of USITS.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Stein, Clifford
(2001). Introduction to Algorithms, 2nd Edition. MIT Press, Cambridge, Mas-
sachusetts.

Fan, Li, Cao, Pei, Almeida, Jussara, and Broder, Andrei Z. (2000). Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on Net-
working, 8(3):281–293.

Gadde, Syam, Chase, Jeff, and Rabinovich, Michael (2002). Web caching and content
distribution: A view from the interior. Computer Communications, 24(2).

Garces-Erice, Luis, Biersack, Ernst W., Ross, Keith W., Felber, Pascal A., and Urvoy-
Keller, Guillaume (2003). Hierarchical P2P systems. In Proceedings of ACM/IFIP
International Conference on Parallel and Distributed Computing (Euro-Par), Kla-
genfurt, Austria.

Kangasharju, Jussi, Roberts, James, and Ross, Keith W. (2002). Object replication
strategies in content distribution networks. Computer Communications, 25(4):376–
383.

Kelly, T. and Reeves, D. (2001). Optimal web cache sizing: scalable methods for exact
solutions. Computer Communications, 24(2):163–173.

Korupolu, Madhukar R., Plaxton, C. Greg, and Rajaraman, Rajmohan (1999). Place-
ment algorithms for hierarchical cooperative caching. In Proceedings of the 10th
Annual Symposium on Discrete Algorithms (ACM-SIAM SODA), pages 586 – 595.

Krishnan, P., Raz, Danny, and Shavit, Yuval (2000). The cache location problem.
IEEE/ACM Transactions on Networking, 8(5):568–581.

Laoutaris, Nikolaos, Zissimopoulos, Vassilios, and Stavrakakis, Ioannis (2004a). Joint
object placement and node dimensioning for internet content distribution. Infor-
mation Processing Letters, 89(6):273–279.

Laoutaris, Nikolaos, Zissimopoulos, Vassilios, and Stavrakakis, Ioannis (2004b). On
the optimization of storage capacity allocation for content distribution. Computer
Networks. [submitted].

Li, Bo, Golin, Mordecai J., Italiano, Giuseppe F., Deng, Xin, and Sohraby, Kazem
(1999). On the optimal placement of web proxies in the internet. In Proceedings of
the Conference on Computer Communications (IEEE Infocom), New York.

Pan, Jianping, Hou, Y. Thomas, and Li, Bo (2003). An overview DNS-based server
selection in content distribution networks. Computer Networks, 43(6).

Rabinovich, Michael (1998). Issues in web content replication. Data Engineering Bul-
letin (invited paper), 21(4).

Ranganathan, K. and Foster, I. (2001). Identifying dynamic replication strategies for
a high performance data grid. In Proceedings of the International Workshop on
Grid Computing, Denver, Colorado.

Rodriguez, Pablo, Spanner, Christian, and Biersack, Ernst W. (2001). Analysis of web
caching architectures: Hierarchical and distributed caching. IEEE/ACM Transac-
tions on Networking, 9(4).

Saroiu, Stefan, Gummadi, Krishna P., Dunn, Richard J., Gribble, Steven D., and Levy,
Henry M. (2002). An analysis of internet content delivery systems. In Proceedings
of the 5th Symposium on Operating Systems Design and Implementation (OSDI
2002).

Wessels, Duane and Claffy, K. (1998). ICP and the Squid web cache. IEEE Journal
on Selected Areas in Communications, 16(3).

Williamson, Carey (2002). On filter effects in web caching hierarchies. ACM Trans-
actions on Internet Technology, 2(1).


