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Abstract

The addition of storage capacity in network nodes for the caching or replication of popular

data objects results in reduced end-user delay, reduced network traffic, and improved scalability.

The problem of allocating an available storage budget to the nodes of a hierarchical content

distribution system is formulated; optimal algorithms, as well as fast/efficient heuristics, are

developed for its solution. An innovative aspect of the presented approach is that it combines all

relevant subproblems, concerning node locations, node sizes, and object placement, and solves

them jointly in a single optimization step. The developed algorithms may be utilized in content

distribution networks that employ either replication or caching/replacement. In addition to

reducing the average fetch distance for the requested content, they also cater to load balancing

and workload constraints on a given node. Strictly hierarchical, as well as hierarchical with

peering, request routing models are considered.

1 Introduction

Recent efforts to improve the service that is offered to the ever increasing internet population strive

to supplement the traditional bandwidth-centric internet with a rather non-traditional network re-

source – storage. This trend is evident in a number of new technologies and service paradigms.

End-users employ local caches at their Web browsers or participate in peer-to-peer networks to

share storage and content with other users. Organizations install dedicated proxy servers to cache

popular documents that are shared among their local populations. Clusters of networks cooper-

ate by allowing their proxy servers to communicate, forming large hierarchical caches such as the

NLANR cache. Similar steps are taken regarding content provision/distribution. Popular web-sites

employ reverse proxies for load balancing purposes or maintain multiple mirrors in geographically

dispersed locations. Content Distribution Networks (CDNs) operate large numbers of servers that

“push” the content of their subscribed clients close to the end-users. In all aforementioned cases,

storage capacity (or memory) is employed to bring valuable information in close proximity to the

end-users. The benefits of this tactic are quite diverse: end-users experience smaller delays, the

load imposed on the network and on web-servers is reduced, the scalability of the entire content

provisioning/distribution chain in the internet is improved.

∗This work and its dissemination efforts have been supported in part by the IST Program of the European Union

under contract IST-2001-32686 (Broadway). The authors are with the Department of Informatics and Telecommunica-

tions, University of Athens, 15784 Athens, Greece (email: laoutaris@di.uoa.gr; vassilis@di.uoa.gr; istavrak@di.uoa.gr).
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In most cases the engagement of the memory resource has been done in an ad hoc manner.

Organizations select the location and capacity of their dedicated proxy servers with little or no

coordination with other organizations, even in the case that their proxies connect to the same

hierarchical cache. Similarly, web-servers are replicated based on geographical criteria alone (e.g.,

US, Europe, Asia site) or on crude statistics (total number of requests coming from a certain

network/region). The uncoordinated deployment of memory can seriously impair its effectiveness.

This paper attempts to answer the question of how to allocate a given storage capacity budget

to the nodes of a generic hierarchical content distribution system. Such a system can materialize

as any one of the following: a hierarchical cache comprising cooperating proxies from different

organizations; a content distribution network offering hosting services or leasing storage to others

that may implement hosting services on top of it; a dedicated electronic media system that has

a hierarchical structure (e.g., video on demand distribution). The dimensioning of web caches

and content distribution nodes has received a rather limited attention as compared to other related

issues such as replacement policies [3, 9], proxy placement algorithms [20, 22, 27, 8], object placement

algorithms [19, 16], and request redirection mechanisms [25]. In fact, the only published paper on

the dimensioning of web proxies that we are aware of is due to Kelly and Reeves [18] whereas the

majority of related works in the field have disregarded storage dimensioning issues by assuming the

existence of infinite storage capacity [30, 10].

The limited attention paid to this problem probably owes to the fact that the rapidly decreasing

cost of storage combined with the small size of typical web objects (html pages, images), make in-

finitely large caches for web objects realizable in practice, thus potentially obliterating the need

for storage allocation algorithms. Although we support that storage allocation algorithms are

marginally useful when considering typical web objects – which have a median size of just 4KB

– we feel that recent changes in the internet traffic mix prompt for the development of such algo-

rithms. A recent large scale characterization of http traffic from Saroiu et al. [31] has shown that

more than 75% of internet traffic is generated by P2P applications that employ the http protocol,

such as KaZaa and Gnutella. The median object size of these P2P systems is 4MB which represents

a thousand-fold increase over the 4KB median size of typical web objects. Furthermore, the access

to these objects is highly repetitive and skewed towards the most popular ones thus making them

highly amenable to caching as demonstrated by the authors of [31].

Similar is the case with stored audio and video files distributed by either standard web servers or

dedicated video on demand (VoD) servers. Such object are usually short videos (advertisements or

news) and amount to around 1 MB [5]. Although a 1997 study [13] found that such traffic represents

a rather limited percentage of the total aggregate traffic in the internet, the percentage was shown

to have been increased significantly by a follow-up measurement study just a few years later [38].

This trend seems to have persisted, as recent studies (2001) have shown that stored video and audio

files have by now become almost pervasive [5].

Such objects can exhaust the capacity of a cache or a CDN node, even under a low price of

storage. It probably is just a matter of time before caching systems move on to accommodate P2P

traffic as well as video traffic (either over http or dedicated protocols used by VoD servers) to reap

the same benefits as with web objects, for the new class of applications that dominate the traffic.

This has already been a reality in the case of CDNs and stored video files. Given the traffic /

storage requirements of such content it is highly doubtful that the “infinitely large cache” will be
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realizable, thus storage allocation algorithms such as the ones developed here might prove useful.

Finally, another application of storage capacity allocation algorithms would be a wireless caching

system, possibly employing some hierarchical structure (e.g., employing cluster head nodes which

are given increased capacity as compared to ordinary nodes), where storage capacity would be a

scarce resource even under typical web content.

2 Our approach towards storage capacity allocation

The current work addresses the problem of allocating a storage resource differently than previous

attempts, taking into consideration related resource allocation subproblems that affect it. Previous

attempts have broken the problem of designing a content distribution network into a number of

subproblems consisted of: (1) deciding where to install proxies (and possibly their number too);

(2) deciding how much storage capacity to allocate to each installed proxy; (3) deciding on which

objects to place in each proxy. Solving each one of the problems independently (by assuming a given

solution for the others) is bound to lead to a suboptimal solution, due to the dependencies among

them. For instance, a different storage allocation may be obtained by assuming different object

placement policies and vice versa. The dependencies among the subproblems are not neglected

under the current approach and, thus, an optimal solution for all the subproblems is concurrently

derived, guaranteeing optimal overall performance.

Our methodology can be used for the optimization of existing systems (e.g. to re-organize more

effectively the allocation of storage in a hierarchical cache) but hopefully will be the approach to be

followed in developing future systems. Indeed, if the provisioning of memory continues to materialize

as it has in the recent past, then in the very near future memory pools (CDN nodes, or local proxy

servers) will be in place in most systems that constitute the internet [12]. Building adaptive overlay

content distribution systems on top of the underlaying memory pools can become a significant

alternative to the static provisioning of memory as materialized with the current replication schemes

that employ very large granules of memory (e.g., entire mirror site). Should memory pools exist

and be marketed, content creators (or intermediaries) can build distribution systems on them by

leasing storage capacity dynamically. The main advantage of such a scenario is that memory will

be utilized more efficiently, and at a finer granularity, as each potential user or application will be

able to use it on-demand and release it when no longer necessary making it available to other users

that may request and pay for it (protocols and e-currencies for such resource trade paradigms have

been proposed recently [34]). Re-organizing the memory is not possible with the current instalment

of dedicated mirrors and proxies in fixed locations and with fixed capacities. It is believed that the

ability to reorganize the existing resources will be central to future intelligent information systems

(see IBM’s autonomic computing initiative [15]). In such environments, the proposed algorithms

would be useful to regulate the utilization of storage in each memory pool, and do so fast enough

that they may execute as frequently as required to address sudden changes of demand (transient

“hot spot” demand).

The current work makes the following distinct contributions towards the realization of the above

mentioned objectives:

• Introduces the idea of provisioning memory using a very small granule as an alternative

to/extension of known paradigms (mirror placement, proxy placement) and models the prob-
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Figure 1: A three level hierarchical content distribution overlay built upon of a set of client nodes using proxim-

ity/administration based clustering.

lem with an integer linear program. The derived solution provides for a joint optimization of

storage capacity allocation and object placement and can be exploited in systems that perform

replication, as well as in those that perform caching.

• Develops fast efficient heuristic algorithms that approximate closely the optimal performance

in various common scenarios but can execute very fast, as required by self organizing systems

(and as opposed to planning/dimentioning processes that can employ slow algorithms). More-

over these algorithms may be executed incrementally when the available storage changes, thus

obliterating the need for re-optimization from scratch.

• Supplements the algorithms for the optimization of storage capacity allocation with the ability

to take into consideration load balancing and load constraints on the maximum demand that

may be serviced by a node. Load balancing is an important issue in its own right [6, 37] and

is jointly addressed here. The presented techniques may be used to avoid overloading some

nodes while at the same time underutilizing others, as done by the well known “filtering”

effect [37] in hierarchical caches. The filtering effect is addressed by allocating the storage, as

well as the most popular objects, more evenly to the nodes of the hierarchy.

• Models and studies the effect of request peering, i.e., of the ability to forward request to peer

nodes at the same level of the hierarchy, as opposed to pure hierarchical systems that only

forward requests to upstream ancestor nodes.

The work focuses on hierarchical topologies. There are several reasons for this: (1) many infor-

mation distribution systems have an inherent hierarchical structure owing to administrative and/or

scalability reasons (examples include hierarchical web caching [36], hierarchical data storage in Grid

computing [29], hierarchical peer-to-peer networks [11]); (2) although the internet is not a perfect

tree as it contains multiple routes and cycles, parts of it are trees (due to the actual physical struc-

ture, or as a consequence of routing rules) and what’s more, overlay networks on top of it have no

reason not to take the form of a tree if this is called for; (3) it is known that once good algorithms

exist for a tree they may be applied appropriately to handle general graph topologies [1]. Figure 1

gives an example of how can a hierarchical content distribution overlay network be built upon a flat

network of clients by using proximity/administration based clustering. Client nodes are depicted

with solid black squares while storage nodes of the overlay content distribution infrastructure are de-

picted with empty squares. The left figure of Fig. 1 shows a possible proximity/administration-based

clustering on the physical topology, and the right one the resulting three-level content distribution

overlay (institution, ISP, and national levels). Such an hierarchical overlay may benefit from the

algorithms developed here, despite the fact that the underlaying physical topology is not a tree.
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The remainder of the article is organized as follows. Section 3 formally defines the storage

capacity allocation problem and presents exact and heuristic solutions for it; the same section

contains a number of numerical results. In Section 4 the algorithms (exact and heuristic) are

modified in order to be able to handle load balancing and request peering. A second set of numerical

results, pertaining to the modified algorithms, is included. Finally, Sect. 5 concludes the article.

3 The Storage Capacity Allocation Problem

3.1 Problem statement

The storage capacity allocation problem is defined here as that of the distribution of an available

storage capacity budget to the nodes of a hierarchical content distribution system, given known

access costs and client demand patterns. Since users request specific objects and not abstract

storage units, a solution to the storage capacity allocation problem must include a solution to a

related object placement problem. The coupling of the two makes this a challenging problem.

Related works have overcome this difficulty by either provisioning entire web-server replicas [22], or

by assuming that the hit rate of each installed proxy is a priori known [14]. In the first case each node

holds all the content thus no object placement problem needs to be solved, nor there is cooperation

between nodes (as in the case that nodes with potentially different content cooperate to handle local

misses). This reduces to the well studied k-median problem in a tree graph [17, 4] for which exact

solutions exist. The second case (known hit ratio) also leads to a k-median problem where only

the locations for the proxies are required; the object set of each proxy is implicitly modeled by the

known hit ratio. This solution, however, is an approximate one since the exact hit ratio of a proxy

depends on several parameters including the actual content of the proxy, the demand, the existence

of other proxies in the path to the clients and, thus, the use of known “typical” values for the hit

ratio may introduce a significant error factor.

The algorithms proposed here allocate storage units that may contain any object from a set

of distinct objects (thus this is a multi-commodity problem as opposed to the single commodity

k-median) and employ objective functions that are representative of the exact content of each node.

Additionally, it is not assumed that a node can hold the entire set of available objects; in fact,

this set need not contain objects from a single web-server, but it potentially includes object from

different web-servers outside the hierarchy. As compared to works that study the object placement

problem [16, 19] where each proxy has a known capacity, the current approach adds an additional

degree of freedom by performing the dimensioning of the proxies along with the object placement.

Note that this may lead to a significant improvement in performance because even an optimal object

placement policy will perform poorly if poor storage capacity allocation decisions have preceded (e.g.,

a large amount of storage has been allocated to proxies that receive only a few requests, whereas

proxies that service a lot of requests have been allocated a limited storage capacity).

The input to the problem consists of the following: a set of N distinct unit-sized objects1, O;

an available storage capacity budget of S storage units; a set of m clients, J , each client j having

a distinct request rate λj and a distinct object demand distribution pj : O → [0, 1]; a tree graph T

with a node set of n nodes, V, and a distance function dj,v : J × V → R+ associated with the jth

1The unit-size assumption is merely to simplify the presentation. The proposed heuristic algorithms can be transformed

to handle non-unit sized objects.
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leaf node and node v; this distance captures the cost paid when client j retrieves an object from

node v. Each client is co-located with a leaf node and represents a local user population (with size

proportional to λj). A client issues a request for an object and this request must be serviced by

either an ancestor node that holds the requested object or by the origin server. In any case, a client

always receives a given object from the same unique node. The storage capacity allocation problem

amounts to identifying a set A ⊆ A with no more than S elements (node-object pairs) (v, k), v ∈ V,

k ∈ O; A is the set that contains all node-object pairs. A must be chosen so as to minimize the

following expression of cost:

min
A⊆A:|A|≤S

∑

j∈J

λj

∑

k∈O

pj(k)·d
min
j (k) where dmin

j (k) = min{dj,os, dj,v} : v ∈ ancestors(j), (v, k) ∈ A

(1)

where dj,os is the distance between the jth client (co-located with the jth leaf node) and the origin

server, while dj,v is the distance between the jth leaf node and an ancestor node v. This cost models

only “read” operations from clients. Adding “write” (update) operations from content creators is

possible but as stated in [28] the frequency of writes is negligible compared to the frequency of reads

and, thus, it does not seriously affect the placement decisions.

The output of the storage capacity allocation problem prescribes where in the network to place

storage, how much of it, and which objects to store, so as to achieve a minimal cost (in terms of

fetch distance) subject to a single storage constraint. This solution can be implemented directly

in a real world content distribution system that performs replication of content. Notice that the

exact specification of objects for a node also produces the storage capacity that must be allocated

to this node. Thus, an alternative strategy is to disregard the exact object placement plan and

just use the derived per-node capacity allocation in order to dimension the nodes of a hierarchical

cache that operates under a dynamic caching/replacement algorithm (e.g., LRU, LFU and their

variants). Recently there has been concern that current hierarchical caches are not appropriately

dimensioned [37] (e.g., too much storage has been given to underutilized upper level caches). Thus,

the produced results can be utilized by systems that employ replication as well as by those that

employ caching. Replication and caching offer different advantages and are considered to be com-

plementary technologies not rivals [28].

3.2 Integer linear programming formulation of an optimal solution

In this section the storage capacity allocation problem is modeled with an integer linear program

(ILP). Let Xj,v(k) denote a binary integer variable which is equal to one if client j gets object k

from node v where v is an ancestor of client j (including the co-located jth leaf node, excluding the

origin server), and zero otherwise. Also let δv(k) denote an auxiliary binary integer variable which

is equal to one if object k is placed at the ancestor node v, and zero otherwise. The two types of

variables are related as follows:

δv(k) =











1 if
∑

j∈leaves(v)

Xj,v(k) > 0

0 otherwise

(2)

Equation (2) expresses the obvious requirement that an object must be placed at a node if some

clients are to access it from that node. The following ILP gives an optimal solution to the storage
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capacity allocation problem.

Maximize:

z =
∑

j∈J

λj

∑

k∈O

pj(k) ·
∑

v∈ancestors(j)

(dj,os − dj,v) ·Xj,v(k) (3)

Subject to:

∑

v∈ancestors(j)

Xj,v(k) ≤ 1 j ∈ J , k ∈ O (4)

∑

j∈leaves(v)

Xj,v(k) ≤ U · δv(k) v ∈ V, k ∈ O, U ≥ |J | (5)

∑

v∈V

∑

k∈O

δv(k) ≤ S (6)

Xj,v(k), δv(k) binary decision variables v ∈ V, j ∈ J , k ∈ O

The maximization of (3) is equivalent to the minimization of (1) (the two objectives differ by sign

and a constant). Notice that only the Xj,v(k)’s contribute to the objective function and the δv(k)’s

do not.

In the sequel, the above mentioned ILP will only be employed for the purpose of obtaining

a bound on the performance of an optimal storage capacity allocation. Such a bound is derived

by considering the LP-relaxation of the ILP (removing the requirement that the decision variables

assume integer values in the solution) which can be derived rapidly by a linear programming solver.

3.3 Complexity of an optimal solution

The ILP formulation of Sect. 3.2 is generally NP-hard thus cannot be used for practical purposes.

One of our recent findings is that the aforementioned storage capacity allocation problem can be

modeled as a special type of problem that belongs to a family of multicommodity resource allo-

cation problems that generalize the single-commodity k-median problem [17, 4]. We have shown

that these generalized problems can be solved in polynomial time for the case of tree graphs [21]

and have described a two-step algorithm that reaches an optimal solution to the multi-commodity

resource allocation problem (including the one presented here) in O(max{n4N,n2N2}). The solu-

tion is sought by first solving a series of k-medians for the different objects using known dynamic

programming techniques [35, 33] and then combining the solutions of the various k-medians in order

to solve a packing problem that is a modified version of the 0/1 Knapsack problem [26], using again

dynamic programming.

From a theoretical point of view, the O(max{n4N,n2N2}) result is rather attractive as it involves

small powers of the input. In practice, however, such a result might be difficult to apply. The

main complication owes to the N 2 term indicating a quadratic dependence of complexity on the

number of distinct objects N . In real applications N may assume very large values (as it represents

the number of requested distinct web pages or P2P files), typically much larger than the values

assumed by n (number of nodes in the content distribution infrastructure). Thus, the common case

will be a complexity of O(n2N2) with n ranging from tens to hundreds and rarely few thousands

(large CDNs of Akamai’s size) and N in the order of multiple thousands to millions (depending

on the exact application). Quadratic complexities on such large inputs are generally considered
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to be difficult to handle in practice [19], especially when there is a requirement for frequent re-

optimizations. Additionally, the aforementioned optimal algorithm cannot jointly consider load

balancing (Sect. 4.1) and request peering (Sect. 4.2). For these cases no exact polynomial algorithm

is known.

For all these reasons, this work is primarily focused on the development of efficient heuristic

algorithms. We employ natural greedy heuristics to address the basic problem and its variations

(considering load balancing and request peering). The developed algorithms are easy to implement,

incur lower complexity, provide for a close approximation of the optimal in all our scenarios, and lend

themselves to incremental use (such need arising when the available storage changes dynamically).

3.4 The Greedy heuristic

The Greedy heuristic begins with an empty hierarchy and enters a loop placing one object in each

iteration, thus, in exactly S iterations all the storage capacity is allocated. Objects are placed

in a globally greedy fashion according to the gain that is produced with each placement and past

placement decisions are not subject to future placement decisions in subsequent iterations. The gain

of an object at a certain node depends on the location of the node, the popularity of the object,

the aggregate request rate for this object from all clients on the leaves of the subtree rooted at the

selected node, and on prior iterations that have placed the same object elsewhere in the tree. In

the first iteration the algorithm selects an node-object pair (v1, k1) that yields a maximum gain and

places k1 at v1. Subsequent decisions place an object k in node v when the gainv(k) is maximum

among all (v, k) pairs that have not been selected yet; gainv(k) is defined as:

gainv(k) =
∑

j∈leaves(v)
k/∈path(j,v)

(dj,parv(k) − dj,v) · pj(k) · λj (7)

The parenthesized quantity in (7) is the distance reduction that is achieved by client j when fetching

object k from node v instead from node parv(k), i.e., v’s closest parent that caches k; initially it is

the origin server that is the closest parent for all objects and all nodes but this changes as additional

copies get replicated elsewhere in the tree.

Greedy is presented in detail in Table 1. Lines 1-7 describe the initialization of the algorithm.

For each node v the gain of placing object k in v is computed and these values are inserted in a

max-heap [7] data structure g(v, ·) (n max-heaps, one for its node v); the max-heaps are used so as

to allow locating the most valuable object for each node in O(1) (this does not require sorting the

N objects). In the S iterations of the algorithm the following three steps are executed: (1) (v∗, k∗),

the node-object pair that produces the maximum gain among the set of node-object pairs that have

not been placed, P, is selected, removed from P, and the max-heap g(v∗, ·) is re-organized (lines

9-10); (2) for each ancestor u of v∗ up to parv(k) that does not hold k
∗, the (potential) gain incurred

if k∗ is selected for u at a later iteration is updated and the corresponding max-heap is re-organized

(lines 11-14) – the update of the potential gain g(u, k∗) is necessary because the clients belonging

to the subtree below v∗ will not be fetching k∗ from u but from v∗ or its subtree, thus effectively

reducing its previous potential gain at u; (3) for each descendant u of v∗ that does not hold k∗

and has v∗ as closest parent with k∗, the potential gain incurred if k∗ is selected for u at a later

iteration is updated and the corresponding max-heap is re-organized (lines 15-18) – the update is in

this case necessary because v∗ becomes now the closest ancestor with k∗ for some of its descendants,
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Figure 2: Illustration of the two groups of nodes that are

affected from the placement of object k∗ at node v∗ under

iGreedy: (1) descendants that do not store k∗ and have v∗ as

closest parent with k∗ (laying inside the wave-filled area); (2)

ancestors that do not store k∗, up to the closest parent with

k∗ (laying on the thick line that connects v∗ with parv∗ (k
∗)).

Notice that nodes in the solid gray areas are not affected as

they do not have v∗ as closest parent with k∗.
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Figure 3: Illustration of the two groups of nodes that are

affected from the placement of object k∗ at node v∗ under

iGreedyP: (1) peers of v∗ as well as all of their descendants

and their peers that do not store k∗ and have v∗ as closest

parent with k∗ (horizontal wave); (2) ancestors that do not

store k∗ and their peers, up to the closest parent with k∗

(verical wave). Nodes in the solid gray areas are not affected

as they do not have v∗ as closest parent with k∗.

thus effectively reducing the previously computed gain for them that was based on a more distant

parent. The two groups of nodes that are affected from the placement of object k∗ at node v∗ are

illustrated in Fig. 2. Notice that the various affected max-heaps need to be re-organized since one

of their elements changes value; this must be done so as to maintain the max-heap property (i.e.,

have the maximum value accessible in O(1) from the root of the max-heap).

A straightforward evaluation of the gain function gainv(k) requires O(n) complexity. Since

there are n nodes, evaluating gainv(k) for a given k for all nodes v would require O(n
2) complexity,

if each evaluation were to be carried out independently. Such an independent operation would

involve however much overhead due to unnecessary repetitious work. See that the evaluation of

the gain function depends on knowing the request rate that goes into the node and the closest

parent that stores the object. To obtain the request rate for object k at node v, it suffices to know

the corresponding rates at its children, and then sum the rates that go into children that do not

cache k; knowing these rates, makes re-examining the entire subtree of v down to the leaf level

redundant. Similar observation can be made regarding the identification of the closest parent. We

make use of these observations in order to be able to evaluate gainv(k) for a particular pair (v, k)

in O(1). This allows calculating the gain for placing k in each of the n nodes in O(n) instead

of O(n2). In Appendix A we show how this can be achieved by first pre-computing information

pertaining to request rates and closest parents and then using it to calculate up to n gain function

for a given object in just O(n). Since the gain function is O(1) following the pre-computation step

(occurring once at the beginning of each iteration), the complexity of each iteration of the Greedy

algorithm depends on the number of nodes that are involved in the iteration and the update of the

corresponding data structures.

The initial creation of the n max-heaps can be done in O(nN) (each max-heap containing N

values). At the beginning of each iteration there is the pre-processing step to get ratev(k) and

parv(k) in O(n) as explained in Appendix A. The first step of each iteration requires that the

highest value in all n max-heaps be selected. Finding the largest value in a max-heap requires O(1)

time thus the largest value in all n max-heaps can be identified in O(n) by a simple linear search or

in O(log n) if an additional max-heap is maintained, containing the highest value from each of the
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1: for each v ∈ V

2: for each k ∈ O

3: g(v, k) = gainv(k)

4: insert g(v, k) in max-heap g(v, ·)

5: end for

6: end for

7: i = 1,P = {(v, k) : v ∈ V, k ∈ O}

8: while i ≤ S

9: select (v∗, k∗) ∈ P : g(v∗, k∗) ≥ g(v, k)∀(v, k) ∈ P

10: P = P − {(v∗, k∗)}, re-organize max-heap g(v∗, ·)

11: for each u ∈ path(v∗, parv
∗(k∗)) not caching k∗

12: g(u, k∗) = gainu(k∗)

13: re-organize max-heap g(u, ·)

14: end for

15: for each u ∈ subtree(v∗) not caching k∗

with paru(k∗) = v∗

16: g(u, k∗) = gainu(k∗)

17: re-organize max-heap g(u, ·)

18: end for

19: i = i+ 1

20: end while

Table 1: The Greedy algorithm.

10.1: allpeers=1

10.2: for each v ∈ peers(v∗)

10.3: if k∗ not cached in v

10.4: allpeers = 0

10.5: break

10.6: end if

10.7: end for

10.8: if k∗ cached in u=father(v∗)

and allpeers=1

10.9: remove k∗ from u

and set i = i− 1

10.10:end if

Table 2: Additional step of the iGreedy algorithm. It

is executed between lines 10 and 11 of the basic Greedy

algorithm.

n max-heaps g(v, ·) (the latter might be unnecessary since n is typically rather small). The second

step requires in the worst case the update of L − 1 ancestors that do not cache k∗, L being the

height of the tree. The function gainv(k
∗) is re-evaluated for these nodes (each evaluation in O(1))

and the corresponding max-heap is re-organized in order to maintain the heap property; this can

be done in O(logN) for a heap with N objects. The third step requires updating the descendants

of v∗ that are affected by storing k∗ at v∗; this can be done in O(n logN). As a result the S

iterations of the algorithm require O(S · (n+L logN + n logN)), which simplifies to O(S · n logN)

by noting that L is at most n. Thus the overall complexity of Greedy (initialization + iterations)

is O(max{nN, Sn logN}) which is linear in either N or S.

A salient feature of Greedy is that it can be executed incrementally, i.e., if the available storage

budget changes from S to S′ (e.g., because more storage has become available) and the user access

patterns have not changed significantly then no re-optimization from scratch is required; it suffices

to continue Greedy from its last iteration and add (or remove) |S ′ − S| objects. This can present a

significant advantage when the algorithm must be executed frequently for different S.

3.5 The improved Greedy heuristic (iGreedy)

In the previous Greedy algorithm one can make the following simple observation. Since clients

are located at the leaves of the tree, if an object is placed at all children of a node u, then it is

meaningless to also store it in u since no request will reach it there. This situation leads to the

“waste” of storage units in “barren” objects. The Greedy algorithm often introduces barren objects

as a result of its greedy mode of operation; an object is at some point placed at the father u while at

that time not all children store it but with subsequent iterations it is also placed at all children thus

rendering barren the copy at the father. This situation is not an occasional one but it is repeated

10



quite frequently, resulting in wasting a substantial amount of the storage budget. The situation

may be resolved by executing an additional check when placing an object k∗ at a node v∗. The

improved algorithm checks all peer nodes of v∗ (at the same level, belonging to the same father)

and if it finds that all store k∗ then it also check whether their father u also stores it. In such a

case it removes it from u freeing one storage unit; the resulting algorithm is called improved Greedy

(iGreedy). The additional step of iGreedy is given in Table 2 and is executed between lines 10 and

11 of the basic Greedy algorithm.

iGreedy performs slightly more processing as compared to Greedy due to the following two

additional actions: (1) in each iteration a maximum of Q peers need to be examined against k∗,

Q denoting the maximum node degree of the tree; (2) each eviction of a barren object increases

the number of iterations by one by freeing one storage unit which will have to be allocated in a

subsequent iteration. Searching the Q peers does not affect the asymptotic per-iteration complexity

of Greedy which is O(n logN). The increase in the number of iteration has a somewhat larger

impact on the required processing. The following proposition establishes an exact upper bound on

the number of iterations performed by iGreedy.

Proposition 1 The maximum number of iterations performed by iGreedy cannot exceed T (S) =

2 · S − 1.

Proof : Note that in the worst case an additional iteration may be introduced after at least q+1 new

objects have been placed, q denoting the minimum node degree in the hierarchy. This corresponds

to the case that an object is placed at the node with the minimal outdegree and at all its children,

thus, freeing the barren object at the father which in turn increases the number of iterations by

one. Let T (S) denote the maximum number of iterations that may be performed when iGreedy

starts with S available storage units. Using the previous observation it is easy to see that: T (S) =

q+1+T (S− (q+1)+1) = q+1+T (S− q). In the worst case that q = 1 the recursive relationship

becomes: T (S) = 2 + T (S − 1), with T (1) = 1, which leads to T (S) = 2 · S − 1. ¤

Thus in the worst case iGreedy will perform 2 ·S−1 iterations, with each iteration incurring the

same complexity as with the basic Greedy. This means that the asymptotic complexity of iGreedy

is identical to that of Greedy.

3.6 Numerical results under iGreedy

In this section the presented numerical results attempt to accomplish the following: (1) demon-

strate the effectiveness of iGreedy in approximating the optimal performance; (2) present possible

applications of the developed algorithms. When not stated otherwise, the clients are assumed to

be sharing a common Zipf-like demand distribution pj over O with a typical skewness parameter

a = 0.9 and equal request rates λj = 1,∀j ∈ J . A Zipf-like distribution is a power-law dictating

that the ith most popular object is requested with a probability C/ia, where C = (
∑N

j=1
1
ja )

−1.

The skewness parameter a captures the degree of concentration of requests; values approaching 1

mean that few distinct objects receive the vast majority of requests, while small values indicate

progressively uniform popularity. The Zipf-like distribution is generally recognized as a good model

for characterizing the popularity of various types of measured workloads, such as web objects [2]

and multimedia clips [5]. The popularity of P2P [31] and CDN content has also been shown to be

quite skewed towards the most popular documents, thus approaching a Zipf-like behavior. Recently,

evidence of Zipf-like behavior has been observed in the distribution of Gnutella queries [32].
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Figure 4: The average cost of Greedy, iGreedy and

LP-relaxation.

0

200

400

600

800

1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

to
ta

l l
ev

el
 c

ap
ac

ity

a (skewness of Zipf distribution)

N=10000, S=1000, L=3, Q=4, lambda=ones

level-1
level-2
level-3

Figure 5: The effect of skewness of popularity on the

per-level allocation of storage under iGreedy.

As far as the topology of the experiments is concerned, regular Q-ary trees are used in all exam-

ples. Regular Q-ary trees are commonly used for the derivation of numerical results for algorithms

operating on trees [24, 30]; it has also be seen that numerical results from regular tree topologies are

in good accordance with experimental results from actual internet tree topologies [23]. The entire

set of parameters (demand and topology) for each experiment is indicated in the title of the corre-

sponding graph. The distance function dj,v capture the number of hops between client j (co-located

with the jth leaf thus dj,j = 0) and node v. The distance of the origin server is dj,os = L for an L

level hierarchy.

3.6.1 Quality of the approximation

Figure 4 shows the average cost per request for Greedy and iGreedy (expressed in number of hops

to reach an object). The performance of the heuristic algorithms is plotted against the bound of the

corresponding optimal performance obtained from the LP-relaxation of the ILP of Sect.3.2. The

x-axis indicates the number of available storage units in the hierarchy (S) with each storage unit

being able to host a single object. From the graph it may be seen that iGreedy is no more than

3% away from the optimal while Greedy may deviate as much as 14% in the presented results. The

performance gap between the two owes to the waste of a significant amount of storage in barren

objects under Greedy.

3.6.2 The effects of skewness and non-homogeneous demand

The following two figures focus on the vertical allocation of storage under iGreedy, attempting

to provide new insights into the effect of user access patterns in the dimensioning of hierarchical

distribution systems. Figure 5 shows the effect of the skewness of the demand distribution on the per-

level allocation of storage. Highly skewed distributions (the skewness parameter a approaching 1)

increase the amount of storage that is allocated to the leaves (level-1), while less skewed distributions

allocate more storage to the root (level-3). This effect is explained as follows. Under a highly skewed

distribution a small number of popular objects attracts the majority of requests and, thus, these

objects are intensively replicated at the lower levels, leading to the allocation of most of the storage

to the lower levels. When the distribution tends to be “flat” it is better to limit the number of

replicas per object and instead increase the number of distinct objects that can be replicated. This is

achieved by sharing objects, i.e., by placing them higher in the hierarchy that leads to the allocation
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5.1: loadv = 0 ∀v ∈ V

7: i = 1,P = {(v, k) : loadv(k) ≤ Wv , v ∈ V, k ∈ O}

9.1: loadv∗ = loadv
∗ + loadv

∗(k∗)

10: P = P − {(v∗, k∗)} − {(v∗, k) ∈ P : loadv
∗ + loadv

∗(k) > Wv
∗},

re-organize g(v∗, ·)

13.1: find u ∈ V the closest ancestor of v∗ that caches k∗

13.2: loadu = loadu − loadv
∗(k∗)

13.3: P = P + {(u, k) : (u, k) /∈ P, k not cached in u, loadu + loadu(k) ≤ Wu}

13.4: re-organize max-heap g(u, ·)

Figure 6: The effect of non-homogeneous demand on

the per-level allocation of storage under iGreedy.

Table 3: Additional steps for the iGreedyLB algo-

rithm.

of more storage to the higher levels. An equal request rate (λj = 1,∀j) for all clients leads to an

equal allocation of storage in each node of the same level. This horizontal symmetry is disturbed

when unequal client request rates are employed (such results not shown at this point).

Figure 6 illustrates the effect of the degree of homogeneity in the access patterns of different

clients. Two clients are non-homogeneous if they employ different demand distributions. In the

presented results each client j references N objects; βN objects are common to all clients while

the remaining (1 − β)N are only referenced by client j. A Zipf-like distribution is created for

each client by randomly choosing an object from its reference set and assigning it the next higher

value from a Zipf-like distribution and then repeating the same action until all objects have been

assigned probabilities. The parameter β will be referred to as the overlap degree; values of β

approaching 1 mean that most objects are common to all clients (although each client may request

a common object with a potentially different probability) while small values of β mean that each

client references a potentially different set of objects. Figure 6 shows that the root level (level-3)

of a hierarchical system is assigned more storage when there is a substantial amount of overlap in

client reference patterns. Otherwise most of the storage goes to the lower levels. This behavior

is explained as follows. Storage is effectively utilized at the upper levels when each placed object

receives an aggregate request stream from several clients. Such an aggregation may only exist when

a substantial amount of objects are common to all clients; otherwise it is better to allocate all the

storage to the lower levels – thus sacrificing the (ineffective) aggregation effect – and instead reduce

the distance between clients and objects.

4 Variations for load balancing and request peering

In the following two sections the iGreedy heuristic is modified to cater to load balancing and

request peering. An additional section presents some relevant numerical results. Load balancing

is a commonly sought ability in distributed systems and so is the case here where the system

should avoid overutilizing some nodes while underutilizing others. Request peering is employed by

hierarchical systems with positive effects in the user-perceived performance.
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4.1 Load balancing: Optimal and the iGreedyLB heuristic

Let Wv denote the maximum number of requests per unit time that may be serviced by node v

– this metric captures the maximum load that can be assigned to a node and will be used for

load balancing and congestion avoidance at the caching nodes. The ILP model of Sect. 3.2 can be

modified to respect the maximum load of each node with the addition of the following constraint.

∑

j∈leaves(v)

∑

k∈O

λj · pj(k) ·Xj,v(k) ≤Wv v ∈ V (8)

The resulting new ILP cannot be solved by the exact algorithm of Sect. 3.2 due to these extra load

constraints.

Similarly, the iGreedy algorithm of Sect. 3.5 can be augmented to handle load constraints with

the addition of few extra steps. In brief, the algorithm maintains a load counter for each node and

selects node-objects pairs in decreasing order with respect to gain. Contrary to the basic iGreedy,

the load balancing version of the algorithm, iGreedyLB, considers only feasible node-object pairs

when placing objects, i.e., it selects objects that do not violate the load limit of their node if they

are selected for placement. The new algorithm is based on iGreedy and Greedy. Table 3 gives the

additional lines of pseudocode for iGreedyLB. Lines 5.1, 9.1 and 13.1-13.4 are new and should be

added to the pseudocode of Table 1 after lines 5, 9 and 13, while lines 7 and 10 are substitutes for

the corresponding lines of Table 1. Line 5.1 initializes to zero the load counter for each node. Line 7

creates the set P which comprises the node-object pairs which are eligible for placement; it requires

that the new load imposed by a node-object pair does not violate the maximum load of the node.

The function loadv(k) captures the load that would be imposed on node v if it was to store object k;

it is defined in eq. (13) in Appendix A. Line 9.1 updates the load of node v∗ once object k∗ has been

chosen for placement at v∗. Line 10 updates P by removing (v∗, k∗) and all the node-object pairs

(v∗, k) that become infeasible due to the increment in the load of v∗; this necessitates the update

of max-heap g(v∗, ·). Line 13.1 identifies u, the closest ancestor of v∗ that caches k∗ (excluding the

origin server). The load of this node is reduced because the leaves of v∗ do not any longer fetch k∗

from u but from v∗ (Line 13.2). Finally, due to the reduction of loadu some objects that were not

cached at u and were previously infeasible due to the load constraint now become feasible and thus

are added to P (Line 13.3) and the corresponding max-heap is re-organized (Line 13.4).

The joint consideration of load constraints increases the per-iteration complexity by O(N),

thus making it O(Nn logN); the increase owes to the fact that up to O(N) objects may be in-

serted/deleted from a max-heap due to load-related implications emanating from an object place-

ment. Thus the overall complexity becomes quadratically dependent on N , matching the complexity

required by the optimal solution without load constraints in a tree graph (see Sect. 3.2). Making

up for the added complexity is the fact that iGreedyLB solves a much more difficult problem.

Contrary to load-unaware practices, the load balancing ILP and the iGreedyLB heuristic not

only allocate the storage capacity more evenly among the nodes of the hierarchy, but also place

some popular objects at higher level nodes only, as opposed to the common intuition that popular

objects must be placed multiple times at the lower levels of the hierarchy in order to distribute the

load. Following this intuition, however, leads to the opposite result as it puts all the load to the

leaf nodes, ending up overloading them.

iGreedyLB avoids this phenomenon by preserving the per-node load constraints and distributing

the load more evenly. Such a tactic results in a worse performance in terms of the average distance
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or bandwidth consumption (such is the case with the hop-count distance metric that is considered

here). However, this may not be the case for delay metrics. Placing memory and some popular

objects higher in the hierarchy admittedly increases the propagation delay of accessing them but

this increment is expected to be small compared to the delay reduction that is incurred by accessing

non-congested proxy servers. The end-system delay part dominates the propagation delay part in

the overall delay budgets of congested end-systems such as those that arise when load balancing is

not considered.

4.2 Modeling request peering: Optimal and the iGreedyP heuristic

Some replication and caching [36] schemes permit peer nodes – i.e., nodes of the same level that

have the same father – to cooperate. A node that receives a request from a downward node, and

cannot service it locally from its own cache, forwards it to its upstream node as well as to its peer

nodes at the same level. In some occasions this may lead to a significant reduction in delay as

a peer node, which is usually “closer” than upstream nodes, might quickly return the requested

object. In general peering is meaningful when fast direct links exist between peer nodes and the

delay on those links is smaller than the delay on the links that lead to higher level nodes. In such

an environment, request peering leads to a higher utilization of each cached object, as this object

services a larger population, which in turn reduces the number of replicas that are necessary for this

object. Reducing the number of replicas of each object allows for the caching of a larger number

of distinct objects (a larger initial part of the tail of the object popularity distribution fits in the

hierarchy) thus resulting in better performance in terms of cost (bandwidth/delay). This section

describes how to integrate request peering in the study of the storage capacity allocation problem.

The ILP formulation of Sect. 3.2 can be augmented to handle request peering. A larger number

of variables Xj,v(k) is required because – due to peering – client j may receive object k from a larger

set of nodes including not only the ancestors v, but their peers too. Also, the objective function (3)

must change to:

z =
∑

j∈J

λj

∑

k∈O

pj(k)
∑

v∈ancestors(j)

∑

u∈peers(v)

(dj,os − dj,v − peercost · I{u6=v})Xj,u(k) (9)

peers(v) denotes the set of nodes that are peers to v, including v itself. peercost is a fixed2 cost

that is paid when transmitting an object between any two peers; this cost is typically smaller than

the cost of accessing an ancestor at a higher level. I is an indicator function; it returns 1 when the

expression in brackets becomes true and 0 otherwise. Also constraint (5) must change to:

∑

u∈peers(v)

∑

j∈leaves(u)

Xj,v(k) ≤ U · δv(k) v ∈ V, k ∈ O (10)

Finally, constraint (4) must be re-written as:

∑

v∈ancestors(j)

∑

u∈peers(v)

Xj,u(k) ≤ 1 j ∈ J , k ∈ O (11)

Similarly the iGreedy algorithm of Sect. 3.5 can be converted to handle request peering; the resulting

algorithm will be referred to as iGreedyP. The introduction of request peering has two effects on

2The communication cost between peers could depend on the exact two peers that communicate but since such a cost

is typically much smaller than the cost of going to a higher level, it is modeled by a constant in order to simplify the

presentation.
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the basic iGreedy algorithm. First, the gain function (7) must be updated as follows:

gainv(k) =































∑

u∈peers(v)

∑

j∈leaves(u)
k/∈peers(w)
w∈path(j,u)

(dj,parv(k) − dj,u − peercost · I{u6=v}) · pj(k) · λj , if k /∈ u ∀u ∈ peers(v)

∑

j∈leaves(v)
k/∈peers(w)
w∈path(j,v)

peercost · pj(k) · λj , otherwise

(12)

The first expression in (12) corresponds to the case that no peer of v stores k thus placing k at v will

attract requests from the descendants of v as well as from the descendants, j, of all peer nodes u of

v, that do not fetch k from any node or peer in the path3 from j to u. The second line corresponds

to the case that some peer(s) u already store k, thus the extra gain of storing it also at v will be

equal to the extra distance peercost that will be “spared” (not have to be crossed) by some of the

descendants of v. The second modification refers to the removal of “barren” objects from higher

level nodes. In iGreedyP it suffices to have one copy of k at any child u of a node v to remove k

from v if already placed there. This is motivated by the fact that due to request peering a single

copy of k at any peer can service all other peers too, thus, immediately rendering barren the copy

of k at the father (without requiring that all children cache k as is the case with iGreedy).

Table 4 contains the pseudocode for iGreedyP. Lines 1-7 initialize the algorithm by computing

the initial gains for each node-object pair and storing them in n max-heaps, one for each node. Each

iteration of the algorithm executes the code in lines 9-27. First, the node-object pair that returns

the maximum gain in P, is selected, and then removed from P (lines 9-10). Then the potential gain

that would be incurred with the caching of the selected object k∗ is updated for all the nodes that

are affected from the selection of (v∗, k∗). These nodes are: (1) the peers of v∗ (lines 11-14) as well

as all of their descendants and their peers that do not store k∗ (lines 15-18); (2) the ancestors of v∗

and their peers that do not store k∗ (lines 19-22) – Fig. 3 illustrates the above mentioned groups of

nodes. Finally, if the father of v∗ includes k∗ then it is removed from there, thus freeing one storage

unit (this increases the number of iterations by one, lines 23-27).

Although iGreedyP has to update a larger group of nodes in each iteration (compare figures 2

and 3), its asymptotic complexity is the same with iGreedy (this is due to the fact that iGreedy

may also have to update O(n) nodes).

4.3 Numerical results under iGreedyLB and iGreedyP

This section presents a number of numerical results pertaining to the variations of iGreedy for load

balancing and request peering. To examine the efficiency of the heuristic algorithms, their perfor-

mance is plotted against the bound of the corresponding optimal performance, thus: iGreedyLB is

compared against the LP-relaxation of the load-balancing ILP of Sect.4.1, and iGreedyP against

the LP-relaxation of the ILP with peering of Sect. 4.2.

Figure 7 shows the effect of different degrees of load balancing on iGreedyLB and on the op-

timal solution with load balancing. In all presented cases iGreedyLB approximates very closely

the optimal. A maximum load parameter (maxload) is used to capture the maximum amount of

load a node may service. Setting maxload = 1.0 means that a node is able to service up to a

fraction
∑

j∈J λj/n of the total load. This is the smallest fraction that, if used by all nodes in the

3By abuse of notation we write k /∈ peers(w) to mean that none of the nodes in peers(w) stores object k.
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1: for each v ∈ V

2: for each k ∈ O

3: g(v, k) = gainv(k)

4: insert g(v, k) in max-heap g(v, ·)

5: end for

6: end for

7: i = 1,P = {(v, k) : v ∈ V, k ∈ O}

8: while i ≤ S

9: select (v∗, k∗) ∈ P : g(v∗, k∗) ≥ g(v, k)∀(v, k) ∈ P

10: P = P − {(v∗, k∗)}, re-organize max-heap g(v∗, ·)

11: for each peer u of v∗ not caching k∗

12: g(u, k∗) = gainu(k∗)

13: re-organize max-heap g(u, ·)

14: end for

15: for each w : w ∈ peers(u), u ∈ subtree(v′), v′ ∈ peers(v∗)

w not caching k∗ with parw(k∗) = v∗

16: g(w, k∗) = gainw(k∗)

17: re-organize max-heap g(w, ·)

18: end for

19: for each w : w ∈ peers(u), u ∈ ancestors(v∗)

w not caching k∗

20: g(w, k∗) = gainw(k∗)

21: re-organize max-heap g(w, ·)

22: end for

23: if k∗ cached at father(v∗)

24: remove k∗ from father(v∗)

25: i = i− 1

26: end if

27: i = i+ 1

28: end while

Table 4: The iGreedyP algorithm.

selected setting, will avoid the possibility of request blocking due to load constraints. Larger values

ofmaxload mean that a node may service a fractionmaxload·
∑

j∈J λj/n of the total load, this frac-

tion being more than an “equal share” of load (in iGreedy a single node can potentially service the

entire load). Figure 7 shows that the plain iGreedy performs better in terms of average cost than the

various load-constrained iGreedyLB(maxload). Increasing maxload helps iGreedyLB(maxload) to

approach the best performance without load balancing. The smallest value, maxload = 1.0, yields

the best load balancing but also increases the cost, as the allocation of storage deviates (due to

load constraints) from the optimal unconstrained one. The maximum average cost gap between the

load-unaware iGreedy and the most load-constrained iGreedyLB(1.0) is 10%.

The following two figures depict the positive effects of load balancing. Figure 8 shows that load

balancing is effective in suppressing the maximum load that may be imposed on any node. For

different values of maxload, the maximum load of a node is eventually stabilized to the highest

allowed value under iGreedyLB, while it increases continuously under iGreedy as more storage is

added. Figure 9 shows the standard deviation of load computed over all the nodes in the hierarchy,

for different degrees of load balancing. Load balancing leads to smaller values of standard deviation,

thus most nodes have a load that is closer to the mean load in the hierarchy. This means that the

load is evenly distributed and nodes are utilized better as opposed to the unconstrained case where

17



0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

av
er

ag
e 

co
st

  (
nu

m
be

r 
of

 h
op

s)

S (allocated storage capacity)

N=10000, L=3, Q=2, a=0.9, lambda=ones

iGreedyLB(1.0)
LP relaxation(1.0)
iGreedyLB(1.05)

LP relaxation(1.05)
iGreedyLB(1.1)

LP relaxation(1.1)
iGreedy

LP relaxation

Figure 7: The effect of load balancing on the average

cost under iGreedyLB and the LP-relaxation of the ILP

with load balancing.
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Figure 10: The effect of peering on the average cost

incurred under iGreedyP and LP-relaxation of the ILP

with peering, for different peering costs.

some nodes are congested while others are severely underutilized, especially those at higher levels.

The presented load balancing techniques may help in addressing the well known underutilization

problem in the higher levels of hierarchical caches due to the “filtering” of most requests at the lower

levels [37]. Notice that the 10% increase in the average cost (number of hops) between iGreedy and

iGreedyLB(1.0) results in approximately 15% reduction of maximum load and a 40% reduction in

the standard deviation of load in the hierarchy. These results may lead to a substantial reduction in

the average delay by noting that whereas the propagation delay increases linearly with the distance

(number of hops) the end system delay (I/O delay to fetch an object from the disk + transmission)

increases much more aggressively as the end system becomes congested (thrashing effect).

Figure 10 shows that iGreedyP approximates closely the optimal with request peering. By em-

ploying request peering, a significant reduction in the average cost may be achieved. This reduction

grows as peers become able to communicate more economically, i.e., when the cost of accessing a

peer reduces (i.e, with smaller values of peercost). Notice that for S = 10000 the cost incurred

under iGreedyP with peercost = 0 is half the corresponding cost of iGreedy, i.e., the direct links

between peers lead to a 50% reduction of cost when the communication over the peer links incurs

zero cost; this is frequently the actual case because peer links are usually local direct connections

between geographically neighboring networks, thus can be used at approximately no cost.
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5 Conclusions and future work

This paper considers the problem of how to best allocate an available storage budget to the nodes

of a hierarchical content distribution system. The current work addresses the problem of allocating

a storage resource differently than previous attempts, taking into consideration related resource

allocation subproblems that affect it. The dependencies among the subproblems are not neglected

under the current approach and, thus, an optimal solution for all the subproblems is concurrently

derived, guaranteeing optimal overall performance. Since the complexity in deriving this optimal

solution is high, fast/efficient heuristic algorithms are derived as well. To this end, we have proposed

iGreedy, a linear time efficient heuristic algorithm. iGreedy and its variants (for workload balancing

and request peering) are shown to achieve a performance that is very close to the optimal.

iGreedy may be used for the derivation of a joint storage capacity allocation and object placement

plan to be employed in a system that performs replication, e.g., a CDN. Alternatively, just the

derived per node storage capacity allocation may be used for the dimensioning of a hierarchical

system that operates under a request driven caching/replacement algorithm. Additionally, iGreedy

is used for the derivation of numerical results that provide insight into the effects of user request

patterns (skewness of demand, homogeneity of demand) on the vertical dimensioning of a hierarchical

system.

iGreedy has been modified to cater to load balancing and request peering. Load balancing is

shown to be able to provide for an even spread of load in the hierarchy, at the cost of a small

increase in average distance between users and objects, which, however, may be compensated for a

substantial reduction in the delay as a result of accessing uncongested end-systems. Request peering

is shown to be able to provide for a significantly reduced cost. Request peering may even lead to

the halving of the overall cost, when utilizing inexpensive direct peer links.

An interesting line of future work would be to investigate mechanisms that can provide for

an efficient storage capacity allocation in a distributed manner. A distributed computation has

several advantages, including better scaling properties and reduced exchange of information and

would be particularly suitable for networks not operating under a central authority (as in a CDN)

but rather having to cater to multiple local utilities. Finally, although it has been shown that the

optimal storage capacity allocation in a tree can be derived in polynomial time, it remains to be

seen whether the same is possible when considering per-node load constraints (Sect. 4.1) or allowing

for cooperating peers (Sect. 4.2).

Acknowledgements The authors would like to thank the four reviewers for their efforts in im-
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to the employed cost function and the complexity analysis of the heuristic algorithms.

A Evaluating the cost of placing object k in all nodes v ∈ V

that do not store it in O(n)

A.1 Bottom-up pre-processing – request rates

Let ratev(k) =
∑

j∈leaves(v)
k/∈path(j,v)

pj(k) · λj denote the request rate for k that goes through (i.e., not

serviced at) node v, meaning that v does not store k (ratev(k) = 0 when v does store k). Then for
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a given k we can compute all ratev(k) for the different v by a simple bottom-up traversal of the

tree by using:

ratev(k) =

{

pv(k) · λv if v is a leaf node
∑

u∈children(v) rateu(k) otherwise
(13)

If nl is the number of nodes at level l, then clearly eq. (13) requires O(n1 + n2 + ... + nL) = O(n)

to compute and store all ratev(k) for the different v.

A.2 Top-down pre-processing – closest parents

Here we show how to compute parv(k) for a given k for the different v that do not store k, in O(n).

This can be done through:

parv(k) =

{

os if v is the root

parfather(v)(k) otherwise
(14)

Having completed the two preprocessing steps, each requiring O(n), we can evaluate any gain

function in O(1) through gainv(k) = (parv(k) − dv) · ratev(k), where dv is the distance of node v

from the leaf level. This allows to compute the gain function for all nodes that do not store k in

O(n) instead of O(n2) as would be required by an independent evaluation of each one.
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