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Abstract

Although cooperation generally increases the amount of resources available to a com-

munity of nodes, thus improving individual and collective performance, it also allows for

the appearance of potential mistreatment problems through the exposition of one node’s

resources to others. We study such concerns by considering a group of independent,

rational, self-aware nodes that cooperate using on-line caching algorithms, where the

exposed resource is the storage at each node. Motivated by content networking ap-

plications – including web caching, CDNs, and P2P – this paper extends our previous

work on the off-line version of the problem, which was conducted under a game-theoretic

framework, and limited to object replication. We identify and investigate two causes of

mistreatment: (1) cache state interactions (due to the cooperative servicing of requests)

and (2) the adoption of a common scheme for cache management policies. Using analytic

models, numerical solutions of these models, as well as simulation experiments, we show

that on-line cooperation schemes using caching are fairly robust to mistreatment caused

by state interactions. To appear in a substantial manner, the interaction through the

exchange of miss-streams has to be very intense, making it feasible for the mistreated

nodes to detect and react to exploitation. This robustness ceases to exist when nodes

fetch and store objects in response to remote requests, i.e., when they operate as Level-2

caches (or proxies) for other nodes. Regarding mistreatment due to a common scheme,

we show that this can easily take place when the “outlier” characteristics of some of the
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nodes get overlooked. This finding underscores the importance of allowing cooperative

caching nodes the flexibility of choosing from a diverse set of schemes to fit the pecu-

liarities of individual nodes. To that end, we outline an emulation-based framework for

the development of mistreatment-resilient distributed selfish caching schemes.

1 Introduction

Background, Motivation, and Scope: Network applications often rely on distributed

resources available within a cooperative grouping of nodes to ensure scalability and efficiency.

Traditionally, such groupings are dictated by an overarching, common strategic goal. For

example, nodes in a CDN such as Akamai or Speedera cooperate to optimize the performance

of the overall network, whereas IGP routers in an Autonomous System (AS) cooperate to

optimize routing within the AS.

More recently, however, new classes of network applications have emerged for which the

grouping of nodes is more “ad hoc” in the sense that it is not dictated by organizational

boundaries or strategic goals. Examples include overlay protocols [3, 6] and peer-to-peer

(P2P) applications. Two distinctive features of such applications are (1) individual nodes

are autonomous, and as such, their membership in a group is motivated solely by the selfish

goal of benefiting from that group, and (2) group membership is warranted only as long as a

node is interested in being part of the application or protocol, and as such, group membership

is expected to be fluid. In light of these characteristics, an important question is this: Are

protocols and applications that rely on sharing of distributed resources appropriate for this new

breed of ad-hoc node associations?

In this paper, we answer this question for networking applications, whereby the distributed

resource being shared amongst a group of nodes is storage. While our work and methodology

is applicable for a wide range of applications that rely on distributed shared storage, we target

the distribution of voluminous content as our application of choice.1In particular, we consider

a group of nodes that store information objects and make them available to their local users

as well as to remote nodes. A user’s request is first received by the local node. If the requested

object is stored locally, it is returned to the requesting user immediately, thereby incurring

1Unlike content distribution for static (typically small) web objects such as html web pages and images, voluminous content

requires treating the storage as a limited resource [21].
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a minimal access cost. Otherwise, the requested object is searched for, and fetched from

other nodes of the group, at a potentially higher access cost. If the object cannot be located

anywhere in the group, it is retrieved from an origin server, which is assumed to be outside

the group, thus incurring a maximal access cost.

Under an object replication model, once selected for replication at a node, an object is

stored permanently at that node (i.e., the object cannot be replaced later). In [20] we estab-

lished the vulnerability of socially optimal (SO) object replication schemes in the literature

to mistreatment problems. We define a mistreated node to be a node whose access cost under

SO replication is higher than the minimal access cost that the node can guarantee under

greedy local (GL) replication. Unlike centrally designed/controlled groups where all con-

stituent nodes have to abide by the ultimate goal of optimizing the social utility of the group,

an autonomous, selfish node will not tolerate such a mistreatment. Indeed, the emergence of

such mistreatments may cause selfish nodes to secede from the replication group, resulting in

severe inefficiencies for both the individual users as well as the entire group.

In [20], we resolved this dilemma by proposing a family of equilibrium (EQ) object place-

ment strategies that (a) avoid the mistreatment problems of SO, (b) outperform GL by claim-

ing available “cooperation gain” that the GL algorithm fails to utilize, and (c) are imple-

mentable in a distributed manner, requiring the exchange of only a limited amount of infor-

mation. The EQ strategies were obtained by formulating the Distributed Selfish Replication

(DSR) game and devising a distributed algorithm that is always capable of finding pure Nash

equilibrium strategies for this particular game.

Distributed Selfish Caching: Proactive replication strategies are not practical in a highly

dynamic content networking setting, which is likely to be the case for most of the Internet

overlays and P2P applications we envision. This is due to a variety of reasons: (1) Fluid group

membership makes it impractical for nodes to decide what to replicate based on what (and

where) objects are replicated in the group. (2) Access patterns as well as access costs may

be highly dynamic (due to bursty network/server loads), necessitating that the selection of

replicas and their placement be done continuously, which is not practical. (3) Both the iden-

tification of the appropriate re-invocation times [24] and the estimation of the non-stationary

demands (or equivalently, the timescale for a stationarity assumption to hold) [14] are non-

trivial problems. (4) Content objects may be dynamic and/or may expire, necessitating the
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use of “pull” (i.e., on-demand caching) as opposed to “push” (i.e., pro-active replication)

approaches. Using on-demand caching is the most widely acceptable and natural solution to

all of these issues because it requires no a priori knowledge of local/group demand patterns

and, as a consequence, responds dynamically to changes in these patterns over time (e.g.,

introduction of new objects, reduction in the popularity of older ones, etc.)

Therefore, in this paper we consider the problem of Distributed Selfish Caching (DSC),

which can be seen as the on-line counterpart to the DSR problem. In DSC, we adopt an

object caching model, whereby a node employs demand-driven temporary storage of objects,

combined with replacement. At this juncture, it is important to note that we make a clear

distinction between replication and caching. While these terms may be seen as similar (and

indeed used interchangeably in much of the literature), we note that for our purposes they carry

quite different meanings and implications. Replication amounts to maintaining permanent

copies whereas caching amounts to maintaining temporary copies. This changes fundamentally

the character and the methodologies used in analyzing DSR and DSC.

Causes of Mistreatments Under DSC: We begin our examination of DSC by first con-

sidering the operational characteristics of a group of nodes involved in a distributed caching

solution. This examination will enable us to identify two key culprits for the emergence of

mistreatment phenomena.

First, we identify the mutual state interaction between replacement algorithms running

on different nodes as the prime culprit for the appearance of mistreatment phenomena. This

interaction takes place through the so called “remote hits”. Consider nodes v, u and object

o. A request for object o issued by a user of v that cannot be served at v but could be

served at u is said to have incurred a local miss at v, but a remote hit at u. Consider now

the implications of the remote hit at u. If u does not discriminate between hits due to local

requests and hits due to remote requests (which is the default behavior of the Internet Cache

Protocol (ICP) / Squid web cache [8] and other systems (e.g., Akamai Content Distribution

Network, IBM Olympic Server Architecture), then the remote hit for object o will affect the

state of the replacement algorithm in effect at u. If u is employing Least Recently Used

(LRU) replacement, then o will be brought to the top of the LRU list. If it employs Least

Frequently Used (LFU) replacement, then its frequency will be increased, and so on with

other replacement algorithms [29]. If the frequency of remote hits is sufficiently high, e.g.,
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because v has a much higher local request rate and thus sends an intense miss-stream to

u, then there could be performance implications for the second: u’s cache may get invaded

by objects that follow v’s demand, thereby depriving the user’s of u from valuable storage

space for caching their own objects. This can lead to the mistreatment of u, whose cache is

effectively “hijacked” by v.

Moving on, we identify a second, less anticipated, culprit for the emergence of mistreatment

in DSC. We call it the common scheme problem. To understand it, one has to observe that

most of the work on cooperative caching has hinged on the fundamental assumption that

all nodes in a cooperating group adopt a common scheme. We use the word “scheme” to

refer to the combination of: (i) the employed replacement algorithm, (ii) the employed request

redirection algorithm, and (iii) the employed object admission algorithm. Cases (i) and (ii) are

more or less self-explanatory. Case (iii) refers to the decision of whether to cache locally an

incoming object after a local miss. The problem here is that the adoption of a common scheme

can be beneficial to some of the nodes of a group, but harmful to others, particularly to nodes

that have special characteristics that make them “outliers”. A simple case of an outlier, is a

node that is situated further away from the center of the group, where most nodes lie. Here

distance may have a topological/affine meaning (e.g., number of hops, or propagation delay),

or it may relate to dynamic performance characteristics (e.g., variable throughput or latencies

due to load conditions on network links or server nodes). Such an outlier node cannot rely on

the other nodes for fetching objects at a small access cost, and thus prefers to keep local copies

of all incoming objects. The rest of the nodes, however, as long as they are close enough to

each other, prefer not to cache local copies of incoming objects that already exist elsewhere

in the group. Since such objects can be fetched from remote nodes at a small access cost, it

is better to preserve the local storage for keeping objects that do not exist in the group and,

thus, must be fetched from the origin server at a high access cost. In this setting, a common

scheme is bound to mistreat either the outlier node or the rest of the group.

In addition to the identification of the two causes of mistreatments in a DSC setting, this

paper presents a number of concrete results regarding each one of these two causes. These

results are intended to be used as basic design guidelines on dealing with selfishness in current

and future caching applications. Admittedly we do not present a full cache design since this

would require addressing additional issues like data consistency, cache associativity, and other
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application specific details. We avoid obscuring the presentation with such details, which to

a large extended are orthogonal to selfishness, our main theme here.

Mistreatment Due to Cache State Interaction: Regarding the state interaction problem,

our investigations answer the following basic question: “Could and under which schemes do

mistreatments arise in a DSC group?”. More, specifically:

+ We show that state interactions occur when nodes do not discriminate between local and

remote hits upon updating the state of their replacement algorithms.

+ To materialize, state interactions require substantial request rate imbalance, i.e., one or

more “overactive” nodes must generate disproportionally more requests than the other nodes.

Even in this case, mistreatment of less active nodes depends on the amount of storage that

they posses: Mistreatment occurs when these nodes have abundant storage, otherwise they

are generally immune to, or even benefit from, the existence of overactive nodes.

+ Comparing caching and replication with regard to their relative sensitivities to request rate

imbalance, we show that caching is much more robust than replication.

+ Regarding the vulnerability of different replacement algorithms, we show that “noisier”

replacement algorithms are more prone to state interactions. In that regard, we show that

LRU is more vulnerable than LFU.

+ Even the most vulnerable LRU replacement is quite robust to mistreatment as it requires

a very intense miss-stream in order to force a mistreated node to maintain locally unpopular

objects in its cache (thus depriving it of cache space for locally popular objects). In particular,

the miss-stream has to be strong enough to counter the sharp decline in the popularity of

objects in typically skewed workloads.

+ Robustness to mistreatment due to state interaction evaporates when a node operates as a

Level-2 cache [36] (L2) for other nodes. L2 caching allows all remote requests (whether they

hit or miss) to affect the local state (as opposed to only hits under non-L2 caching), leading

to a vulnerability level that approaches the one under replication.

Mistreatment Due to Use of Common Scheme: We classify cooperative caching schemes

into two groups: Single Copy (SC) schemes, i.e., schemes where there can be at most one

copy of each distinct object in the group – two examples of SC schemes are HASH based

caching [32] and LRU-SC [10]; Multiple Copy (MC) schemes, i.e., schemes where there can

be multiple copies of the same object at different nodes.
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+ We show that the relative performance ranking of SC and MC schemes changes with the

“tightness” of a cooperative group. SC schemes perform best when the inter-node distances

are small compared to the distance to the origin server; in such cases the maintenance of

multiple copies of the same object becomes unnecessary.2 MC schemes improve progressively

as the inter-node distances increase, and eventually outperform the SC schemes.

+ We demonstrate a case of mistreatment due to common scheme by considering a tight group

of nodes that operate under SC and a unique outlier node that has a larger distance to the

group. We show that this node is mistreated if it is forced to follow the same SC scheme.

Towards Mistreatment-Resilient DSC Schemes: More constructively, we present a

framework for the design of mistreatment-resilient DSC schemes. Our framework allows indi-

vidual nodes to decide autonomously (i.e., without having to trust any other node or service)

whether they should stick to, or secede from a DSC caching group, based on whether or not

their participation is beneficial to their performance compared to a selfish, greedy scheme.

Resilience to mistreatments is achieved by allowing a node to emulate the performance gain

possible by switching from one scheme to another, or by adapting some control parameters of

its currently deployed DSC scheme. We use a simple control-theoretic approach to dynami-

cally parametrize the DSC scheme in use by a local node. We evaluate the performance of our

solution by considering caching in wireless mobile nodes [37] where distances and download

rates depend on mobility patterns. We show that our adaptive schemes can yield substantial

performance benefits, especially under skewed demand profiles.

2 Related work

Apart from our previous work on distributed selfish replication [20], we are aware of only

two additional works on game-theoretic aspects of replication, one due to Chun et al. [4]

(distributed selfish replication under infinite storage capacities) and the other due to Erçetin

and Tassiulas [9] (market-based resource allocation in content delivery); we are not aware of

any previous work on distributed selfish caching. The issue of dynamic adjustment of caching

schemes has been raised recently also by Sivasubramanian et al. [33], in a completely different

context from ours (consistency control of cached objects). For studies on the social utility of

2We do not consider load balancing concerns in this study.
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distributed caching we recommend Korupolu and Dahlin [16] and Rodriguez et al. [31].

Our consideration of DSC builds upon many facets of caching in general, and cooperative

web caching protocols and systems in particular – facets which have been studied extensively

in the literature. Given the multi-faceted nature of the relationship between our work and

this body of literature, and for the sake of a better exposition of our contributions, rather

than enumerating these studies here, we discuss how we leverage and relate to such works

throughout the paper, as appropriate.

3 Definitions and Notation

Let oi, 1 ≤ i ≤ N , and vj, 1 ≤ j ≤ n, denote the ith unit-sized object and the jth node,

and let O = {o1, . . . , oN} and V = {v1, . . . , vn} denote the corresponding sets. Node vj is

assumed to have storage capacity for up to Cj unit-sized objects, a total request rate λj

(total number of requests per unit time, across all objects), and a demand described by a

probability distribution over O, �pj = {p1j, . . . , pNj}, where pij denotes the probability of

object oi being request by the local users of node vj. Successive requests are assumed to be

independent and identically distributed.3 Later in this paper, we make the specific assumption

that the popularity of objects follows a power-law profile, i.e., the ith most popular object is

requested with probability pi = K/ia. Such popularity distributions occur in many measured

workloads [2, 25] and, although used occasionally in our work (e.g., in Section 4.1 to simplify

an analytic argument, or in Section 5 for producing numerical results), they do not constitute

a basic assumption, in the sense that mistreatment can very well occur with other demand

distributions that do not follow such a profile.

Let tl, tr, ts denote the access cost paid for fetching an object locally, remotely, or from

the origin server, respectively, where ts > tr > tl.
4 User requests are serviced by the closest

node that stores the requested object along the following chain: local node, group, and origin

server. Each node employs a replacement algorithm for managing the content of its cache and

employs an object admission algorithm for accepting (or not) incoming objects.

3The Independent Reference Model (IRM) [5] is commonly used to characterize cache access patterns [1, 2]. The impact of
temporal correlations was shown in [14, 30] to be minuscule, especially under typical, Zipf-like object popularity profiles.

4The assumption that the access cost is the same across all node pairs in the group is made only for the sake of simplifying
the presentation. Our results can be adapted easily to accommodate arbitrary inter-node distances.

8



disjoint

C

j

j

λn
node       n

nodes  1...n−1Y X

X

common

λ

C

misses

n

Figure 1: Reference model for the
study of mistreatment due to state in-
teraction.

j

tagged

helper

going to

contributor

proportion

to v

 v

aggregate misstream

j /

j

j
/

j //

for the object o  duei

Figure 2: Graphical illustration for
the explanation of Eq. (7).

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 0  0.2  0.4  0.6  0.8  1

ac
ce

ss
 c

os
t

C=25, N=1000, tl=0, tr=1, ts=2

n=5, analysis
n=5, simulation
n=10, analysis

n=10, simulation

α (skewness of demand)

Figure 3: Validation of the approx-
imate analytical model of Section 4.2
through comparison with simulation
results on the social cost of the group.

4 Mistreatment Due to State Interaction: Analysis

Our goal in this section is to understand the conditions under which mistreatment may arise

as a result of (cache) state interactions. We start in Section 4.1 with a replacement-agnostic

model that focuses on the rate-imbalance (between the local request stream and the remote

miss stream) necessary for mistreatment to set in. Next, in Section 4.2, we present a more de-

tailed analytical model that allows for the derivation of the average access cost in a distributed

caching group composed of n nodes that operate under LRU replacement.

4.1 General conditions

We would like to determine the level of request rate imbalance that is necessary for mistreat-

ment to be feasible. We model this imbalance through the ratio λn/λj, where λj denotes the

request rate of any normally-behaving node vj, while λn denotes the request rate of an over-

active node, which we use to instigate mistreatment problems. As a convention we assume

this overactive node to be the last (nth) node of the group.

We focus on the interaction between vj and vn. Fig. 1 shows a particular choice of demand

patterns that fosters the occurrence of mistreatment. The initial most popular objects in �pj

and �pn up to the two capacities (Cj for vj and Cn for vn) are completely disjoint, while the

remaining ones in the middle part of the two distributions are identical; both demands are

assumed to be power-law with parameter a. Let X denote the most popular object that is

common to both distributions. A boundary condition for the occurrence of mistreatment can

be obtained by considering the ratio λn/λj that results in a switch of ranking between X and

Y at vj, where Y denotes the least most popular object that would be kept in the cache of
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vj under a perfect ranking of objects according to the local demand, if no miss-stream was

received. To derive the condition for the switch we first note that X is the (Cj + 1)th most

popular object for vj and the (Cn + 1)th most popular one for vn. Y is the Cjth most popular

object for vj. Let f(n) denote a function that captures the operation of different object

location mechanisms in a group of n nodes (used for locating and retrieving objects from

remote nodes). For example, f(n) = 1 can be used for modeling request flooding (following a

local miss, a request is sent to all other nodes in the group); f(n) = 1/(n− 1) can be used for

modeling index-based mechanisms [10] (following a local miss, a request is sent to only one

of the nodes that appear to be storing the object according to some index). The boundary

condition for the occurrence of the switch can be written as follows:

λjpCj ≤ λjpCj+1 + λnpCn+1f(n)⇒ λj
1

(Cj)a
≤ λj

1
(Cj + 1)a

+ λn
1

(Cn + 1)a
f(n)⇒

λn
λj

≥ (Cn + 1)a

f(n)

(
1

Ca
j

− 1
(Cj + 1)a

) (1)

Writing a continuous approximation for the rate of change of 1/Ca with respect to C, we get:

d
(
1
Ca

)
dC

=
1
Ca − 1

(C+1)a

C − (C + 1) ≈ −a · 1
C1+a

⇒ 1
Ca

− 1
(C + 1)a

≈ a · 1
C1+a

(2)

Using the approximation from Eq. (2) on Eq. (1) we obtain:

λn
λj

≥ (Cn + 1)a

f(n)
· a 1
(Cj)1+a

∼ a

f(n)Cj

(
Cn

Cj

)a

(3)

Eq. (3) states that the amount of imbalance in request rates (λn

λj
) that is required for the

occurrence of mistreatment is: (i) increasing with Cn, (ii) decreasing with Cj, and (iii) in-

creasing when request flooding is employed for locating remote objects (in this case all the

nodes get the full miss-stream from vn, otherwise the miss-stream weakens by being split into

n− 1 parts).

Now assume that as a result of the received miss-stream, k objects of vj are switched

(objects with ids Cj, . . . , Cj − k + 1 evicted, objects Cj + 1, . . . , Cj + k inserted); k can be

computed from a condition similar to that in (Eq. 1). Define the Loss of vj as the reduction

in the probability mass of the objects that it caches locally.

Loss =
Cj∑

i=Cj−k+1
pi −

Cj+k∑
i=Cj+1

pi = K · (H(a)
Cj

− H
(a)
Cj−k − H

(a)
Cj+k

+H
(a)
Cj
) = K · (2H(a)

Cj
− H

(a)
Cj−k − H

(a)
Cj+k

),

(4)
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costj =
N∑
i=1

pij ·[πij · tl + (1− πij) · πi−j · tr + (1− πij) · (1− πi−j) · ts] where πi−j = 1−
∏
∀j′ �=j

(1−πij′)

(6)

p
(k)
ij =

λj · pij +
∑n

j′=1,j′ �=j λj′ · pij′ · (1− π
(k−1)
ij′ ) ·

[ “
π

(k−1)
ij

”2

Pn
j′′=1,j′′ �=j′ π

(k−1)

ij′′

]+
π

(k−1)
ij

∑N
i′=1


λj · pi′j +

∑n
j′=1,j′ �=j λj′ · pi′j′ · (1− π

(k−1)
i′j′ ) ·

[ “
π

(k−1)

i′j
”2

Pn
j′′=1,j′′ �=j′ π

(k−1)

i′j′′

]+
π

(k−1)

i′j




(7)

where K is the normalization constant of the power-law distribution pi = K/ia. The gen-

eralized harmonic number H
(a)
C can be approximated by its integral expression (see [35])

H
(a)
C =

∑C
i=1

1
ia
≈ ∫ C

1
1/ladl = C1−a−1

1−a . Plugging this into Eq. (4) we obtain:

Loss = K

(
2
Cj
1−a − 1
1− a

− (Cj − k)1−a − 1
1− a

− (Cj + k)1−a − 1
1− a

)
(5)

¿From Eq. (5) it is clear that as Cj increases, both Cj − k and Cj + k → Cj thus leading

to Loss → 0. Combining our observations from Eq. (3) and Eq. (5) we conclude that the

occurrence of mistreatment is fostered by small Cn and large Cj. Its magnitude, however,

decreases with Cj. So, practically, it is in intermediate values of Cj that mistreatment can

arise in a substantial manner.

4.2 Analysis of Mistreatment Under LRU Replacement

In the remainder of this section, our objective will be to derive the steady-state hit probabilities

�πj = {π1j, . . . , πNj}, where πij denotes the steady-state probability of finding object oi at

node vj that operates under LRU replacement. We will then use these results for studying

mistreatment in the context of LRU.

Let �π = LRU(�p, C) denote a function that computes the steady-state object hit probabili-

ties for a single LRU cache in isolation, given the cache size and the demand distribution. Due

to the combinatorial hardness of analyzing LRU replacement, it is difficult to derive an exact

value for �π; there are, however, several methods for computing approximate values for it (see

for example [18] and references therein). In this paper, we employ the approximate method of

Dan and Towsley in [7] that provides an accurate estimation of �π through an iterative algo-
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rithm that incurs O(NC) time complexity. Having computed �πj, ∀vj ∈ V , we can obtain the

per-node access cost, costj, as well as the social cost of the entire group, costsoc =
∑

∀vj
costj,

by using Eq. (6). In this equation πi−j denotes the probability of finding oi in any node of the

group other than vj.

We can obtain �πj by using the LRU(·, ·) function for isolated caches as our basic building

block and taking into consideration the impact on the local state of the hits caused by remote

requests. Deriving an exact expression for these added hits based on the involved cache

states is intractable as it leads to state-space explosion. Therefore, we turn to approximate

techniques and, in particular, to techniques that consider the expected values of the involved

random variables, instead of their exact distributions. The basic idea of our approach is to

capture these added hits by properly modifying the input to the LRU(·, ·) function.

Remote hits can be considered simply as additional request that augment the local demand,

thereby creating a new aggregate demand for the LRU(·, ·) function as explained later. The

idea of modifying the input of a simpler system to capture a policy aspect of a more complex

system and then using the modified simpler system to study the more complex one has been

employed frequently in the past [17]. Since the remote hits are shaped by the cache states,

which are coupled due to the exchanges of miss-streams, an iterative procedure is followed for

the derivation of the per-node steady-state vectors and access costs. The uncoupled solution

(corresponding to nodes operating in isolation) is obtained first, and is refined progressively

by taking into account the derived states and the cooperative servicing of the misses. The

resulting approximate analytical model for predicting the average access cost in a distributed

caching group is described below. In the next section, we show that the results produced from

this model match quite well the results obtained through simulations.

The iterative procedure follows:

(1) For each node vj compute �π
(0)
j = LRU(�pj, Cj), i.e., assume no state interaction among

the different nodes.

(2) Initiate Iteration: At the kth iteration the aggregate demand distribution for vj, �pj
(k) =

{p(k)ij }, 1 ≤ i ≤ N , is given by Eq. (7) (see top of page). The function [x]+y returns 0

if y = 0 and x otherwise.5 The steady state vector of object hit probabilities for vj at

5This function is used to ensure correctness when the denominator
Pn

j′′=1,j′′ �=j′ π
(k−1)
ij′′ becomes zero. Notice that the

nominator π
(k−1)
ij is included in the denominator, so when π

(k−1)
ij > 0, the denominator is guaranteed to be non zero.
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iteration k can be obtain from: �π
(k)
j = LRU(�pj

(k), Cj)

(3) Convergence Test: if |�π(k)j − �π
(k−1)
j | < �ε for all vj, 1 ≤ j ≤ n, then set �πj = �π

(k)
j and

compute the per node access costs from Eq. (6); �ε denotes a user-defined tolerance for

the convergence of the iterative method. Otherwise, set �π
(k−1)
j = �π

(k)
j and �p

(k−1)
j = �p

(k)
j

and perform another iteration by returning to step 2.

The nominator of Eq. (7) adds the requests generated by the local population of vj for

object oi, to the requests for the same object due to the n − 1 miss streams from all other

nodes that create hits at vj. The explanation of the circumstances under which such hits

exist, goes as follows (see also Fig. 2): a request for oi received at the contributor node vj′

(prob. pij′) affects the tagged node vj, if the request cannot be serviced at the contributor

node (prob. (1 − π
(k−1)
ij′ )), can be serviced at the tagged node (prob. π

(k−1)
ij ), and is indeed

serviced by the tagged node and not by any other helper node vj′′ that can potentially service

it (prob. π
(k−1)
ij /

∑n
j′′=1,j′′ �=j′ π

(k−1)
ij′′ , i.e., the model assumes that when more than one helper

nodes can offer service, then the request is assigned uniformly to any one of them).

Before we conclude this section, we note that our aforementioned analysis could be con-

strued as providing a lower bound of the intensity of mistreatment assuming that the proxy

is configured such that only one peer (proxy cache) replies to a remote request. Mistreatment

could be more severe if, upon a local miss, requests are routed to more than one proxy, which

is the case in many real systems [8].

5 Mistreatment Due to State Interaction: Evaluation

In this section, we use a combination of simulation experiments and numerical solutions of the

analytical model developed in the previous section to explore the design space of distributed

caching with respect to its vulnerability to the on-set of mistreatment as a result of the

state interaction phenomenon. We start by validating the accuracy of the analytical model

of Section 4.2 and follow that with an examination of various dimensions of the design space

for distributed caching, including a comparative evaluation of mistreatment in caching versus

replication.

It is important to note that throughout this section, we use a number of settings to gain

an understanding of state interaction in distributed caches and its consequences on local and
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group access costs. Most of these settings are intentionally very simple (i.e., small “toy”

examples) so that they can be possible to track.

Also, it is important to note that the various parameterizations of our analytical and

simulation models are not meant to represent particular content networking applications.

Examining specific incarnations of the state interaction phenomenon is, after all, not our

intention in this paper—which is the first to identify and analyze the problem. Rather,

our exploration of the extent of mistreatment is meant to help us gain insights into the

fundamental aspects of state interactions in distributed caching, such as its dependence on

the request rate imbalance and the nodes’ relative storage capacities.6 In most of the following

numerical results we assume that nodes follow a common power-law demand distribution with

skewness a as reported by several measurement studies [10]. We relax the common demand

distribution assumption in Sect. 5.3 where we study the effect of non-homogeneous demand

on mistreatment and the social cost of the group. Overall we pay greater attention to the case

of homogeneous demand, since it is under such demand that cooperative caching becomes

meaningful and effective (the benefits from employing cooperative caching diminish when the

similarity of demand patterns is small).

5.1 Validation of the Analytic Model

The analytical model presented in Section 4.2 included a number of approximations—namely:

(i) the basic building block, the LRU(·, ·) function, is itself an approximation; (ii) the mapping

of the effect of remote hits on the local state through Eq. (7) is approximate; the solution of

the model through the iterative method is approximate.

In this section, we show that despite these approximations, the analytical model presented

in Section 4.2 is able to produce fairly accurate results. We do so by comparing the model

predictions with simulation results in Fig. 3. As evident from these results, the aforemen-

tioned approximations have a very limited effect on the model’s prediction accuracy. We have

obtained similar results across a wide variety of parameter sets. Thus, in the remainder of this

section, we use this model to study several aspects of mistreatment due to state interaction.

6With respect to storage capacities, it is important to note that performance results depend on the relative size of the cache
to the object space–i.e., the ratio C/N , but not on the particular values of C and N , i.e., our results are immune to scale.
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(values with “*” superscript) and LRU without state interaction. �p denotes the demand and �π the steady-state hit probabilities.
Other parameters: N = 10, n = 4, C = 4, α = 0.9.

5.2 Understanding State Interaction

Fig. 4 provides a microscopic view of state interaction by showing its effect at the object level.

The results are from an illustrative example involving a group of n = 4 nodes, each of which

has storage for up to C = 4 objects, in a universe of N = 10 objects (other parameters are

shown in the caption and legends of the figure). Nodes v1, . . . , v3 have the same fixed request

rate λ1 = 1, whereas the overactive node v4 has request rate λ4 = 1, 10, 100 (i.e., we have

three sets of results that correspond to different λ4; each set is depicted on a different column

of Fig. 4). The three graphs on the top depict the demand and the steady-state vector for

node v1 (which will be used as a representative for all three non-overactive nodes), while the

ones on the bottom depict the corresponding quantities for node v4. Each graph includes four

curves. The bottom two curves indicate the local demand distribution �p and the aggregate

demand distribution �p∗, which includes the effect of the other nodes’ miss streams (each of

these curves sums up to 1). The top two curves �π and �π∗ show the steady-state vectors of a

node when the input is �p (no miss-stream present) and �p∗ (miss-stream present), respectively,

as obtained from the analytical method of Section 4.2 (each of these curves sums up to C).

Looking at the three graphs on the bottom of Fig. 4, we see that overactive node v4 is not

affected by the miss streams of other nodes. For λ4 = 10 and 100, its aggregate demand and
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its steady state vector are identical to the corresponding ones without state interaction, i.e.,

�p∗4 ≈ �p4 and �π∗
4 ≈ �π4. For λ4 = 1, there is a very slight effect due to the presence of the miss

streams of the other three nodes, but this has almost no effect on the steady-state vector �π∗
4.

Looking at the top left graph in Fig. 4, which corresponds to λ4 = 1, we see that the

same slight effect exists for node v1 due to the reception of the other three miss streams.

The situation, however, changes radically when increasing λ4 (second and third graphs of the

top row). In that case, �p∗1 and �p1, and as a consequence �π∗
1 and �π1 also become distinctively

different. The intense miss stream from v4 increases the popularity of some objects from the

middle part of �p1, thereby making them the most popular objects in �p∗1. For example, when

λ4 = 100, objects 2,3 and 4, become more popular than object 1. This change in the profile

of �p∗1 is then reflected in �π∗
1, thereby affecting its access cost (Eq. (6)), as we explain below.
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5.3 Effect on Performance

Fig. 5 provides a macroscopic view of state interaction by considering its effects on the nor-

malized access cost of each node. The normalized cost of node vj under the aggregate demand

�p∗j is defined as follows:

ˆcostj(�p∗j , �pj) =
costj(�p∗j )
costisoj (�pj)

, (8)

where costisoj (�pj) =
∑N

i=1 pij · [πij · tl + (1 − πij) · ts] is the cost that would be incurred by vj if

it operated in isolation (outside the group) and received only its local demand �pj. If ˆcostj < 1,

the node benefits from its participation in the group, otherwise, it is being mistreated. When

considering two nodes, vj and vj′ , then the fact that 1 > ˆcostj > ˆcostj′ , means that although

both are better off by participating in the group, vj gets a relatively larger benefit.

There are two main points to be concluded from Fig. 5. First, it requires a very strong

imbalance of request rates in order to create a substantial difference in the incurred normalized

access costs. In the presented example, the overactive node v4 has a 30% reduction of its

normalized cost, only when it produces a 100-fold more intense request stream. Even such

a strong imbalance, is not enough to mistreat the other nodes (v1, . . . , v3 have normalized

access costs < 1). For the occurrence of mistreatment, remote accesses have to be even more

expensive (this is shown in Fig. 6, where tr increases from 1 to 1.4, thereby making the

normalized access cost of the group nodes > 1). Second, the nodes must have large storage

capacity to be affected by state interaction related phenomena. In the presented example, the

nodes must have at least 20% relative storage capacity C/N to be affected by the overactive

node. Surprisingly, for small C/N , e.g., less than 15%, the group nodes actually benefit

more than the overactive node, i.e., they achieve a smaller normalized access cost. In [19]

we explained this peculiar phenomenon by arguing that the miss-stream from the overactive

node actually helps the other nodes, in this case by creating more skewed demands for them,

which lead to higher hit ratios. Figure 7) shows that increasing the size of the group, reduces

the effects of the state interaction. This occurs as the miss stream of the overactive node(s)

(here just one) weakens by being divided across more nodes.
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5.4 The Case of Non-homogeneous Demand Patterns

What we described so far is fairly optimistic as we assumed that all participants in the

distributed caching group exhibit similar access patterns. If this assumption does not hold,

then intensity of the mistreatment could be much higher, even for small C/N . To underscore

this point, in this section, we will deviate from our course so far, and examine mistreatments

and the social cost of the group under non-homogeneous demand distributions. For non-

overactive nodes we will maintain the popularity ranking of objects as it was (o1, o2, . . . ). For

the overactive node, however, we will shift the popularity ranking by an offset O, 0 ≤ O ≤ N ,

therefore making object o1+(O+i−1) mod N be the ith most popular object. We assign request

probabilities taken from the same generalized power-law profile with skewness a = 0.9 that is

used for the non-overactive nodes. Figure 9 depicts the demand distribution for the overactive

for O = N/2 − 1. The two graphs of Fig. 10 depict the normalized individual cost for the

overactive and the non-overactive nodes as well as the social cost (normalization is obtained

by dividing by the corresponding cost obtained when remote hits are not allowed to affect the

local caching state). As it is obvious, mistreatments can occur even under non-homogeneous

demand distributions. The concave profile with respect to O occurs as with high O the

popularity ranking starts to look like the original one due to “wrapping” after N . We have

obtained similar results with several other perturbations of the popularity ranking [34].

5.5 Caching versus Replication

In this section we will consider both replication and caching and compare their relative robust-

ness to mistreatment. For replication we will consider the socially optimal (SO) replication
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algorithm of Leff et al. [22]. For simplicity of exposition, and also to be able to compare with

our previous numerical results from [20], we will consider a group with only n = 2 nodes and

a universe of N = 100 objects. The three graphs of Fig. 8 depict the normalized access costs7

for nodes v1 and v2 (overactive), for three cases of request imbalance, 1, 10, and 100. When

there is no request imbalance (first graph), no node is mistreated. Caching yields the exact

same performance for both nodes (the two curves for v1, v2 coinciding), while replication might

unintentionally favor one of them (there are several optimal solutions, and the particular one

chosen has to do with the specific solution algorithm that is employed, here an LP relaxation

of an integer problem solved via Simplex).

The different sensitivity to mistreatment becomes apparent as soon as request imbalance

is introduced, i.e., with λ2/λ1 = 10 and 100 (second and third graphs of Fig. 8). By observing

these figures, we see that the curves for caching are always contained within the angle specified

by the curves for replication (except for very small C/N , where we have the peculiar behavior

of caching discussed in the previous section). The point to be kept from these results is

that replication is much more sensitive to mistreatment than caching. Under replication, the

slightest imbalance of request intensities is directly reflected in the outcome of the replication

algorithm. In contrast, the state interaction that takes place in caching is a much weaker

catalyst for mistreatment. This fortunate weakness owes to the stochastic nature of caching,

and to the requirement for the concurrent occurrence of two independent events: An unpopular

object must first be brought to the cache due to the local demand, and then the miss-stream

must feed it with requests, if it is to lock it in the cache (and thereafter beat the local request

stream that tries to push it out and reclaim the storage space).

5.6 LRU versus LFU

Fig. 11 shows analytical results under LRU replacement, as well as simulation results under

perfect LFU replacement [29] (two group sizes, n = 2 and n = 4, are considered). We plot the

absolute, instead of the normalized access costs, as we are considering different replacement

algorithms. Looking first at LRU, we notice the following. The effects of state interaction

(reflected in the width of the angle between group and overactive curves, after λn/λj = 10)

7For the case of replication, the normalization is conducted by dividing with the performance of the greedy local (GL)
replication strategy. See [20] for details.

19



 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 1  10  100

ac
ce

ss
 c

os
t

C=250, N=1000, a=0.9, tl=0, tr=1, ts=2

LRU group, n=2

LRU overactive, n=2

LRU group, n=4

LRU overactive, n=4

LFU overactive & group, n=2 & 4 (4 lines)

λn/λj (rate imbalance)

Figure 11: Analytical results on the comparison LRU vs LFU.

decrease as the group grows larger, as also noted in the previous section. Moreover, the

absolute access costs for both the group and the overactive node also decrease with the size

of the group. The reason is that a bigger group has more aggregate storage capacity and thus

succeeds in caching more distinct objects, which in turn benefits all the nodes.

Turning our attention to the LFU curves, we see a completely different behavior. For a

given n, both the overactive node and the rest of the group, have the same access cost, i.e.,

the request imbalance has no affect on the nodes under LFU. This happens because once in

steady-state, perfect LFU avoids replacement errors, thus does not give any opportunities

for locking unpopular objects and losing storage due to the miss-stream of remote overactive

nodes. Thus LFU has an advantage over LRU in terms of its immunity to request imbalance.

What is even more interesting, however, is that the access cost under LFU remains the same

under different n, i.e., increasing the group size does not help in reducing the access costs.

This happens because under LFU and common demand patterns, all the nodes end up caching

exactly the same sets of objects. In such a group, a local miss is bound to miss also in the

group. In other words, LFU eliminates all the cooperation gain in groups of similar nodes.

This does not occur when the group operates under LRU: the replacement errors committed by

the individual nodes in this case, create a healthy amount of noise that increases the distinct

objects held in the group, thereby decreasing the access cost of all the nodes. Thus, in large

groups under small inter-node distances, LRU is more appropriate than LFU (see for example

the access cost for small tr in Fig. 12 in Section 6.1, where n = 10). When the inter-node

distances increase, then the perfect ranking of objects under LFU becomes more important

than the cooperation gain and, thus, LFU becomes better for the group (see Fig. 12 for large

tr).
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Figure 12: Simulation results on the effect of the remote access cost tr on the performance ranking of different SC and MC
schemes for three cases of skewness of demand (a = 0.2, a = 0.6, a = 0.9). MC schemes (LRU, LFU) perform better when
tr → ts.

5.7 L2 versus Non-L2 Caching

When a cache operates in Level-2 (L2) mode, it fetches and maintains a copy from the origin

server for every request that it receives from a remote node (whether it hits or misses locally).

In [19] we showed that L2 caching eliminates the robustness to mistreatment of non-L2 caching,

leading to a vulnerability level similar to the one under replication. To understand this, one

has to observe that in L2-caching and replication, locally irrelevant objects may occupy the

local cache without the intervention of the local demand, whereas in non-L2 caching, the local

demand has first to bring the objects in the cache, and thus give other nodes the opportunity

to maintain them there by feeding them with requests.

6 Mistreatment Due to Use of a Common Scheme

In this section we study cases of mistreatment due to the use of a common scheme vis-a-vis

the object admission control algorithm. Specifically, we consider Single Copy (SC) schemes,

like, HASH and LRU-SC 8, i.e., schemes that allow for the existence of up to one copy of

each object in the group and, Multiple Copy (MC) schemes, i.e., schemes that allow for

the existence of multiple copies of the same object at different nodes of the group. All the

replacement algorithms when combined with a non-SC object admission control fall into the

MC category.

8Under HASH, requests are received by the local node, which employs a hash function to identify the node that is responsible
for the requested object. The responsible node returns the object immediately if it already caches it, or contacts the origin
server, and then returns it, also keeping a local copy in this case. The local node does not keep a local copy, unless it is the one
responsible for that object according to the employed hash function. Under LRU-SC (single copy), a local copy is maintained at
the local node only for objects that were fetched from the origin server. When an object is fetched from elsewhere in the group,
no local copy is kept. In both cases, the number of copies of each object in the group is limited to at most one.
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6.1 Single Versus Multiple Copy Schemes

Fig. 12 depicts simulation results showing the average access cost of a group (social cost)

under different SC and MC schemes, and for different values of tr representing different levels

of “tightness” of the group. Three types of demand are considered: lightly (a=0.2), moderately

(a=0.6), and highly skewed (a=0.9) demand. The following observations apply. Single copy

schemes, ( i.e., HASH and LRU-SC, whose curves overlap almost completely in these figures,

as the two have very similar caching behavior) perform better when the access cost between

the nodes is small. In such cases the cost of local and remote accesses is similar, so it pays

to eliminate multiple copies of the same object at different nodes and instead make room

for storing a larger number of distinct objects. Multiple copy schemes, (i.e., LRU and LFU)

perform better when the access cost between the nodes is high. In such cases, a much higher

cost is incurred when an object is fetched from the group, so it becomes imperative to maintain

some of the most popular objects locally (thereby creating multiple copies at different nodes).

The threshold value of tr at which the performance ranking between SC and MC changes

depends on the skewness of the demand: the higher the skewness, the lower the value of tr

and the earlier the MC schemes become better.

It is also worthwhile noting that the curves for LFU are parallel to the x-axis, i.e., the

access cost is immune to the inter-node distance under LFU and identical demand. This

happens because, as noted earlier, under LFU all the nodes store the same objects, and this

has the consequence of eliminating all remote hits. In that case, the exact value of the remote

access cost does not affect the LFU curves, since there are no remote hits. Regarding the

comparison between LRU and LFU, the figure shows that LFU is better when the remote

access cost is high (see the discussion in Section 5.6 for an explanation of this).

The above observations highlight the fact that “fixed schemes” operate efficiently only

under specific parameter sets. If these parameter sets are common to all the nodes, then

good design choices can be made among the different schemes. However, when some of the

parameters (e.g., inter-node distances) are not common to all nodes, then it may well be the

case that no single scheme is appropriate for all the nodes. Enforcing a common scheme under

such conditions is bound to mistreat some of the nodes. The following section illustrates such

an example.
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6.2 Relaxing the Common Scheme Requirement

So far, we have assumed that all group nodes employ the same (common) caching scheme. In

this section, we look at the advantages to be gotten from relaxing this constraint.

Consider the group depicted in Fig. 13 in which n−1 nodes are clustered together, meaning

that they are very close to each other (tr → tl), while there’s also a single “outlier” node at

distance t′r from the cluster. The n− 1 nodes would naturally employ the LRU-SC scheme in

order to capitalize on their small remote access cost. From the previous discussion it should

be clear that the best scheme for the outlier node would depend on t′r. If t′r → tl, the outlier

should obviously follow LRU-SC and avoid duplicating objects that already exist elsewhere

in the group. If t′r � tl, then the outlier should follow a MC scheme, e.g., LRU.

To permit the outlier to adjust its caching behavior according to its distance from the

group, we introduce the LRU(q) scheme, under which, objects that are fetched from the

origin server are automatically cached locally, but objects that are fetched from the group

are cached locally only with probability q. For q = 0, LRU(q) reduces to LRU-SC, while

for q = 1 it reduces to the multiple copy LRU scheme. One may think of q as a reliance

parameter, capturing the confidence that a node has in its ability to fetch objects efficiently

(i.e., “cheaply”) from other members of the group.

Figure 14 presents the performance of LRU(q), for q = 0, 0.1, 0.5, 1 under different t′r. The

results are normalized by dividing the access cost of each LRU(q) scheme by the corresponding

access cost of the LRU(q = 1) scheme. The later can be seen as a basis for what a node can

achieve by operating greedily, i.e., when it always keeps a copy of each incoming object. Such

a behavior corresponds to a node that wants to avoid relying on other nodes for fetching

objects. As with the state interaction case, mistreatment is signified by a normalized access

cost greater than 1.

Figure 14 shows that for the considered scenario, always keeping local copies of all incoming

objects (i.e., employing LRU(1) and incurring a normalized access cost of 1) is a reasonably

good choice across most values of t′r. The only case that LRU(1) performs poorly is when t′r

becomes very small, which corresponds to the case in which the node ceases to be an outlier,

and actually becomes part of the cluster. As discussed earlier, in this case maintaining multiple

object copies within the group becomes wasteful, with the optimal scheme being the single

copy LRU(0) scheme.
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Figure 13: An example of
a group composed of a cluster of
n−1 nodes and a unique outlier.
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Another interesting observation from the above results is that there is a noticeable per-

formance differential between the single copy LRU(0) scheme, and any other multiple copy

LRU(q) scheme with q > 0. A non-zero LRU(q) scheme, even one where q is small, is capable

of eventually caching locally the most popular objects, even if this requires several misses.

LRU(0), on the other hand, has almost no chance of bringing a globally popular object locally

since it is much more likely for such an object to be cached in the cluster before being re-

quested by the outlier node (which means that it won’t be cached locally). When this happens

for several popular objects, the performance degradation for the outlier node becomes very

serious. That is why LRU(0) performs poorly for large values of t′r.

7 Towards Mistreatment-Resilient Caching

From the exposition so far, it should be clear that there exist situations under which an

inappropriate, or enforced, scheme may mistreat some of the nodes. While we have focused

on detecting and analyzing two causes of mistreatment which appear to be important (namely,

due to cache state interactions and the adoption of a common cache management scheme),

it should be evident that mistreatments may well arise through other causes. For example,

we have not investigated the possibility of mistreatment due to request re-routing [28], not to

mention that there are vastly more parameter sets and combinations of schemes that cannot

all be investigated exhaustively.

To address the above challenges, we first sketch a general framework for designing mistreatment-

resilient schemes. We then apply this general framework to the two types of mistreatments
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that we have considered in this work. We target “open systems” in which group settings (e.g.,

number of nodes, distances, demand patterns) change dynamically. In such systems it is not

possible to address the mistreatment issue with predefined, fixed designs (e.g., using the re-

sults of the previous section for selecting a fixed value for the reliance parameter q). Instead,

we believe that nodes should adjust their scheme dynamically so as to avoid or respond to

mistreatment if and when it emerges. To achieve this goal we argue that the following three

requirements are necessary.

Detection Mechanism: This requirement is obvious but not trivially achievable when

operating in a dynamic environment. How can a node realize that it is being mistreated? In

our previous work on replication [20], a node compared its access cost under a given replication

scheme with the guaranteed maximal access cost obtained through GL replication. This gave

the node a “reference point” for a mistreatment test. In that-game theoretic framework, we

considered nodes that had a priori knowledge of their demand patterns, thus could easily

compute their GL cost thresholds. In caching, however, demand patterns (even local ones)

are not known a priori, nor are they stationary. Thus in our DSC setting, the nodes have

to estimate and update their thresholds in an on-line manner. We believe that a promising

approach for this is emulation. Figure 16 depicts a node equipped with an additional virtual

cache, alongside its “real” cache that holds its objects. The virtual cache does not hold actual

objects, but rather object identifiers. It is used for emulating the cache contents and the

access cost under a scheme different from the one being currently employed by the node to

manage its “real” cache under the same request sequence (notice that the input request stream

is copied to both caches). The basic idea is that the virtual cache can be used for emulating

the threshold cost that the node can guarantee for itself by employing a greedy scheme.

Mitigation Mechanism: This requirement ensures that a node has a mechanism that

allows it to react to mistreatment—a mechanism via which it is able to respond to the onset

of mistreatment. In the context of the common scheme problem, the ability to adjust the

reliance parameter q acted as such a mechanism. In the context of the state interaction

problem, one may define an interaction parameter ps and the corresponding LRU(ps) scheme,

in which a remote hit is allowed to affect the local state with probability ps, whereas it is

denied such access with probability (1-ps). As it will be demonstrated later on, nodes may

avoid mistreatment by selecting appropriate values for these parameters according to the
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current operating conditions.

Control Scheme: In addition to the availability of a mistreatment mitigation mechanism

(e.g., LRU(q)), there needs to be a programmatic scheme for adapting the control variable(s)

of that mechanism (e.g., how to set the value of q). Since the optimal setting of these control

variables depends heavily on a multitude of other time-varying parameters of the DSC system

(e.g., group size, storage capacities, demand patterns, distances), it is clear that there cannot

be a simple (static) rule-of-thumb for optimally setting the control variables of the mitigation

mechanism. To that end, dynamic feedback-based control becomes an attractive option.

To make the previous discussion more concrete, we now focus on the common scheme prob-

lem and demonstrate a mistreatment-resilient solution based on the previous three principle

requirements. A similar solution can be developed for the state interaction problem.

Resilience to Common-Scheme-Induced Mistreatments: We start with a simple “hard-

switch” solution that allows a node to change operating parameters by selecting between two

alternative schemes. This can be achieved by using the virtual cache for emulating the LRU(1)

scheme, i.e., the scheme in which the reliance parameter q is equal to 1 (capturing the case

that the outlier node does not put any trust on the remote nodes for fetching objects and,

thus, keeps copies of all incoming objects after local misses). Equipped with such a device, the

outlier can calculate a running estimate of its threshold cost based on the objects it emulates

as present in the virtual cache.9 By comparing the access cost from sticking to the current

scheme to the access cost obtained through the emulated scheme, the outlier can decide which

one of the two schemes is more appropriate. For example, it may transit between the two

extreme LRU(q) schemes–the LRU(q = 0) scheme and the LRU(q = 1) scheme. Figure 15

shows that the relative performance ranking of the two schemes depends on the distance from

the group t′r and that there is a value of t′r for which the ranking changes.

A more efficient design can be obtained by manipulating the reliance parameter q at a finer

scale. Indeed, there are situations in which intermediate values of q, 0 < q < 1, are better

than either q = 0 and q = 1 (see the LRU(0.1) and LRU(0.5) curves in Fig. 14). Consider two

different values of the reliance parameter q1, q2 such that q1 < q2. Figure 17 illustrates a typical

development of the average object access cost under q1 and q2 as a function of the distance

9The outlier can include in the emulation the remote fetches that would result from misses in the emulated cache contents;
this would give it the exact access cost under the emulated scheme. A simpler approach would be to disregard the remote fetches
and thus reduce the inter-node query traffic; this would give it an upper bound on the access cost under the emulated scheme.
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Figure 17: Representative development of average object access cost as a
function of the reliance parameter and distance of outlier from the cluster

t′r of the outlier node from its cooperative cluster. As discussed in the previous section, q1

(q2) will perform better with small (large) t′r. In the remainder of this section, we present

and evaluate a Proportional-Integral-Differential (PID) controller for controlling the value of

q. This type of controller is known for its good convergence and stability properties [27, 11].

A node equipped with the PID controller maintains an Exponential Weighted Moving

Average (EWMA) of the object access cost (costvirtual) for the emulated greedy scheme. The

virtual cache emulates an LRU(q = 1)-scheme in which no remote fetches are considered, so

as to avoid doubling the number of queries sent to remote nodes. Let costq denote the EWMA

of the object access cost of the employed LRU(q)-scheme in the actual cache of the node. Let

dist denote the difference between the virtual access cost and the actual access cost, and let

diff be the difference between two consecutive values of dist at different points in time.

The PID controller adapts q proportionally to the magnitude of diff ; a pseudo-code for

this process is provided in Algorithm 1. In Appendix 1, we argue that the access cost of

a node equipped with this controller converges to a value which is optimal (as compared

with the cost of any scheme that employs a fixed q) and we also provide an estimation of

the converged value. Our algorithm has two parameters that need to be tuned. The first

one, denoted by αc, is the gain of the controller, which determines the rate (speed) with

which the value of q is changed in a single control period. The second parameter, denoted

by βc, is the update weight of the difference in the cost that is observed in the last (two)

updates. The above mechanism does not introduce additional communication overheads since

it runs solely on local information. The memory and computational overheads are small too.

Since the virtual cache stores only object identifiers and not actual objects, the amount of

memory required for implementing it is negligible compared to the amount of memory used

for storing the actual objects. Furthermore, since both LRU and LFU can be implemented
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Algorithm 1 : mitigation of mistreatment
dist(t) = costvirtual(t)− costq(t)
dist(t − 1) = costvirtual(t − 1)− costq(t − 1)
diff(t) = dist(t) − dist(t − 1)
σ = sign(diff(t))
if q(t − 1) ≥ q(t − 2) then

q(t) ← q(t − 1) + σ · αc · |diff(t)| + σ · βc · | |diff(t)| − |diff(t − 1)| |
else

q(t) ← q(t − 1) − σ · αc · |diff(t)| − σ · βc · | |diff(t)| − |diff(t − 1)| |
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Figure 18: Simulation results on the cost reduction that is achieved using our adaptive mechanism, (left): The minimum cost
reduction, (right): The maximum cost reduction.

efficiently (O(1) time required for updating the caching state after each request), the added

computational burden from updating the virtual cache alongside the actual one is small.

Performance Evaluation: In order to evaluate our adaptive scheme, we compare its cumu-

lative average access cost to the corresponding cost of one of the two extreme static schemes

(LRU(q = 0),LRU(q = 1)). Thus, we define the following performance metric:

minimum cost reduction (%) = 100 · coststatic − costadaptive
coststatic

(9)

where costadaptive is the access cost of our adaptive mechanism, and coststatic is the mini-

mum cost among the two static schemes: coststatic = min (cost(LRU(q = 0), LRU(q = 1)).

This metric captures the minimum additional benefit that our adaptive scheme has over

the previous static schemes. To capture the maximum additional benefit of our adaptive

scheme (the optimistic case), we similarly define maximum cost reduction as in Eq. (9), where

coststatic = max (cost(LRU(q = 0), LRU(q = 1)).

We evaluate the performance of our PID-style feedback controller experimentally by con-

sidering a scenario in which the distance between the outlier node and the cooperative group
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(t′r) changes according to the Modified Random Waypoint Model [23]. The motivation for

such a scenario comes from a wireless caching application [37]. A detailed description of the

design of this experiment is provided in Appendix 2. Figure 18 summarizes results we ob-

tained under different cache sizes, demand skewness, and movement speed Vmax = 1 distance

units/time unit (similar results are observed under higher speeds as well). All experiments

were repeated 10 times and we include 95th-percentile confidence intervals in the graphs.

By employing our adaptive scheme, the outlier achieves a maximum cost reduction that

can be up to 60% under skewed demand. The depicted profile of the maximum cost reduction

curve can be explained as follows. The worst performance of the static schemes appears at

the two extremes of skewness. Under uniform demand, a = 0, we get the worst performance

of the LRU(1) static scheme, whereas under highly skewed demand, a = 1, we get the worst

performance of the LRU(0) static scheme. In the intermediate region both static schemes

provide for some level of compromise, and thus the ratio of the cost achieved by either schemes

to the corresponding cost of the adaptive scheme becomes smaller than in the two extremes.

Turning our attention to the minimum cost reduction, we observe that it can be substantial

under skewed demand, and disappears only under uniform demand (such demand, however,

is not typically observed in measured workloads [2]). The explanation of this behavior is as

follows. At the two extreme cases of skewness, one of the static scheme reaches its optimal

performance—under low skewed demand, the best static scheme is the LRU(0) and under high

skewed demand the best static scheme is the LRU(1). Thus, the ratio of the cost achieved by

the best static scheme and the corresponding cost of our adaptive scheme gets maximized in

the intermediate region, in which neither of the static schemes can reach its best performance.

Resilience to State-Interaction-Induced Mistreatments: Immunizing a node against

mistreatments that emerge from state interactions could be similarly achieved. The interac-

tion parameter ps can be controlled using schemes similar to those we considered above for the

reliance parameter q. It is important to note that one may argue for isolationism (by perma-

nently setting ps = 0) as a simple approach to avoid state-interaction-induced mistreatments.

This is not a viable solution. Specifically, by adopting an LRU(ps = 0) approach, a node is

depriving itself from the opportunity of using miss streams from other nodes to improve the

accuracy of LRU-based cache/no-cache decisions (assuming a uniform popularity profile for

group members). This was highlighted in the results shown in Fig. 5.
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To conclude this section, we note that the approaches we presented above for mistreatment

resilience may be viewed as “passive” or “end-to-end” in the sense that a node infers the onset

of mistreatment implicitly by monitoring its utility function. As we alluded at the outset of

this paper, for the emerging class of network applications for which grouping of nodes is “ad

hoc” (i.e., not dictated by organizational boundaries or strategic goals), this might be the only

realistic solution. In particular, to understand “exactly how and exactly why” mistreatment

is taking place would require the use of proactive measures (e.g., monitoring/policing group

member behaviors, measuring distances with pings, etc.), which would require group members

to subscribe to some common services or to trust some common authority—both of which are

not consistent with the autonomous nature (and the mutual distrust) of participating nodes.

8 Summary and Concluding Remarks

Distributed on-demand caching enables loosely coupled groups of nodes to share their (stor-

age) resources to achieve higher efficiencies and scalability. In addition to its traditional use

in content distribution/delivery networks, distributed caching is also used as an important

building block of many emerging applications and protocols, including its use in route caching

in ad-hoc networks [26] and in P2P content replication [6, 15].

Summary: This paper has uncovered the susceptibility of nodes participating in a distributed

on-demand caching group to being mistreated. We have identified two causes of mistreatments–

namely mistreatment due to cache state interactions between various members of the group,

and due to the use of a common scheme for cache management across all members of the group.

We have backed up our findings by analytic models, numerical solutions of these models, as

well as simulations in which assumptions (necessary for analysis) have been relaxed.

The results of our analysis and evaluation suggest that on-demand distributed caching is

fairly resilient to the onset of mistreatment as long as proxying (a.k.a. L2 caching) is not

enabled, and as long as intra-group access costs do not include outliers. More constructively,

we have outlined an efficient emulation-based approach that allows individual nodes to decide

autonomously (i.e., without having to trust any other node or service) whether they should

stick to, or secede from a caching group, based on whether or not their participation is

beneficial to their performance compared to a selfish, greedy scheme.
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Other Incarnations of Mistreatment in On-Line Distributed Resource Manage-

ment Problems: In this paper, we focused on distributed caching as an instance of an

on-line protocol for the management of a distributed resource—namely the limited storage

available at each node. While our exposition has focused on the well-known problem of caching

“retrievable” content (e.g., web pages and media objects), it should be evident that our results

extend to any other type of cached content, including non-retrievable content used as part of

the control plane of a distributed protocol or application (e.g., route paths stored in routing

tables of group members). Clearly, given the different nature of the workloads that such dis-

tributed resources must support, a more specific examination of potential mistreatments in

such settings is warranted, and is a current subject of inquiry of ours.

Coincidental versus Adversarial Mistreatment: In this paper we focused on the onset of

mistreatment due to benign operating conditions of a caching group. For instance we identified

rate imbalance (of local versus remote requests streams) conditions as well as cache sizing

conditions that are necessary for mistreatment to occur. As such, the cases of mistreatment we

have uncovered could be considered “coincidental”. Another possible source of mistreatment,

however, could be adversarially motivated, in the sense that one (or more) of the group

members collude to negatively impact the performance of other members. While we did not

consider adversarial mistreatments per se, our results suggest that distributed caching is fairly

immune to high potency exploits [12] (a.k.a. low rate attacks) by non-clairvoyant adversaries.

More work is needed to characterize the vulnerability of distributed caching to more elaborate

adversarial exploits, including those from more powerful agents (e.g., those with knowledge

of a victim’s cache contents).
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APPENDIX 1: Convergence of the Controller

In this appendix we argue that the access cost of a node equipped with our adaptive

mechanism converges to a value that is lower than the one under any other static scheme, and

we analytically estimate this value. We consider the scenario with the outlier node that was

presented in Section 6.2.

Claim: When Algorithm 1 is used for controlling the probability q of caching an incoming

object at the outlier node, then its average access cost will converge to a single value which is

upper-bounded by the minimum average cost of any static scheme (i.e. a scheme employing

a fixed q).

Justification: As illustrated in Figure 17, the average access cost of the outlier increases

linearly with its distance from the group (t′r). When t′r → tl, the optimal value of q → 0.

When t′r → ts, the optimal value for q → 1. We would like our controller to exhibit this

behavior while tuning the value of q. We can approximate the “desired” average access cost

of the outlier as a linear function of q. In Figure 19 we illustrate a representative behavior

of the average access cost of two static schemes, LRU(q = 0) and LRU(q = 1). We also

illustrate the “desired” behavior of the controller as a linear function with slope θ. It is clear

that the average access cost of the controller will be a lower bound on the average access cost

of every static scheme, as θ < ψ and although χ < θ the average access cost of LRU(q = 1)

will converge to the access cost of the controller only when t′r = ts, because the initial access

cost for LRU(q = 1) is higher than that of LRU(q = 0). In our analysis we assume that the

capacity C and the skewness of the demand α are constants; their exact values affect only the

slopes.

We define two operating regions for the controller: Region A and Region B, as denoted in

Figure 19. In Region A, the cost of the outlier under the LRU(q = 1)-scheme,is always higher

than the one under the LRU(q = 0)-scheme and vice versa for Region B.
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Figure 19: Representative behavior of static schemes (LRU(q = 0), LRU(q = 1)) and the “desired”

behavior of the controller.

We now proceed to analyze the behavior of our adaptive scheme in these two regions. We

can design the controller such that the control update rate is higher that the rate at which

t′r changes (see Appendix 2). Thus, for the purpose of our analysis, let us assume that t′r is

fixed for a short period that includes few control updates.

In Region A, we consider two cases:

case A1: If q(t) ≥ q(t − 1) then cost(t) ≥ cost(t − 1), dist(t) ≤ dist(t − 1) and as a

result diff(t) ≤ 0, thus our controller switches course and decreases the value of q at the

adaptation point t+ 1.

case A2: If q(t) < q(t− 1) then cost(t) < cost(t− 1), dist(t) > dist(t− 1) and as a result

diff(t) > 0, thus the controller will keep decreasing the value of q at the adaptation point

t+ 1.

In both cases, our adaptive scheme examines locally the possible values of q and updates

its value towards the direction that reduces the average access cost.

In Region B, we consider the same two cases:

case B1: If q(t) ≥ q(t− 1) then cost(t) ≤ cost(t− 1), dist(t) ≥ dist(t− 1) and as a result
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Figure 20: Laplace-Transform of the control loop for cases: (a) A1; (b) A2; (c) B1; (d) B2.

diff(t) ≥ 0, thus the controller will increase the value of q at the adaptation point t+ 1.

case B2: If q(t) < q(t − 1) then cost(t) > cost(t − 1), dist(t) < dist(t − 1) and as a

result diff(t) < 0, thus the controller will change course and increase the value of q at the

adaptation point t+ 1.

As in the previous cases, our adaptive scheme updates the value of q in the direction of

reducing the access cost of the outlier.

We follow a control-theoretic approach to show the convergence properties of our controller.

We start by providing the proof for case A1:

From Algorithm 1, we derive the following continuous-time equations:

∂dist(t)

∂t
= diff(t) (10)
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where

dist(t) = costvirtual(t) − costq(t) (11)

The value of q is updated as follows:

∂q(t)

∂t
= αc · diff(t) + βc · ∂diff(t)

∂t
(12)

We can approximate the average access cost under our adaptive scheme as follows:

costq(t) ≈ c0 + µ · q(t) (13)

where µ = tan(θ) and c0 is the cost of the outlier for q = 0 and t′r = tl.

Next, we take the Laplace-transform of (10), (11),(12) and (13) and draw the block diagram

that describes the flow of the signals (Figure 20(a)). We can now derive the relation between

DIFF and COSTq (in the s-domain):

c0
s

+ DIFF (s) · αc + βc · s
s

· µ = COSTq(s)

Furthermore, assuming that costvirtual is constant 10, we have:

DIFF (s) = s

(
1

s
COSTvirtual − COSTq(s)

)

After some algebraic manipulations we have:

COSTq(s) =
c0 + (αc + βc · s) · µ · COSTvirtual

s · (1 + (αc + βc · s) · µ)

From the above equation we can conclude that the system is stable and overdamped since the

pole s = − 1
βc

· ( 1
µ

+ αc) is negative [11, 27]. In order to find the steady-state value of the

average cost, we use the Final Value Theorem [11, 27]:

costq(∞) = lim
s→0

s · COSTq(s) =
c0 + αc · µ · COSTvirtual

1 + αc · µ
10Notice that the value of the virtual cache cost is independent of t′r
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If we can calculate the “desired” slope µ, we can estimate the optimal value for αc. In principle,

for small c0 the smaller the value of αc < 1 the lower the access cost is, even when the value

of µ is not known in advance.

In case A2:

We follow the same analysis that was provided for the A1 case, but with a new expression

in place of Equation (12):

∂q(t)

∂t
= − αc · diff(t) − βc · ∂diff(t)

∂t

The block diagram for this case is illustrated in Figure 20(b). It is easy to show that the

steady-state value of the average access cost is given by:

costq(∞) =
c0 − αc · µ · COSTvirtual

1 − αc · µ
In case B1:

We follow the same analysis that was provided for the A1 case, but with a new expression

for Equation (13):

costq(t) ≈ c1 − µ · (1 − q(t))

where c1 is the cost of the outlier for q = 1 and t′r = ts. Furthermore, notice that c1 ≈ c0 + µ.

The block diagram for this case is illustrated in Figure 20(c). After some algebraic manipu-

lations, we can show that the steady-state value of the average access cost is given by:

costq(∞) =
c0 + αc · µ · COSTvirtual

1 + αc · µ
Notice that this steady-state value is the same as in case A1.

In case B2:

The initial analysis for A1 case is used, but Equation (12) is not valid, as q is updated as

in case A2, and Equation (13) is not valid, as the cost of the outlier follows the same relation

38



0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

adjustments

cu
m

ul
at

iv
e 

av
er

ag
e 

ac
ce

ss
 c

os
t

n=4, C=250, α=0.9, Vmax=1

 

 

α
c
=1

α
c
=0.1

α
c
=0.01

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
n=4, C=250, α=0.6, Vmax=1

adjustments

cu
m

ul
at

iv
e 

av
er

ag
e 

ac
ce

ss
 c

os
t

 

 
α

c
=1

α
c
=0.1

α
c
=0.01

Figure 21: The effect of αc on average access cost under different demand skewness

as in case B1. The block diagram for this case is illustrated in Figure 20(d). Following the

same analysis, it is easy to show that the steady-state value of the average access cost is given

by:

costq(∞) =
c0 − αc · µ · COSTvirtual

1 − αc · µ
Note that this steady-state value is the same as for case A2.

To investigate the effect of the choice of αc on the average access cost of the outlier, we

repeat 10 experiments with the setup that was described in Section 5.2, for different values of

αc. As it is illustrated in Figure 21, when the demand is very skewed the effect of the choice

of αc on the access cost of the outlier is minimal as there is overlap of the 95th-percentile

confidence intervals for values of αc that range from 0.01 to 1. For less skewed demands, the

access cost of the outlier is very sensitive to the choice of αc. By setting the value of αc close

to 1, yields significant increase in the access cost of the outlier. For values of αc ≤ 0.1,

our adaptive scheme outperformed the most cost effective static scheme (LRU(q = 0) or

LRU(q = 1), for different cache sizes and demand skewness. For a detailed description of the

parameters of this experiment the reader is refer to Appendix 2.
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APPENDIX 2: Experimental Performance Evaluation of the Adaptive Scheme

In this appendix we provide a detailed description of the design and parameterization of

the experiment used to evaluate the performance of our adaptive scheme. We consider the

outlier scenario described in Section 6.2. Motivated by a realistic scenario from a wireless

caching application [37], we capture the dynamics in t′r by having the outlier move according

to the Modified Random Waypoint Model (MRWP) [23]—this recent version fixes the non-

stationarity of the original model, and thus provides better statistical confidence. Under

the MRWP model, the outlier (mobile) node picks an initial distance D0 according to the

distribution:

F 0D(r) =
3

2Rmax

(
r − r3

3R2max

)
for the first time period X0. Rmax is the maximum distance that a mobile node can travel in

a given chosen direction. Moreover, the node picks a velocity V0 uniformly from [Vmin, Vmax],

where Vmin and Vmax denote the minimum and maximum speed of the outlier node, respec-

tively. For the following time periods Xi, i > 0, the outlier node picks distance Di according

to the distribution:

FD(r) =

(
r

Rmax

)2
and speed according to the distribution:

FV (v) =
v2 − V 2min

V 2max − V 2min

Upon reaching the randomly chosen destination point, the outlier node pauses for a time

period P , and the process repeats itself until the end of the simulation.

In order to map the distance (determined by this mobility model) to an associated cost in

the mobile environment, we use the energy cost function which is proportional to the square

of that distance [13], i.e. the instantaneous outlier’s cost is given by t′r(t) =
(

r(t)
Rmax

)2
ts,

where r(t) is the current distance of the outlier from other group members.
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Modified RWP parameters Controller parameters
Outlier’s Speed mean(t′r) stdv(t′r) update control period αc - C=250/150/50 βc

low: Vmax = 1 du/tu 0.67 du 0.49 du 250 local requests 0.1/0.1/1 0.01
moderate: Vmax = 5 du/tu 0.62 du 0.45 du 50 local requests 0.1/0.1/1 0.01
high: Vmax = 20 du/tu 0.65 du 0.46 du 13 local requests 0.1/0.1/1 0.01

Table 1: The characteristics of the Modified RWP model and the controller that we used for our simulation

setup.

Unless otherwise specified, for the modified RWP mobility model, we set Vmin and P to

zero, and the dimensions of the space inside which the outlier node moves are given by a

circle of radius Rmax=1000 distance units (du) centered around other (non-mobile) nodes in

the cooperative group. We also take the time between successive requests for objects as our

basic time unit (tu).

The rate at which our feedback controller updates q should depend only on the access cost

rate of local requests. Given that the latter is determined by the rate of change in distance

traveled by the outlier (which is reflected to how fast its access cost changes) the control

update period must be set accordingly. The average distance that the mobile object travels

is given by:

E[D] =
∑
Di

Di · pmf(Di) =
∑
Di

Di · (FD(Di+1) − FD(Di)) = 2/3 Rmax

Following the same analysis it can be shown that E[V ] = 2/3 (Vmax − Vmin) and as a result

the average travel time of the outlier is E[X] = E[D]
E[V ]

= Rmax

Vmax − Vmin
.

Under the assumption that each node in the group (of n nodes) generates on average the

same number of requests, the embedded controller in a node updates q at least every E[X]/n

local requests.

We consider three different values of speed for the outlier (mobile) node: low, moderate,

and high. We generate 100, 000 requests uniformly initiated from the peers in the group. We

consider a group size of four nodes, of which one is the outlier node. Without further opti-

mization, following the design disciplines that were sketched in Appendix 1, we set αc = 0.1

and βc = 0.01. To match the aggressiveness of LRU under small cache sizes (C=50), we
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set αc = 1. We compare our PID-style controller with two static schemes (LRU(q = 0),

LRU(q = 1)), corresponding to no- or full-cooperation, respectively. A summarization of the

Modified Random Waypoint Model and Controller parameters we used in our experiments is

presented in Table 1.

We repeated the experiment 10 times under each setting (of cache size, access demand

skewness and maximum speed of the outlier) under the adaptive and the static schemes using

the same random seed for a single run of the experiment. In all experiment we report the

virtual cache cost as well as the actual access cost using EWMA where the weight of the

history w was set to 0.875.
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