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Abstract—A nomadic sensor network consists of: a) sensor
nodes, that are fixed at some points and collect information
about states or variables of the environment, and b) mobile
nodes that collect and disseminate this information. Mobile nodes
usually belong to different classes, and are thus interested in
different subsets of sensor node information. In such networks,
dissemination of information content at smaller costs can be
achieved if mobile nodes are cooperative and collect and carry
information not only in their own interest, but also in the interest
of other mobile nodes. A specific modeling scenario is considered
in this paper where the network has the form of a graph; sensor
nodes are located on the vertices of the graph and U-nodes move
along the edges according to a random waypoint model. We
present a game-theoretic analysis to find conditions under which
a cooperative equilibrium can be sustained.

I. INTRODUCTION

A nomadic sensor network is a recently introduced net-
working paradigm [1]. It consists of: a) simple, tiny sensor
devices (T-nodes) fixed at some points, whose purpose is to
collect information about states or variables of the environment
and b) more complex mobile devices that are carried by
users (U-nodes), that collect and disseminate this information.
Compared to traditional sensor networks where communi-
cation to end-users is realized in a multi-hop fashion, this
paradigm exploits user mobility to conserve limited sensor
energy, prolonging the lifetime of the network and making
it more cost-efficient.

A U-node can collect sensor data either from the source
T-node or from an encountered U-node who has previously
acquired the data. Collecting data from other U-nodes may
incur a smaller access cost (in time or energy), especially
if the source T-node is far-away. Exploiting mobility in this
way to reduce content retrieval costs requires each U-node to
show some kind of cooperative behavior. However, U-nodes
are highly autonomous and intelligent devices; different U-
nodes may belong to different classes, and thus be interested
in different sensor node information. Acquiring unwanted
information incurs a cost in time or energy, thus a U-node
would be cooperative and collect information of potential
interest to other U-nodes only in anticipation of the same
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behavior by other U-nodes. The purpose of this paper is to
identify requirements and conditions under which cooperative
behavior may emerge in such a network. We present a game-
theoretic analysis to find conditions under which a cooperative
equilibrium exists.

The general modeling scenario that we study is as follows.
We consider a graph model of the network (see Fig. 1).
T-nodes are located at the vertices of the graph and U-
nodes move randomly along the edges of the graph collecting
information when they reach a T-node or upon meeting another
U-node somewhere on the graph. Nodes move according to
a Markovian waypoint model on the graph, with a constant
speed v. Waypoints are set to be the vertices of the graph (T-
nodes). No pause times at waypoints are considered. Transi-
tions from one waypoint to the next are governed by a Markov
chain, i.e. a U-node moves from waypoint Ti to waypoint Tj

with probability p(Ti, Tj). This is a special case of the so-
called “space graph” model in [2].

In order to simplify the analysis, instead of studying the
network as a whole, we decompose the problem by studying
possibilities of cooperation on each leg (edge) of the graph.
We say that two U-nodes coming from opposite directions
and meeting somewhere on a leg (Ti, Tj) are cooperative on
(Ti, Tj), if and only if each one copies the content of its
origin T-node (e.g., in Fig. 1, U1 would copy T1 and U2 would
copy T2), even if they are not interested in it. We shall find



conditions under which the following strategy of each U-node
results in an equilibrium. This strategy is made up of two
actions: Initially, a U-node is cooperative and copies unwanted
content. However, if it meets a selfish U-node somewhere on
a leg, it will only transmit its acquired content with a certain
probability. This strategy may easily be applied, provided that
upon meeting each other, U-nodes exchange messages that
contain the list of information objects stored in their memory.

The equilibrium conditions depend mainly on the probabil-
ity of meeting other U-nodes on the leg. Under the setting we
discuss in this paper, satisfying equilibrium conditions for each
leg and between each pair of U-nodes means that a cooperative
equilibrium is achieved for the whole network. Note that in
making this decomposition, we are implicitly assuming that
U-nodes base their decision only on their interest for content
that is in distance of one leg. The analysis becomes more
complicated when this “decision horizon” is more than one,
and is not attempted here. (For example in Fig. 1, if node
U1 that starts from T1 is interested in both T2 and T3 and is
about to follow the path {T1, T2, T3}, it should consider the
probability of meeting U-nodes that previously acquired data
from T2 or T3, on all segments of this path.)

On what concerns the knowledge each U-node has, the
following assumptions are made. Each U-node knows the
topology of the network, the number of other U-nodes and the
distances between each pair of T-nodes. They are also aware
of the information content at each T-node. Furthermore, U-
nodes know that other U-nodes move also according to the
random waypoint model on the graph. On the other hand,
the (instantaneous) rate at which the information content on
each T-node is updated is a function of time unknown to the
U-nodes. (Thus a U-node may return to an already visited T-
node to get updated information.) In addition, each U-node
does not know the interests of other U-nodes for sensor data
and has no memory of previous encounters with them.

Several hypotheses that facilitate the analysis are also made.
First it is assumed that U-nodes are homogeneous devices,
have the same processing and communication costs and have
the same movement parameters. Secondly, U-nodes have in-
finite (in practice this means sufficiently large) storage space.
Thus they do not have to consider possible replacement poli-
cies (for example, throwing away their less valuable content)
and respective costs. Thirdly, that each T-node generates a
single type of information content, and information content
is not depreciated in time or space. If it was depreciated, a
U-node should have to include in its decision the (possibly
subjective) value of each information object at the moment of
its acquisition. Examples of non-depreciated content include
statistical samples (e.g., measurements of physical quantities).
On the other hand, information with limited temporal or
spatial scope, or software modules that are subject to updates
are considered to be depreciating in time or space. We also
consider that U-nodes make decisions for their best interest,
but are not malicious, i.e., they don’t perform actions from
which they have no material gain, only to hurt others. Finally,
we assume that data exchanged between U-nodes or between

a U and T-node consist only of a few bits; thus they are
transmitted within an infinitesimal time interval, which is not
considered in the analysis.

II. ANALYTICAL MODEL

In the analysis that follows, we consider a number N of U-
nodes, and calculate the expected cost for a U-node to follow
a certain strategy on an arbitrary leg (Ti, Tj). Because of the
symmetry of our model, the cost is the same for all U-nodes.
A strategy consists of a sequence of actions, concerning the
decisions to collect, carry and transmit information that is not
of interest to a U-node. Actions are either of a cooperative or
selfish nature. A strategy is itself called cooperative if all the
actions it is composed of are cooperative.

We consider that the game is played between a U-node
starting from the origin sensor Ti and N − 1 other U-nodes
it may meet before reaching the destination sensor Tj . Our
working hypothesis is that a U-node is not interested in
the content of the origin sensor, but only in that of the
destination. A priori, it assumes the same for the other U-
nodes. This will produce conditions for cooperation in a worst-
case scenario, since otherwise if a U-node is also interested
in the content of the origin sensor, it has greater incentive to
cooperate. The analogous assumption for the other U-nodes
can be partially justified by the lack of any information about
the identities of the encountered nodes and their interests for
sensor information.

Costs can be expressed in time or energy units. Here we
interpret this cost as the delay to retrieve information content.
The length of a leg (Ti, Tj) is denoted by d(Ti, Tj). The
communication and processing cost of a U-node to acquire
content from a T-node and then transmit it to a U-node is
a constant c, translated in time units. Consistently with our
assumption of infinite storage, we do not consider any cost
for carrying the information. Finally, not to complicate the
analysis, the transmission ranges of both U-nodes and T-nodes
are set to be zero.

Consider the process X(t) of the position of the U-node
on the graph at each time instant t. We find its stationary
distribution as follows. First consider the embedded Markov
chain of waypoints visited sequentially by a U-node. Under the
stationary distribution of this chain, the fraction of transitions
to waypoint Ti is denoted by πi. Then if we have constant
velocity, the probability that the U-node is on any segment of
length x on leg (Ti, Tj) in direction from Ti to Tj is

πip(Ti, Tj)x∑
Ti

∑
Tj 6=Ti

πip(Ti, Tj)d(Ti, Tj)
. (1)

That is, it is the fraction of time the U-node spends on the
segment of length x while moving from Ti to Tj .

Suppose that the U-node, hereafter called Ui, is at waypoint
Ti at t = 0 and decides to go towards waypoint Tj . Confine the
strategy of each player to take values in the set S = {C,S} (C:
cooperative, S: selfish). By choosing strategy C, Ui copies,
carries and transmits the content of Ti to an encountered U-
node that is interested in it, whereas by following strategy S



it ignores it. In order to calculate the expected cost by follow-
ing a certain strategy, Ui should estimate the probability of
meeting another cooperative U-node coming from Tj towards
Ti, at a certain distance x from Ti. Suppose there are k other
(k < N) cooperative U-nodes. To meet another U-node within
a distance x, the latter must be at a distance of at most 2x at
t = 0 and be headed towards Ti. Since the move processes
of the U-nodes are mutually independent as well as jointly
stationary, the instant t = 0 is an arbitrary instant at which
Ui at Ti observes the position of the other U-nodes. Therefore
it observes the other U-nodes in their stationary distribution.
Consequently, if d(Ti, Tj) ≥ 2x the probability of a meeting
with at least one cooperative U-node within a distance x is

Fk(x) = 1− (1− πjp(Tj , Ti)2x∑
Ti

∑
Tj 6=Ti

πip(Ti, Tj)d(Ti, Tj)
)k .

(2)

If d(Ti, Tj) < 2x, we must also include the event that another
U-node is on a leg or direction different from (Tj , Ti) at t =
0 but can meet with Ui in time less than x/v. Consider all
such legs m and the starting points Tm of the U-nodes on
these legs. Let {Tm, . . . , Tj} denote all the paths that may
be followed to reach Tj before the meeting, and for which
p(Tm, ·) · · · p(·, Tj) > 0, where · denote intermediate states.
Then this meeting probability equals

1− (1−
∑

m πmp(Tm, ·) · · · p(·, Tj)p(Tj , Ti)2x∑
Ti

∑
Tj 6=Ti

πip(Ti, Tj)d(Ti, Tj)
)k .

The summation in the numerator is over all possible paths
that can be followed. This probability again equals (2), since∑

k πkp(Tk, ·) · · · p(·, Tj) = πj from the balance equations in
the embedded Markov chain.

Hence the distribution function Fk(x) gives the probability
that a meeting with another cooperative U-node takes place at
distance ≤ x, for any x such that 0 < x < d(Ti, Tj).

Suppose that there are only two nodes in the network, Ui

and Uj , and that Ui meets with Uj at distance x from Ti (x <
d(Ti, Tj)). If they follow strategies si, sj respectively (si, sj ∈
S), then the cost of Ui, denoted as a function C(Ti,Tj)

i (si, sj , x)
of Ui, where C(Ti,Tj)

i : S × S × [0, d(Ti, Tj)] → R, is

C(Ti,Tj)
i (C, C, x) = c + x/v

C(Ti,Tj)
i (S,C, x) = x/v

C(Ti,Tj)
i (C, S, x) = c + d(Ti, Tj)/v

C(Ti,Tj)
i (S, S, x) = d(Ti, Tj)/v .

(3)

We denote by α(Tj , Ti) the probability that Ui meets with
a specific other U-node before meeting Tj , i.e.:

α(Tj , Ti) , 2πjp(Tj , Ti)d(Ti, Tj)∑
Ti

∑
Tj 6=Ti

πip(Ti, Tj)d(Ti, Tj)
. (4)

As it can be seen, this meeting probability increases with
the length of a leg. Additionally, Ui has a higher meeting
probability for greater πjp(Tj , Ti), that is if the destination
node Tj is more frequently visited, or if U-nodes at Tj have

an increased probability of heading towards Ti.
We will derive the expected cost of Ui to take action si,

when k other U-nodes are cooperative (0 ≤ k ≤ N − 1). We
denote this as C(Ti,Tj)

i (si|k). For 1 ≤ k ≤ N − 1, we have
that

C(Ti,Tj)
i (si|k) =

∫ d(Ti,Tj)

0

C(Ti,Tj)
i (si, C, x)dFk(x)

+ (1− α(Tj , Ti))kC(Ti,Tj)
i (si, C, d(Ti, Tj)) .

(5)

We arrive at the following expressions for different combina-
tions of followed strategies:

C(Ti,Tj)
i (C|k) = c +

d(Ti, Tj)
v

1− (1− α(Tj , Ti))k

(k + 1)α(Tj , Ti)

C(Ti,Tj)
i (S|k) =

d(Ti, Tj)
v

1− (1− α(Tj , Ti))k

(k + 1)α(Tj , Ti)

C(Ti,Tj)
i (C|0) = c + d(Ti, Tj)/v

C(Ti,Tj)
i (S|0) = d(Ti, Tj)/v .

(6)

III. GAME-THEORETIC ANALYSIS

We observe from (6) that C(Ti,Tj)
i (C|k) >

C(Ti,Tj)
i (S|k) ∀i, k. Furthermore it can be shown that
C(Ti,Tj)

i (C|k), C(Ti,Tj)
i (S|k) are decreasing functions of k.

The game is a Bayesian analog of the N-person prisoner’s
dilemma (see [3]). (Since Ui does not know the number or
identity of other U-nodes it may meet on (Ti, Tj).) When
seen as a noncooperative game, it is evident from the above
expressions that there exists only one equilibrium, in which
every node is selfish. (Since S strongly dominates C for every
player.) However, it may not be the best solution; player Ui

can have a benefit by cooperating on (Ti, Tj), when k other
U-nodes are cooperative, if

C(Ti,Tj)
i (C|k) < C(Ti,Tj)

i (S|0) . (7)

That is, if the cost for Ui when k other U-nodes are cooperative
is smaller than its cost when all U-nodes are selfish. This
condition also complies with individual rationality of Ui, since
C(Ti,Tj)

i (S|0) is the minimax value Ui can guarantee for itself.
From (6), this inequality is satisfied if

1− 1− (1− α(Tj , Ti))k

(k + 1)α(Tj , Ti)
>

cv

d(Ti, Tj)
. (8)

It must always hold that c <
d(Ti,Tj)

v ; that is, our initial
assumption must be that the cost (expressed in time units)
for a U-node to acquire and transmit unwanted content must
be smaller than the time to reach Tj starting from Ti.

We find an approximate condition for the above inequality
to be satisfied. The Taylor polynomial of (1−α)k at α = 0 is,
up to a second order approximation, 1−kα+ k(k−1)α2

2 (k > 1).
Substituting this approximate expression in inequality (8), we



 0

 10

 20

 30

 40

 50

 60

 0  0.2  0.4  0.6  0.8  1

T
hr

es
ho

ld
 v

al
ue

 o
f k

α

d/v=10
d/v=50

d/v=100

(a) c = 3

 0

 20

 40

 60

 80

 100

 120

 0  0.2  0.4  0.6  0.8  1

T
hr

es
ho

ld
 v

al
ue

 o
f k

α

c=3
c=10
c=30

(b) d/v = 50

Fig. 2. Approximate threshold values of the number of other cooperative
nodes k above which cooperation on a directed leg is better for Ui than full
selfishness, for different values of α and d/v, c.

get the condition

k >
2cv

d(Ti, Tj)α(Tj , Ti)
− 2(1 + α(Tj , Ti))

α(Tj , Ti)(k + 1)
+ 2 ,

which is satisfied when

k >
2cv

d(Ti, Tj)α(Tj , Ti)
+ 2 . (9)

Based on (9), in Fig. 2 we show approximate threshold values
of the number of other cooperative nodes k above which
cooperation for Ui on (Ti, Tj) is more beneficial than the case
when all U-nodes are selfish.

These confirm that from the point of view of Ui, a smaller
number of cooperative nodes is required on long-distance
routes or when the destination node Tj is visited more often.
On the other hand, a higher number is required when U-nodes
are moving at a high speed or if the cost c is higher.

The situation in which each U-node is cooperative on
both directions of a leg (Ti, Tj) will be identified as “full
cooperation” on (Ti, Tj). The inverse situation in which each
U-node is selfish, will be called “full selfishness”. When full
cooperation is achieved as a strategic equilibrium in a leg of
the graph, then we will say that a cooperative equilibrium
exists on this leg. If this can be achieved on all legs, then a
cooperative equilibrium exists in the whole network. We next
proceed to find a strategy of each U-node and conditions under

which a cooperative equilibrium can be achieved.

First pay attention to the fact that even is full cooperation
is beneficial for U-nodes in the network, this is not enough to
sustain an equilibrium. For an equilibrium to exist, there must
either be some punishment to selfish nodes or some form of
contract, in which all U-nodes would agree to be cooperative,
threatening to be selfish if such contract is not signed by
everyone [4]. Given that the arrival to such an agreement is
difficult in an unstructured network with autonomous nodes,
we consider the following scheme that is easily applicable.

A requirement of the scheme is that U-nodes, upon meeting
each other, first exchange the lists of information objects in
their memory. These lists contain metadata regarding the type
of information and the source T-node. Then each U-node
executes this strategy: initially it is generous and collects and
carries unwanted content; however if on a certain leg of the
network it meets a selfish U-node, it will only transmit this
content with a probability p, called the cooperation probability
(p < 1). (If a U-node does not communicate its list of objects,
it can be considered selfish and the same strategy applies.)

We proceed to write a condition under which this strategy
is preferable for Ui on (Ti, Tj), and thus can lead to an
equilibrium. Given that there are

(
N−1

k

)
different combinations

of U-nodes where exactly k other U-nodes are cooperative, this
condition is

C(Ti,Tj)
i (C|N−1) ≤

N−1∑

k=0

pk(1−p)N−k−1

(
N − 1

k

)
C(Ti,Tj)

i (S|k) .

(10)
That is, the expected cost for Ui when all U-nodes are
cooperative must be smaller or equal to the expected cost
when Ui is selfish and k other U-nodes are cooperative with
probability p, k = 0, . . . , N − 1. It is evident that (7) is
a special case of this condition, where p = 0 and k = 0
(admitting 00 = 1).

Substituting from (6), we have that (in the following we
omit the parameters in d(·), α(·) for notational convenience)

c+
d

v

1− (1− α)N−1

Nα
≤ d

v

{
(1− p)N−1

+
N−1∑

k=1

pk(1− p)N−1−k

(
N − 1

k

)
1− (1− α)k

(k + 1)α
} (11)

The right-hand side (rhs) of this inequality becomes

d

v
(1− p)N−1

{
1 +

1
a

[ N−1∑

k=1

( p

1− p

)k
(

N − 1
k

)
1

k + 1

−
N−1∑

k=1

(p(1− α)
1− p

)k
(

N − 1
k

)]}
.

It can be derived that
∑N−1

k=1

(
p

1−p

)k (
N−1

k

)
1

k+1 =
∑N−1

k=1

(
p

1−p

)k
1
N

(
N

k+1

)
= 1

Np(1−p)N−1 − 1−p
Np − 1 and

∑N−1
k=1

(
p(1−α)

1−p

)k (
N−1

k

)
=

(
1−αp
1−p

)N−1

− 1. Therefore (11)
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Fig. 3. Graphical illustration of cooperative equilibrium conditions, for different values of the cooperation probability p and model parameters: the crossover
points of frhs with the diagonal N show approximate threshold values of N above which a U-node is cooperative in a directed leg in our model.

becomes

c+
d

v

1− (1− α)N−1

Nα
≤ d

v
(1− p)N−1

{
1

+
1
α

[ 1
Np(1− p)N−1

− 1− p

Np
−

(
1− αp

1− p

)N−1 ]}
.

Applying the second order Taylor polynomial approximation
to (1− α)N at α = 0, we finally obtain the condition

N ≥1 +
2
α

+
2(1− α)

α

{ 1
αN

− (1− p)N−1

− 1
aNp

[
1− (1− p)N

]
+ (1− αp)N−1 +

cv

d

}
.

(12)

In Fig. 3 we show graphically the required number of
nodes in the network that would satisfy this condition, for
different values of the meeting probability α and d/v. (We
draw the rhs of (12), called frhs and the diagonal N , called
flhs.) It can be deduced from the graphs that a cooperative
equilibrium on a leg is easier to achieve (i.e., we need a
smaller number of U-nodes) for smaller values of c and larger
values of d/v. The behavior with respect to α is less intuitive:
when the cooperation probability of other U-nodes is small, a
higher meeting probability leads a U-node actually having less
incentive to cooperate and appearing more selfish, whereas if

the cooperation probability of other U-nodes is high, it leads a
U-node to actually be cooperative. Finally, as the probability
of cooperation decreases, a smaller number N of nodes in the
network is required for an equilibrium to be achieved. We can
expect this result, since a cooperative U-node “punishes” more
a selfish U-node by giving its acquired content with a smaller
probability. Therefore U-nodes refrain from being selfish.

Note that in the model we develop in this paper we do
not have to consider a “stricter” condition for a cooperative
equilibrium to exist (i.e., a condition that would call for a
higher N ). This is because we have assumed in the beginning
that each U-node thinks, a priori, that all the other U-nodes are
interested in the content it collects; thus we have excluded the
case where a U-node would not collect unwanted information
because it might think that other U-nodes would also not
be interested in it (and hence also might not collect data at
their respective origin points). Therefore if such cooperative
equilibrium conditions are satisfied in all directed legs simulta-
neously, a cooperative equilibrium exists in the whole network.

IV. RELATED WORKS

Previous applications of game-theoretic methods in exam-
ining cooperation between mobile nodes have focused mainly
on traditional ad-hoc networks, where cooperation consists of



each node acting as a relay and forwarding packets of other
nodes, at the expense of an increased processing and energy
cost. This kind of cooperation is the main subject of the papers
in [5]–[8].

A work with a similar subject to ours is [9]. Therein, the
authors consider a general delay-tolerant network where infor-
mation is disseminated in a store-carry-and-forward manner.
The considered model is very similar to ours: information
generating nodes are static, and mobile nodes are either inter-
ested in certain information or not, but may collect it anyway
in order to exchange it with information of interest (barter
exchange). The authors additionally consider depreciation of
information content over time. The objective for each node
is to decide which messages to collect from the information-
generating nodes, based on their actual value, or the value they
could have as a trade object (barter value). The authors find, by
the means of simulations, an equilibrium strategy. In contrast
to the above-mentioned approach, in this paper we have
analytically derived an equilibrium strategy and conditions
considering the mobility of nodes in the network.

Finally, it is worth mentioning that game theory has been
applied in several other problems in wireless networks, such
as multiple access schemes or to model conflicts between
transmitters-jammers. A good overview can be found in [10].

V. ENDING NOTE

In this paper, we have studied a simple model of a nomadic
sensor network, and derived conditions under which rational
U-nodes will exhibit cooperative behavior on legs of the
network, given that a cooperative U-node will actually transmit
acquired sensor data with a probability p when it meets
a selfish U-node. The parameter p may either be a fixed
parameter of the system, or have a value everyone agrees
to. We think it should be greater than zero, to allow for
dissemination of information even if U-nodes make irrational
or erroneous decisions. Cooperative equilibria can exist in the
whole or parts of the network, i.e., one or more legs in the
network. In the continuation of this work, we plan to study
such equilibria in various graph topologies.

The model in this paper admits several simplifying assump-
tions that sacrifice reality for analytical tractability. However,
the assumptions regarding the knowledge each U-node may
have are realistic; furthermore, one should be aware of the fact
that mobile devices, advanced as they may be, still have limited
computational capabilities, as well as limited interactions with
an intelligent human user. Hence such a simple model can
indeed be used by U-nodes to decide whether or not they will
be cooperative.

One drawback however, is that the equilibria produced by
this model are not completely self-enforced. The cooperation
probability is the same for all U-nodes, and hence it should
be set by another authority or be stipulated by a common
agreement between the players. The same analysis can be

followed to derive cooperative equilibrium conditions when
the cooperation probability is different for each U-node. In
a more realistic scenario the cooperation probability would
correspond to a reputation value of each U-node to be coop-
erative. Reputation values can be obtained from interactions
between U-nodes (examples of distributed algorithms can be
found in [11]).

Further research issues involve relaxing some of the as-
sumptions used in the paper, such as infinite storage capacity,
non-depreciation of information in time or space, zero trans-
mission ranges, etc. An unresolved issue is also the behavior
of a U-node towards the second, third, etc. U-node it may
potentially meet on the same leg, since the proposed strategy
only guarantees that U-nodes will exhibit cooperative behavior
to the first U-node they encounter on the leg. (A U-node may
have acquired the content but not transmit it to the remaining
U-nodes it will meet.) It would also be interesting to append
a value to each sensor node that expresses the average interest
of U-nodes in its content, and that would be taken into account
for a U-node’s decision. Additionally, an open issue is to
find cooperation conditions when the number of U-nodes is
not known a priori to all players, but is a random variable.
Finally, the ultimate goal should be to describe the dynamics
of the game, by studying it either as a repeated game or as
an evolutionary game. It is anticipated that an equilibrium can
also be sustained in a repeated game, where punishments occur
for selfish nodes in subsequent rounds of the game. By the
evolutionary approach, we can study how the strategies of the
players would evolve until a stable situation has been reached.
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