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Abstract

Service placement has typically been studied through
the formulation and solution of a 1-median problem that
is known to be complex and require global information. As
such approaches are clearly not scalable in dynamic and
large-scale environments, a more reasonable approach to
service placement for large, ad hoc and autonomic envi-
ronments would be through service migration. Such a mi-
gration policy has recently been proposed for tree topolo-
gies. The focus of the present paper is to devise effective
service migration policies for general topologies with equal
weight links. The proposed strategy – that incorporates a 2-
phase polling mechanism of local scope and, consequently,
induces in general a certain overhead - is shown to out-
perform the previous one (i.e., getting closer to the optimal
placement) for such general topologies. Finally, a hybrid
migration policy (combining the present and the past ones)
is considered and shown through simulations to be capable
of reducing significantly the overhead effects of the afore-
mentioned polling mechanism.

1 Introduction

The service placement problem is encountered in various
networks such as transportation networks, supply networks
and communication networks, [7], [13]. The globalization
of the Internet and the proliferation of services and service
demands have necessitated the careful selection of the loca-
tion of the service. The goal is to bring the service provi-
sion points (referred to here as service nodes) close to the
demand in order to minimize communication resource con-
sumption and enhance the Quality of Service (QoS) of the
provided service. Due to the recent technological changes
(e.g., the introduction of powerful machines, the service
proliferation, the generalization of high-power computing)
the traditional problem of placing relatively few big services
in one of the few (powerful) potential service provider fa-
cilities (big network elements) is increasingly being trans-

formed into a problem of placing numerous services to one
of the numerous potential service providers (network ele-
ments and possibly service producers).

This paper focuses on the problem of determining the
optimal service placement (that is, determining the optimal
position of the service node), so that some average cost as-
sociated with the provision of this service is minimized.
When p (p ≥ 1) service nodes are considered, the opti-
mal placement can be determined by formulating and solv-
ing a p-median problem, [7]. The p-median problem has
been shown to be an NP -hard problem for general graphs,
[3]. Various attempts, [11], [4], [5], [12], [1], have been
proposed in the past, mostly aiming to achieve suitable ap-
proximation solutions. More recent work in the area can
be found in [6], [9]. In most cases – apart from the heuris-
tic or approximation policies – the determination of the op-
timal service node requires some global network informa-
tion (e.g., the network topology and the service demands of
all network nodes). Since such (traditional) approaches are
complex and are based on global information availability,
they are non-scalable for networking environments support-
ing numerous services, service users and network elements,
which are also expected to be fairly dynamic.

A more reasonable approach to service placement for
large, ad hoc and autonomic environments would be
through service migration, [10]. That is, consider policies
for moving the service position (one hop/node at a time) to-
wards more effective positions based on local information,
instead of requiring global information and solving contin-
uously (in response to dynamic changes) a large optimiza-
tion problem, [10], [8], [13], [14]. As it was shown for the
migration policy introduced in [10], the service node needs
to simply monitor the aggregate amount of data associated
with the particular service that are exchanged through its
neighbor nodes and decide on the service movement based
exclusively on the information gathered through the (local)
monitoring process. This information was shown to be ad-
equate in order for the service to move towards and till the
end of a monotonically cost decreasing path in topologies
like trees with a unique shortest path tree (SPT), [2], [10].



The service movement criterion presented in [10], to be
referred to hereafter as Criterion A, is sometimes not able
to move the service until the end of a cost decreasing path,
particularly when alternative shortest paths can be utilized
after a service movement to a new neighbor node (i.e., more
than one SPTs in the network). Eventually, Criterion A
does not allow for further cost reduction, even though this
would be achievable by a single movement of the service
to a neighbor node. This particular inefficiency motivates
the introduction of another service migration criterion, i.e.
Criterion B, presented here, that is shown to be capable
of moving the service along and till the end of a mono-
tonically cost decreasing path without the unique SPT re-
quirement (note that in general, the end of a monotonically
cost decreasing path may not be the optimal position – i.e.,
the node at which the service cost is minimized). Criterion
B, however, depends on non-local information in the gen-
eral case, and therefore, general topologies with equal link
weights are also considered in this paper that allow for fur-
ther refinement of Criterion B, thus resulting in Criterion
Be, that is shown to depend exclusively on local informa-
tion.

Criterion Be is based on a 2-phase polling mechanism
which requires two tentative service movements before a
decision for a service movement to a certain neighbor node
is finalized. Therefore, a hybrid migration policy that com-
bines and utilizes both criteria is proposed, which signifi-
cantly reduces the introduced overhead due to the polling
mechanism, as shown through simulations.

In Section 2 the network environment is described along
with the problem formulation and some useful definitions.
In this section the applicability of Criterion A, proposed in
[10], and its limitations are also presented motivating the
introduction of Criterion B, presented in Section 3. The
particular case of a general network topology of equal link
weights is considered in Section 4 where Criterion Be is
introduced and the conclusions are drawn in Section 5.

2 Problem Formulation and Criterion A

The network topology is represented by an undirected
graph G(V,E), where V is the set of nodes and E the set of
links among them. Let Sv denote the set of nodes that have
a direct link with node v. Let (u, v) denote a certain link
of the graph between node u and node v. Let, also, each
link be assigned a positive integer referred to as weight. Let
du,v denote the distance for the particular G(V,E) graph
between node u and node v, corresponding to the summa-
tion of the weights along a shortest path among both nodes
(for the same node v, dv,v = 0). Alternatively, du,v may
be referred to as the traveling cost between nodes u and
v. Let λv denote the rate at which data packets associated
with a particular service are transferred through the network

(along a shortest path) between node v and the service node:
λv will be referred to as the service demands of node v.

For a given service node location (normally node y in
this paper), it is the role of the employed routing protocol to
identify a suitable route throughout the network links and
nodes towards the particular destination (i.e., the service
node). In this work it is assumed that the routing proto-
col is capable of forwarding the nodes’ data packets (cor-
responding to their service demands) over a shortest path
towards their final destination, [2]. Eventually, a shortest
path tree (SPT), [2], is created rooted at the particular ser-
vice node. Let SPT (x) denote the particular SPT when the
root is node x. If the root of the SPT is the service node
y, then all data packets corresponding to the particular ser-
vice are forwarded over the branches of SPT (y) towards
the service node y.

Let C
(x)
y denote the total cost for all network nodes using

a particular service when the service is located at node y and
the data packets corresponding to the service demands are
forwarded in the network along the branches of SPT (x),
for some node x. Let also d

(x)
y,v denote the distance between

node y and node v in SPT (x) (note that dy,v corresponds
to the distance between node y and node v over a shortest
path in graph G(V,E)). Eventually,

C(x)
y =

∑
v∈V

λvd(x)
y,v. (1)

Note that C
(x)
y ≥ C

(y)
y , since SPT (y) by definition pro-

vides the routes to a service located at node y (its root), of a
cost that cannot be higher than that of the roots dictated by
any other SPT (x), for x �= y.

2.1 Aggregate Service Demands

The objective in this paper is to move the service to
neighbor nodes in an attempt to reduce the aforementioned
cost and stop service migration when no further cost reduc-
tion is achievable. Let “service movement y → z” denote
the movement of the service from node y to some neighbor
node z, z ∈ Sy , assuming to be completed in one time unit.

Suppose that a particular link (y, z) is removed from
SPT (x). Let the set of nodes of the subtree of SPT (x)

that inludes node y (z) be denoted as tree
z,(x)
y (treey,(x)

z ),
respectively (see Figure 1.a). Obviously,

V = treez,(x)
y ∪ treey,(x)

z . (2)

The determination of subtree tree
y,(x)
z of some SPT (x)

facilitates the description of the aggregate service demands
generated from nodes z and below in tree

y,(x)
z . Assuming

that the service is located at node y, data packets exchanged
between the service node y and any node v ∈ tree

y,(x)
z ,
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will be forwarded through node z. Eventually, z is the node
through which the aggregate amount of data for all nodes
v ∈ tree

y,(x)
z , are forwarded towards their destinations.

The aggregate service demands of those nodes belonging
to tree

y,(x)
z , denoted by Λy,(x)

z , are given by,

Λy,(x)
z =

∑

∀v∈tree
y,(x)
z

λv. (3)

An example for a service located at node y is depicted in
Figure 1.b. The particular value of Λy,(x)

z is made available
through an appropriate monitoring mechanism, [10] which
is not in the scope of this paper to be described.

2.2 Criterion A

The service migration philosophy, briefly described in
Section 1 and in more detail in [10], is based on per hop
service movements over neighbor nodes. In [10], the fol-
lowing migration criterion was proposed.

Criterion A: Service movement y → z takes place, if
Λz,(y)

y < Λy,(y)
z is satisfied.

When the condition Λz,(y)
y < Λy,(y)

z is satisfied, it is

ensured that C
(y)
z < C

(y)
y , [10]. Since both Λz,(y)

y and

Λy,(y)
z can be made available locally at the service node y

using an appropriate monitoring mechanism for the aggre-
gate service demands, [10], Criterion A can be employed
in large scale peer-to-peer and autonomic networking envi-
ronments. As it was shown in [10], under Criterion A the
service moves along a cost decreasing path.

One limitation of Criterion A is that it may not follow
the cost decreasing path until the end. This is due to the
fact that Criterion A considers SPT (y) when considering
a move to a node z (Λz,(y)

y and Λy,(y)
z correspond to the

aggregate service demands forwarded over the branches of
SPT (y)). Assume that Criterion A stops at some node y;
that is C

(y)
z ≥ C

(y)
y , ∀z ∈ Sy . If SPT (y) �= SPT (z)

though, as it may well be the case, then it may be that

C
(z)
z < C

(y)
y , due to the utilization of shortest paths un-

der SPT (z) that are not part of SPT (y). Consequently,
Criterion A may fail to discover a cost decreasing service
movement y → z.

Of course, if the network contains a unique SPT (e.g., in
tree topologies), the service eventually arrives at the opti-
mal position under Criterion A, [10]. A unique SPT exists,
if SPT (x) consists of the same set of links and nodes for
all network nodes x ∈ V . In general topologies, for two
different nodes y, z, it is possible that SPT (y) �= SPT (z),
and therefore, multiple SPTs (i.e., more than one) exist in
the network depending on the particular root.

3 Migration Criterion B

Assume that z ∈ Sy. Nodes in tree
y,(y)
z , utilize link

(y, z), when the service is located at node y and nodes in
tree

z,(y)
y (the rest of the network nodes) do not. If the ser-

vice moves to node z, then a subset of tree
z,(y)
y starts utiliz-

ing link (y, z), while the remaining nodes (of tree
z,(y)
y ) do

not utilize link (y, z). Let the latter set of nodes be denoted
as Φy→z . Therefore, tree

z,(y)
y = tree

z,(z)
y \Φy→z , while,

for any node u ∈ Φy→z , d
(z)
u,z < d

(y)
u,y + dy,z is satisfied. A

more formal definition of Φy→z is the following,

Φy→z = {u: u ∈ treez,(y)
y and d(z)

u,z < d(y)
u,y + dy,z}. (4)

Φy→z does not include those nodes u ∈ tree
z,(y)
y , for

which d
(z)
u,z = d

(y)
u,y + dy,z . It is assumed here that these

nodes continue to utilize the same (shortest) path that they
used to utilize (when the service was located at node y),
with the addition of link (y, z) (when the service moves to
node z).

Based on the aforementioned definition of Φy→z , it is
easy to derive that,

treez,(y)
y = treez,(z)

y ∪ Φy→z, (5)

treey,(z)
z = treey,(y)

z ∪ Φy→z. (6)

Lemma 1 C
(z)
z < C

(y)
y is satisfied, iff,

dy,z

(
Λy,(y)

z − Λz,(z)
y

)
>

∑
u∈Φy→z

λu(d(z)
u,z − d(y)

u,y). (7)

Proof: According to equations (1), (5) and (6), and since,
y ∈ Sz , d

(z)
y,z = d

(y)
y,z = dy,z , then, C

(z)
z − C

(y)
y =

dy,z

(
Λz,(z)

y − Λy,(y)
z

)
+

∑
u∈Φy→z

λu(d(z)
u,z − d

(y)
u,y). In

order for C
(z)
z < C

(y)
y to be satisfied, it suffices that

dy,z

(
Λz,(z)

y − Λy,(y)
z

)
+

∑
u∈Φy→z

λu(d(z)
u,z − d

(y)
u,y) < 0,

and the lemma is proved.



In view of Lemma 1 the following service migration cri-
terion is established.

Criterion B: Service movement y → z takes place,

if dy,z

(
Λy,(y)

z − Λz,(z)
y

)
>

∑
u∈Φy→z

λu

(
d
(z)
u,z − d

(y)
u,y

)
is

satisfied.
The definition of Criterion B and the cost reducing trig-

gering of the movement under it allows for the following
lemma.

Lemma 2 A service movement under Criterion B termi-
nates at the end of a monotonically cost decreasing path.

In view of Lemma 2, it is clear that Criterion B is an
improvement over Criterion A that is not able to move the
service until the end of the a cost decreasing path (unless
the unique SPT property is satisfied). This improvement is
possible at the cost of requiring some non-local topology
information (e.g., Φy→z , λu, d

(z)
u,z − d

(y)
u,y), which was not

needed for the application of Criterion A. The consideration
of general topologies of equal link weights in the following
section allows for further elaboration on Criterion B and
the subsequent introduction of Criterion Be that is based on
local information.

4 Migration in Equal Link Weight Topolo-
gies

In this section the focus is on general topologies with
equal link weights (for simplicity, the weight of each link is
considered equal to 1). Normally these topologies allow for
multiple SPTs depending on the case (e.g., tree topologies is
an exception due to the existence of a unique SPT regardless
of the link weights). Depending on the topology, it is also
possible that for a certain root x, more than one SPT (x)

can be drawn. Consider, for example, the network depicted
in Figure 2.a: SPT (y) may be either the one depicted in
Figure 2.b, or the one depicted in Figure 2.d.

The increased number of SPTs in a network allows for
the existence of numerous alternative shortest paths in the
event of a certain service movement. This is the main lim-
itation of Criterion A, as already discussed in Section 2,
and therefore, equal link weight topologies may be consid-
ered as a worst case scenario for Criterion A. As it will be
shown next, a new form of Criterion B can be derived that
is based on local information (i.e., knowledge of Φy→z , λu

and d
(z)
u,z − d

(y)
u,y , is no longer required) provided that a cer-

tain 2-phase polling mechanism is employed.
The proposed polling mechanism consists of two phases.

During the first polling phase the service (tentatively)
moves to node z from node y. This service movement is
denoted as (y → z)1 to emphasize the fact that it corre-
sponds to the first polling phase. When the service is located
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Figure 2. Shortest path trees for the example
network presented in Figure 2.a, for the first
and the second polling phase.

at node z, SPT (z) is formed and therefore, knowledge of

Λz,(z)
y (denoted now as

(
Λz,(z)

y

)1

since it corresponds to the

first polling phase) is now available using a suitable mon-
itoring mechanism, [10]. Afterwards, the service moves
back to node y (i.e., service movement (z → y)1) and this
second step concludes the first polling phase. The second
polling phase is similar to the first one apart from some
proper adaptation of the notations (e.g., the service move-
ment y → z is now denoted as (y → z)2).

4.1 Criterion Be

The main aim in the rest of this subsection is to simplify
the condition of Criterion B by proving that for equal link
weight topologies, at the end of the 2-step polling mecha-
nism, the right term of the criterion’s inequality reduces to
0. This is possible by considering set Θ−1

y→z and set Θ0
y→z ,

such that Φy→z = Θ−1
y→z ∪Θ0

y→z , and Θ−1
y→z ∩Θ0

y→z = ∅,

where, (a) if a node u ∈ Θ−1
y→z , then d

(z)
u,z −d

(y)
u,y = −1; and

(b) if a node u ∈ Θ0
y→z , then d

(z)
u,z − d

(y)
u,y = 0. Note that

the difference d
(z)
u,z − d

(y)
u,y can take no other values than −1

or 0, since (a) u ∈ Φy→z; (b) all link weights are equal to
1; and (c) any service movement takes place among neigh-
bor nodes. An example is illustrated in Figure 2. In Figure
2.b the service is located at node y and when it moves to
node z (as depicted in Figure 2.c), Θ−1

y→z = {d} (since the
distance between node d and the service node decreases,
or, d

(z)
d,z = d

(y)
d,y − 1, when the service moves to node z

from node y) and Θ0
y→z = {c} (since the distance be-

tween node d and the service node remains the same, or,
d
(z)
d,z = d

(y)
d,y , when the service moves to node z from node

y). Note that for node b, d
(z)
b,z = d

(y)
b,y + 1, and therefore,

b /∈ Φy→z . As it was mentioned in Section 3, node b will



utilize the shortest path {(b, y), (y, z)}, instead of the short-
est path {(b, c), (c, z)}, in order to satisfy the need for as
few changes as possible in the network.

Lemma 3 For the service movement (y → z)2, Θ−1
(y→z)2 =

∅.

Proof: When the service movement (z → y)1 takes place,
it can be shown that Φ(z→y)1 ∩ Θ−1

(y→z)1 = ∅. Actually,

by defintion, for any u ∈ Θ−1
(y→z)1 , d

(z)
u,z − d

(y)
u,y = −1, and

for any node u ∈ Φ(z→y)1 , d
(y)
u,y < d

(z)
u,z + 1, or, d

(z)
u,z −

d
(y)
u,y > −1. Obviously, if u ∈ Φ(z→y)1 , then u /∈ Θ−1

(y→z)1 ,

and vice versa. Therefore, Φ(z→y)1 ∩ Θ−1
(y→z)1 = ∅. Since(

tree
z,(y)
y

)1

=
(
tree

z,(z)
y

)1

∪Φ(z→y)1 , and
(
tree

z,(z)
y

)1

∩
Θ−1

(y→z)1 = ∅, it is evident that
(
tree

z,(y)
y

)1

∩Θ−1
(y→z)1 = ∅.

Obviously, there is no node u ∈
(
tree

z,(y)
y

)1

, such that

d
(z)
u,z − d

(y)
u,y = −1. Consequently, by definition, Θ−1

(y→z)2 =
∅, and the lemma is proved.

Figure 2 illustrates such an example regarding the net-
work depicted in Figure 2.a. Assuming the service ini-
tially located at node y and the corresponding SPT (y) as
depicted in Figure 2.b, when the service moves to node z,
SPT (z) is the one depicted in Figure 2.c. For this case,
Φ(y→z)1 = {c, d}, Θ−1

(y→z)1 = {d}, and Θ0
(y→z)1 = {c}.

When the service returns to node y (i.e., service movement
(z → y)1), a new SPT is created (i.e., SPT (y)), as depicted
in Figure 2.d. As it was expected, Φ(z→y)1 = {c}, since
there is no reason for node d ∈ Θ−1

(y→z)1 , to stop utiliz-
ing the new (and of lower cost) shortest path towards the
(new) service node z. When the second polling phase takes
place (i.e., service movement (y → z)2), it is obvious that
Φ(y→z)2 = {c}, and Θ−1

(y→z)2 = ∅.
The following migration criterion can be used in general

topologies with equal link weights.
Criterion Be: In a network of equal link weights, a

service movement y → z takes place, if
(
Λy,(y)

z

)2

>
(
Λz,(z)

y

)2

is satisfied.

4.2 The Hybrid Scheme

Criterion Be can be applied in general and of equal link
weight topologies without any requirement for non-local in-
formation that is an important property for the considered
network environments. On the other hand, the employment
of the 2-phase polling mechanism introduces a certain over-
head. It is possible to reduce this overhead by consider-
ing a hybrid combination scheme of both Criterion Be and

Table 1. Results.
RG Grid

Time α Time α
Be 8 1.087 104 1
A/Be 7 1 26 1

Criterion A. Under this scheme the service migrates un-
der Criterion A. When it stops moving under Criterion A,
Criterion Be is used to decide if a next service movement
is possible. If a service movement is decided under Crite-
rion Be, the service moves to the particular node and Cri-
terion A is resumed for the subsequent service movements
as before. Service migration terminates by the time that no
service movement is possible under Criterion Be. This ap-
proach allows for the reduction of the overall cost, when
compared to the case that only Criterion A is used, and for
fewer service movements, when compared to the case that
only Criterion Be is used.

In order to demonstrate the benefit when using the afore-
mentioned hybrid scheme, simulation results (of a single
run) for both cases (Criterion Be and the hybrid scheme) are
presented (these results are preliminary ones correspond-
ing to ongoing work and will be further extended in future
extensions). Two topologies of 100 nodes are considered
and the aggregate service demands for all network nodes
are assumed given (no need for a monitoring mechanism).
The first topology considered is the outcome of the random
graph model (RG), while the second is a grid topology of
4 × 25 dimension. The diameter of the first topology is
equal to 8 and of the second is equal to 27 (the diameter cor-
responds to an upper bound of the number of hops required
for a service to move until the optimal position). Clearly, the
objective is for the service (artificially located as far away
as possible from the optimal position in the initial setup) to
move to the optimal position. Let C

(opt)
opt denote the cost

when the service is located at the optimal position. Con-
sequently, the service moves to the optimal position (e.g.,
node u), when α = 1, for α = C

(u)
u /C

(opt)
opt .

In Table 1, it is obvious that under Criterion Be, the
service is capable of moving close to the optimal position
(α = 1 or α ≈ 1 for all cases) in 8 time units in the ran-
dom graph case and 104 time units in the grid case. When
the hybrid scheme is applied, it is evident that the overall
time is reduced especially for the case of grids. This can
be explained based on the different size of the diameter for
both networks. Actually, when the polling mechanism is
used, this has a significant effect on the grid topology (due
to the significantly larger diameter when compared to the
random graph). On the other hand, when the hybrid scheme
is applied, the polling mechanism may be avoided for some
movements (due to the employment of Criterion A).



An upper bound regarding time units until the service
movements to the optimal (or to a close to the optimal) po-
sition is D × k, where D is the network diameter and k the
average number of network nodes. This upper bound as-
sumes that Criterion Be is applied in every step. The best
case under the hybrid scheme (i.e., only Criterion A is ap-
plied and therefore, the polling mechanism is not used), al-
lows for the reduction of the previous bound to D.

5 Summary and Conclusions

In this paper, the efficient service placement problem for
general topologies is studied. This problem, that is identical
to the 1-median problem, is hard to be solved since existing
approaches require global information and increased num-
ber of messages. As a result these approaches are not suit-
able for large-scale and/or dynamic environments. In order
to cope with this inefficiency, the idea of service migration,
[10], is exploited in this paper and a previously proposed
service migration Criterion A, [10], was extended here to
cope with certain inefficiencies.

This motivated the introduction of service migration Cri-
terion B proposed here, aiming at general topologies. Equal
link weight topologies were also considered here, corre-
sponding to a worst case scenario for Criterion A due to the
increased number of alternative shortest paths in the net-
work, allowing, at the same time, for the derivation of a
simplified form of Criterion B, i.e. Criterion Be. Criterion
Be requires local information (as opposed to Criterion B
that turned on to require non-local network information) to
decide on the service movement and as it was analytically
shown, it is capable of moving the service along and till
the end of a cost decreasing path at the cost of a two phase
polling mechanism. In the sequel, a hybrid scheme, com-
bining both Criterion A and Criterion Be, was proposed
resulting in reduction of the overhead introduced by the
polling mechanism, the claims being supported by simu-
lation results.

In conclusion, service migration is shown here that is
not limited in tree topologies, [10], but can be also applied
to general cases. The proposed new criteria in this paper
introduce some overhead (due to the polling mechanism)
but on the other hand they rely on local information and are
fully distributed which is a plus with respect to scalability
in large network environments, [13]. Further future work
will consider criteria for migration of multiple service facil-
ities in the network and will provide for further simulation
results.
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