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The information dissemination problem in large-scale networking environments like wireless sensor net-
works and ad hoc networks is studied here considering random geometric graphs and random walk based
approaches. A new type of random walk based agent is proposed in this paper and an analytical expres-
sion with respect to coverage (i.e., the proportion of the network nodes visited by the random walk agent)
as a function of the number of the agent movements is derived. It is observed that the cover time of many
of already existing random walk based variants is large in random geometric graphs of low degree (as it is
commonly the case is wireless environments). As this inefficiency is attributed (as discussed in the paper)
to the inability of existing random walk based solutions to move away from already likely covered areas,
a mechanism for directional movement (i.e., jumping) of the random walk based agent is proposed and
studied, that allows the agent to jump to different network areas, most likely not covered yet. The pro-
posed mechanism (Jumping Random Walk) is studied analytically and via simulations and the parame-
ters (of the network topology and the mechanism) under which the proposed scheme outperforms
existing random walk based variations are determined.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

One of the main challenges associated with large-scale, unstruc-
tured and dynamic networking environments is that of efficiently
reaching out to all or a portion of the network nodes (i.e., disseminating
information) in order to provide, e.g., software updates or announce-
ments of new services or queries. The high dynamicity and the sheer
size of such networking topologies ask for the adoption of decentral-
ized approaches to information dissemination [1–4]. In this paper,
the problem of efficiently disseminating information (or queries)
across a large-scale, resource-limited, ad hoc-structured wireless
network, such as a wireless sensor network, is considered. One of
the simplest approaches employed for disseminating information
in such environments, is the traditional flooding approach. Under
flooding [5–8], each time a node receives a message for the first time
from some node, it forwards it to all its neighbors except from that
node. Despite its simplicity and speed (typically achieving the short-
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est cover time, upper bounded by the network diameter), the associ-
ated large message overhead is a major drawback.

As flooding is considered not to be an option for large-scale,
wireless sensor networks (WSNs) due to strict energy limitations
of individual sensor nodes, solutions based on variations of the
random walk based information dissemination paradigm are
viewed as reasonable choices for searching and/or routing in
WSNs [9–11]. Furthermore, there has been a significant body
of work in adopting random walks for search or information dis-
semination in large peer-to-peer (P2P) networks [12–15]. The
random walk based information dissemination paradigm pos-
sesses several good characteristics such as simplicity, robustness
against dynamic failures or changes to the network topology,
and lack of need for knowledge of the network physical and
topological characteristics. A Random Walk agent (RW-agent)
doing a simple random walk within a network of wireless sen-
sors moves from neighbor node to neighbor node in a purely
random manner, frequently revisiting previously covered nodes
in a circular manner. Even when backtracking (returning to the
node it just came from) is not allowed, some circular movement
in the topology can not be eliminated; these revisits constitute
overhead and impact negatively on the cover time [16] of the
process. Such a poor behavior of the RW-agent is attributed to
the random manner of its movement, combined with some prob-
lematic topological characteristics of large-scale wireless ad hoc
networks, such as cliques and bottlenecks. To make sure that
there is consistency in terminology in this paper, we note here
mps in large-scale random geometric graphs, Comput. Commun. (2010),
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that the term RW-agent denotes always an agent performing a
simple random walk without backtracking in the network,unless
otherwise stated.

Large-scale, random geometric graphs (RGGs) have been stud-
ied in the past in relationship with percolation theory, statistical
physics and hypothesis testing [17]. Recently, the GðN; rcÞ RGG
has received significant attention due to its applicability in model-
ling wireless ad hoc and sensor networks, where N is the number of
network nodes and rc is the connectivity radius of individual nodes
in the field. The network connectivity of the RGG depends on (a)
the connectivity radius rc; and (b) the geometric position of nodes.
In particular, any nodes having geometric (euclidean) distance be-
low the connectivity radius rc are considered to be bi-directionally
connected. Naturally, connectivity radius rc should be large en-
ough, such that the network is connected, i.e., there are no isolated
nodes within the network. Such a network connectivity model is
substantially different from the well-known scale-free network
model arising in many natural and man-made systems, like the
Internet, the World Wide Web, citation networks and some social
networks. Many such networks fall into the class of scale-free net-
works, meaning they have power-law (or scale-free) degree distri-
butions. The Barabasi-Albert model is one of several proposed
models that generates scale-free networks [18]. The rules of
growth and preferential attachment used for creating such net-
works, allow for any two nodes (no matter how far away from each
other) to be connected with non-zero probability. Existence of
long-haul links (links connecting nodes residing far apart in phys-
ical distance), although perfectly valid in power-law graphs, do not
appear in RGGs, due to physical limitations associated with the
connectivity radius rc .

In this paper the Jumping Random Walk (J-RW) mechanism,
originally proposed in [19], is shown both analytically and experi-
mentally to be an efficient random walk based information dissem-
ination/ retrieval mechanism for large-scale RGGs. The
contributions in this paper, in addition to presenting the J-RW
mechanism, include analytical results about the coverage of the
RW-agent and J-RW-agent and a new set of simulation experi-
ments to validate the analytical findings on coverage. The proposed
J-RW scheme entails the well-known, key benefits of random walk
based mechanisms, like simplicity, lack of need for centralized con-
trol and robustness to topology changes, while providing a ‘‘boost”
in performance, i.e. accelerating the coverage process within a RGG
(modelling a large-scale WSN). The latter is achieved by introduc-
ing a second state of operation of the J-RW-agent, in which the ran-
dom walk based movement paradigm is replaced by a non-random
‘‘directional” movement paradigm. Note that the other state of
operation of the J-RW-agent is similar with that of the RW-agent
(i.e., it executes a random walk without backtracking). It turns
out that this modification in the agent’s movement improves sig-
nificantly the cover time in RGGs by allowing the J-RW-agent to
traverse some ‘‘virtual” long links in the topology, which are other-
wise absent in RGGs. A similar phenomenon has been described in
[20] in the context of social networks. Individuals in that pioneer-
ing work were assumed to live on the vertices of a grid and thus
they know their neighbors for some number of steps in all direc-
tions (links to local neighbor nodes are established). They also have
a number of acquaintances distributed more broadly across the
grid, representing a few, ‘‘long range” links of nodes. The author
shows that networks constructed under such criterion can accu-
rately model a social network as formed by a group of human
beings through their relationships or by computers communicat-
ing in the World Wide Web. There can be also a decentralized algo-
rithm (individuals may use only local information) for such
network models that is capable of finding short paths between
two individuals with high probability.
Please cite this article in press as: L. Tzevelekas et al., Random walk with ju
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2. The RW-agent

A credible alternative to flooding for disseminating information
in an unstructured, large-scale networking environment, is the
random walk based information dissemination paradigm. In ran-
dom walk based approaches, initiator nodes (representing an end
user in P2P networks or a sink in WSNs) employ the random walk
agent that will move randomly in the network, one hop/node per
time slot, informing (or querying) all the nodes in its path. Random
walks in large-scale P2P networks have been shown to possess a
number of good properties for searching and/or distributing of
information within the network. In particular, authors in [21] have
shown that whenever uniform sampling from the set of nodes of a
P2P network would have been a good algorithmic approach, the
random walk method is an excellent candidate (i) to simulate uni-
form sampling, moreover (ii) the number of simulation steps re-
quired can be as low as the number of samples in independent
uniform sampling. Another paper [22] proposes a random walk
based search protocol for large-scale P2P Gnutella-like systems,
where the biased random walk approach is used for directing que-
ries towards high-capacity nodes (typically best able to answer the
queries). Random walks are introduced here mainly for scalability
purposes, in contradiction to flooding that can easily overload the
network, in case of multiple, simultaneous queries. This work dif-
fers in that the scope is only on information propagation/querying
in large-scale wireless sensor networks modelled as a random geo-
metric graph.

Random walk based solutions for use in wireless sensor net-
works have been proposed in [10,11]. In particular, authors of
[10] present data gathering in structured wireless sensor networks,
where the sensor locations form a regular grid or hex-grid struc-
ture. They present analytical findings of the node occupation prob-
ability and the first-passage probability of nodes, and through
those calculate the latency and energy associated with the system
to report from N nodes with N random walks to a set of

ffiffiffiffi
N
p

sinks.
This work differs from that paper in that the sensor node locations
are assumed random, forming a RGG, and also there is a single ran-
dom walk agent traversing the network for information dissemina-
tion/retrieval purposes. Furthermore, a recent theoretical result on
speeding up distributed algorithms that use random walks as a
subroutine is shown in [11]. The authors propose an algorithm
which can compute a random walk sample of length l in fewer than
l rounds on an undirected unweighted network. Previous algo-
rithms computing random walk samples of length l do so naively,
i.e., in OðlÞ rounds. This work differs from the paper described pre-
viously in that the authors use a multiplicity of short random walks
to prefetch information and thus accelerate the sampling process
in the network, whereas in this work a different methodology is
used without a need to invoke multiple random walk agents in
the network, thus possibly causing congestion.

The overhead of random walk based solutions is considered to
be much smaller than that of flooding approaches, at the expense
of a significant increase in cover time. Cover time (Partial Cover
time) is the expected time taken by a random walk to visit all (a
portion of) nodes of a network. The generally relatively large (com-
pared to flooding) cover time achieved under random walk based
approaches depends on the network topology. For instance, it is
OðN lnðNÞÞ for the fully connected graph (best-case scenario) and
OðN3Þ for clique topologies (worst case scenario) [16,23]. Random
walks on the RGG GðN; rcÞ have been shown to have optimal cover
time OðN lnðNÞÞ and optimal partial cover time OðNÞ with high
probability given that the connectivity radius of each node rc ful-
fills a certain threshold property, i.e. given that r2

c P c8 lnðNÞ
N , [24].

Generally, it has been shown that C is lower for high connectivity
network topologies, such as complete graphs, and it is higher in
mps in large-scale random geometric graphs, Comput. Commun. (2010),
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network topologies presenting bottlenecks. In the latter case, the
number of revisits of already covered nodes (which affect the in-
duced overhead and cover time) becomes particularly high.

The analysis and simulation experiments in this paper utilize a
RW-agent variation which is specialized and differs from the sim-
ple random walk information dissemination scheme. We employ
as our RW-agent the random walk without backtracking scheme.
In this particular random walk based packet forwarding scheme,
the RW-agent is never allowed to backtrack to the immediately
previously covered node in the network. This feature of the RW-
agent is highly compatible with the proposed changes in random
walk based information dissemination as they are explained in
the subsequent section. Given a network GðV ; EÞ and a node
v 2 V with connectivity degree dðvÞ the RW-agent employing the
random walk without backtracking scheme will choose the next
hop node u 2 V arbitrarily among the neighbors of node v with
probability pu ¼ 1=ðdðvÞ � 1Þ if ðv ;uÞ 2 E, where u is any neighbor
of v except the one from last hop, and pu ¼ 0 for all other u 2 V .
It is evident that the random walk without backtracking scheme
is a slight modification (improvement) over the simple random
walk based information dissemination paradigm, where the next
hop node is chosen uniformly at random among all neighboring
nodes of the currently visited node.

The RW-agent moving in accordance with the previously de-
scribed mechanism, will eventually visit or cover all network nodes
after some time (cover time). Let CrðtÞ be the fraction of network
nodes covered (or visited) after t time units or movements of the
RW-agent (i.e., the RW-agent start moving at t ¼ 0), for a particular
realization (sample path) of the walk and for a given initiator node.
CrðtÞ will be referred to hereafter as the coverage at time t. Clearly,
CrðtÞ depends on the network size, the network topology, the initi-
ator node and other factors. If Tr denotes the cover time, then
CrðTrÞ ¼ 1; clearly Crð0Þ ¼ 0. As time increases, the RW-agent is ex-
pected either to move to a node that has not been covered previ-
ously (thus, CrðtÞ increases) or to move to an already covered
node (thus, CrðtÞ remains the same). Therefore, CrðtÞ is a non-
decreasing function (Crðt1Þ 6 Crðt2Þ, for t1 < t2).

The number of exchanged messages in random walk based
solutions is much smaller than that under flooding approaches
(each movement of the RW-agent corresponds to one message
transmission), at the expense of a significant increase in cover
time. For example, in the case of the traditional random walk in
a fully connected network (complete graph), the number of mes-
sages is OðN lnðNÞÞ [23], while under flooding it approaches
OðN2Þ. On the other hand, cover time for the random walker is
OðN lnðNÞÞ, while under flooding it is upper bounded by the net-
work diameter. Note here that the number of messages exchanged
in the network until the information dissemination process has
completed is an important metric of performance, because they
represent precious energy resources and/ or delays in the network.
3. The J-RW-agent

3.1. Motivation

Fig. 1a illustrates a random walk based agent movement initi-
ated from the initiator node depicted inside the dotted ellipsis.
The random walker spends some time revisiting nodes in the de-
picted ‘‘upper-left” network part, while nodes in other network
parts are left unvisited. Suppose now that after a few time units
– long enough to ‘‘cover” a certain network part – the random
walker moves to a ‘‘new” (most likely uncovered) network part
(‘‘bottom right” network part in Fig. 1b). It is more likely than be-
fore to cover nodes that have not been visited previously by the
agent, and therefore, accelerate the overall network cover process.
Please cite this article in press as: L. Tzevelekas et al., Random walk with ju
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One possible way for the agent to move away from a certain
network region would be to carry out a number of consecutive
directional movements, implementing a jump. This directional
movement mechanism or jumping, initially proposed in [19], can
be realized by switching occasionally away from the random walk
without backtracking operation and engaging an operation imple-
menting a directional movement. That is, such a RW-agent (to be
referred to as the Jumping Random Walk agent (J-RW-agent))
operates under two states: State 0 under which it implements
the typical random walk without backtracking mechanism, and
State 1 during which the directional move is implemented; the
time spent in State 1 (freezing state) will be referred to as the freez-
ing (the direction) period.

The J-RW mechanism moves the agent – at the end of the freez-
ing period – to networks that are expected (due to the directional
freeze) to be geographically more distant than those reached by
the RW-agent after the same number of movements. That is, the
introduction of the freezing state implements in essence jumps,
defined as the physical distance between the nodes hosting the
RW-agent at the beginning and the end of the freezing period.

The improvement in the cover time may be viewed as a conse-
quence of ‘‘sampling” the network more uniformly, by moving the
‘‘sampling” agent into remote and likely new (not yet sampled)
areas, as opposed to keeping the agent wandering around a certain
locality according to the RW mechanism and (over)sampling pre-
dominately a certain locality. When a network graph has long links
(that can take an agent into a remote network region in a topolog-
ical sense), it has been shown in [21] that a RW-agent produces a
uniform sampling of the network nodes.

In wireless environments like sensor networks, the physical and
the network topologies are typically correlated: a long path be-
tween two nodes in the network topology corresponds to a large
physical distance between these nodes in the physical topology.
In essence, the proposed J-RW mechanism applied over a network
with no long (physical) links (like a WSN) creates virtual long links
in this network and results in an environment that is equivalent to
that of applying the RW-agent over a network with some long
links. Thus, the proposed J-RW mechanism is expected to result
in a more uniform sampling of the network nodes, which – as ar-
gued earlier – leads to a better cover time.

Besides the improved cover time, the increased uniformity of
the (node) sampling under the J-RW mechanism may be on its
own another important property of the proposed information dis-
semination scheme when considered in conjunction with certain
specific and fairly common applications such as those related to
sensing the environment. In such applications and due to the typ-
ically high spatial correlation of nearby nodes, a dissemination of a
query on the state of the field may target only a portion of the net-
work nodes to conserve energy, [16]. Since the J-RW mechanism
possesses the uniform sampling capability as argued earlier, it is
expected that the query dissemination and collected responses
would better represent the state of the sensor field and contain less
redundant information. For such environments it is reasonable to
base the evaluation of information dissemination schemes on the
partial cover time as opposed to the (100%) cover time.

3.2. Description

The proposed J-RW mechanism is based on two underlying
states. State transitions of the J-RW-agent are assumed to occur
at discrete times, prior to each forwarding decision of the J-RW-
agent. The simple 2-state Markov chain, as shown in Fig. 2 governs
the type of movement the agent executes in the network. When in
State 0, the J-RW-agent operates as the already described RW-
agent. Each time the steering markov chain transitions to State 1,
the geographic direction of the imminent jump in the network is
mps in large-scale random geometric graphs, Comput. Commun. (2010),
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Fig. 1. An agent (starting from the initiator node depicted in dotted ellipsis) under: (a) the random walk without backtracking mechanism and (b) the J-RW mechanism.

Fig. 2. Markov chain mechanism for controlling J-RW-agent movements.
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fixated; it can be calculated as a vector whose direction coincides
with the direction of the line connecting the current node and
the node visited by the agent in the previous discrete time, in
the direction away from the previously visited node. The J-RW-
agent implements a directional walk during all subsequent node
visits (while the markov chain stays in State 1), by selecting as
the next node to visit to be the neighbor of the current node that
is the closest (in direction) to the fixated vector. The J-RW-agent
completes the jump in the network when the steering markov
chain returns to State 0.

The directional walk may be easily implemented through a sim-
ple look up table involving the geographic locations of the neigh-
bours of a node; this table determines the next node to forward
the agent to under the directional walk, given that the agent came
to this node from a given neighbour. The geographic information
can be easily retrieved either at the time of deployment in the case
of a static sensor field (with provisions for second, third, etc.
choices when lower order choices are not available due to battery
depletion), or after the deployment of the field with the help of a
limited scope localization protocol run occasionally.

Let a ðbÞ denote the transition probabilities from State 0 to State
1 (State 1 to State 0) and let T0 ¼ 1=a ðT1 ¼ 1=bÞ denote the mean
time (in discrete times of our reference time, or number of visits
to nodes) that the agent spends in State 0 (State 1). Clearly, b (or,
T1) determines the length of time over which the directional walk
is continuously in effect and, thus, the mean length of the induced
jump. Similarly, a (or, T0) determines the length of time over which
the RW mechanism is continuously in effect. It should be noted
that a and b should be carefully selected so that the mix of the
two distinct operations is effectively balanced. b should be such
that the implemented jump is sufficiently large to move the agent
away from the current locality that is likely to be covered by the
operation at State 0, and on the other hand, it should not be too
large in which case it would leave uncovered large areas or require
Please cite this article in press as: L. Tzevelekas et al., Random walk with ju
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the random walk operation to operate long enough (at the in-
creased cost of revisits) to cover the large areas between the start
and the end of the jump. Similarly, a should be such that the time
spent at State 0 be balanced so as to not over-cover or under-cover
the current locality.

As previously for the RW mechanism, coverage and cover time
under the J-RW mechanism may be defined in a similar manner,
denoted by CjðtÞ and Tj, respectively. CjðtÞ is a non-decreasing func-
tion of t taking values between 0 (for t ¼ 0) and 1 (for t P Tj).
4. Coverage analysis

This section analyzes coverage under the random walk without
backtracking mechanism in order to extract useful information
regarding the performance of the RW-agent and consequently to
use these results for further understanding of the particulars of
the J-RW mechanism. The analysis followed in this section is differ-
ent than any other previous analysis in the best of the authors’
knowledge.
4.1. Coverage for the RW-agent

The main aim here is to derive an analytical expression for CrðtÞ,
which will serve as a tool for further understanding of random
walk based information dissemination. Lets assume that the net-
work topology is fully connected (i.e., all nodes are connected to
all other nodes). This is actually the case for large values of rc in
RGG. For example, for nodes scattered in the ½0;1� � ½0;1� 2-dimen-
sional plane, any value of rc P

ffiffiffi
2
p

ensures that there is a link
among any pair of nodes.

In such a network, each time the RW-agent decides to move to a
new neighbor node at time t (thus, arriving at time t þ 1), coverage
CrðtÞ: (a) may increase ðCrðt þ 1Þ ¼ CrðtÞ þ 1=NÞ, provided that the
new node has not been covered previously; or (b) remain the same
ðCrðt þ 1Þ ¼ CrðtÞÞ, provided that the new node has already been
covered. Note that at time t, in a fully connected network the
RW-agent may select one out of N � 2 network nodes (i.e., all net-
work nodes excluding the one the agent came from and the one
that is currently located at). Since 1=N corresponds to the coverage
contribution of the node the agent came from and 1=N to the cov-
erage contribution of the node that is currently located at, then
CrðtÞ � 2=N is the coverage corresponding to the remaining N � 2
nodes and eventually, ðN � 2Þ � ðCrðtÞ � 2=NÞ corresponds to the
number of nodes that have already been visited by the agent
(excluding the one the agent came from and the one that is cur-
rently located at). For large values of N (which is typically the case
mps in large-scale random geometric graphs, Comput. Commun. (2010),
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considered in this paper), ðN � 2Þ � ðCrðtÞ � 2=NÞ � NCrðtÞ. Conse-
quently, the probability to choose a node that has not been visited
previously (and consequently increase coverage) is equal to the
probability of selecting one out of the N � NCrðtÞ nodes that have
not been visited previously, or Nð1� CrðtÞÞ=N ¼ 1� CrðtÞ. It is eas-
ily derived now that (on average) the increment of the coverage
after a RW-agent moves at time t, is given by the probability
1� CrðtÞ that it moves to a node not visited before multiplied by
1=N which is the contribution to coverage by each node that is vis-
ited for the first time. That is,

Crðt þ 1Þ � CrðtÞ ¼
1
N
ð1� CrðtÞÞ: ð1Þ

Eq. (1) can be expressed in a more convenient form by switching
from discrete to continuous time. Let t be continuous and let eCrðtÞ
denote the corresponding continuous and increasing function of
CrðtÞ. The difference Crðt þ 1Þ � CrðtÞ can be approximated byeC r ðt1Þ�eC r ðt0Þ

t1�t0
¼ deC r ðtÞ

dt , for t0 < t1. Based on Eq. (1),

deCrðtÞ
dt

¼ 1
N
ð1� eCrðtÞÞ: ð2Þ

The derivative deC r ðtÞ
dt corresponds to the rate at which eCrðtÞ increases.

Obviously, for t ¼ 0 (i.e., the RW-agent is about to start moving in
the network), deC r ðtÞ

dt ¼ 1, since during its first step the RW-agent will
move to a node definitely not covered previously. deC r ðtÞ

dt will eventu-
ally become zero, when all nodes are covered or, eCrðtÞ ¼ 1.

Eq. (2) is a first class differential equation, and the solution sat-
isfying the previous properties of eCrðtÞ (e.g., increasing,
0 6 eCrðtÞ 6 1), is given by,

eC rðtÞ ¼ 1� e�
t
N: ð3Þ

For convenience of the presentation, very frequently in the sequel,
the normalized version eCrðt=NÞ ¼ 1� e�t will be used instead of
eCrðtÞ.

In the literature, a well known analytical result for the complete
graph case, is that cover time Tr is of the order of N lnðNÞ, [23].
Using Eq. (3) it is now easy to derive that
eCrðN lnðNÞÞ ¼ 1� e�

N lnðNÞ
N ¼ 1� 1

N. For large values of N it is clear that
eCrðN lnðNÞÞ ! 1. Another interesting result is that for
t ¼ N; eCrðNÞÞ ¼ 1� e�

N
N ¼ 1� e�1 ¼ 0:632, which basically means

that for movements equal to the number of the network nodes,
on average 63.2% of the network nodes are visited by the RW-
agent. These analytical findings are confirmed later by simulation
results presented in Section 5.

Eq. (3) was derived assuming a fully connected network. By
reducing rc in RGG, the number of neighbor nodes decreases and
therefore a RW-agent has fewer choices to move than before.
Therefore, the fraction of nodes that have (not) been visited previ-
ously, is expected to deviate from CrðtÞ (or 1� CrðtÞ). As rc de-
creases even further, it is getting more and more difficult for the
agent to move to a node not previously visited (due to the fewer
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choices of movement), thus increasing the number of revisits and
eventually, decreasing the actual rate under which CrðtÞ increases.
For example, bottlenecks tend to appear in the network topology,
[17], likely ‘‘forcing” a RW-agent to keep (re)visiting a comparably
small number of nodes for a long time.

In order to account for the aforementioned decrease in the in-
crease rate of eCrðtÞ, it is assumed in the sequel that derivative
deC rðtÞ

dt is given by Eq. (4),

deC rðtÞ
dt

¼ k
N
ð1� eCrðtÞÞ; ð4Þ

where k 6 1 is a positive constant related to the topology character-
istics (i.e., connectivity radius rc and number of nodes N). The solu-
tion of Eq. (4) is given by,

eCrðtÞ ¼ 1� e�
k
Nt: ð5Þ

The case of k ¼ 1 corresponds to the fully connected network topol-
ogy (i.e., large values of rc) as it is concluded from Eq. (3). Therefore,
smaller values of rc (however large enough for the network to be
connected) should result in smaller values of k. This will be further
explored and evaluated using simulation results presented later in
Section 5.

Fig. 3a depicts eCrðt=NÞ as it is given by Eq. (5) as a function of
t=N for various values of k. It is interesting to note that as k de-
creases, cover time increases. For example, for
t ¼ N

k lnðNÞ; eCr
N
k lnðNÞ
� �

¼ 1� 1
N which tends to zero for large val-

ues of N. Let eT r ¼ N
k lnðNÞ be referred to hereafter as the asymptotic

cover time for the RW-agent (i.e., limN!þ1eCrðeT rÞ ¼ 1). Given that
k < 1, it is evident that as rc decreases (the network has fewer
links), k decreases and therefore, the asymptotic cover time eT r in-
creases by a factor 1

k.
This observation is graphically presented in Fig. 3. It is evident

that the first derivative of coverage is high at the beginning and
then it becomes significantly small, particularly for values of k
close to 1. Along with eCrðt=NÞ in Fig. 3a, a (dotted) line correspond-
ing to eCrðt=NÞ ¼ t=N is also depicted. This line corresponds to the
best (even though frequently not realistic) dissemination informa-
tion scenario (i.e., the – artificial – case in which a node not previ-
ously visited is reached after each step). It is interesting to note
that the particular case of k ¼ 1 is the one most close to this best
scenario. This is basically the case since for some time at the begin-
ning (small values of t=N) deC r ðt=NÞ

dt=N remains close to 1 for k ¼ 1, as it is
also depicted in Fig. 3b. Afterwards, deC r ðt=NÞ

dt=N decreases (more rapidly
than for cases of smaller k) due to frequent revisits of the RW-
agent. Simulation results are presented later in Section 5 demon-
strating the accuracy of the previous analysis.

4.2. Coverage for the J-RW-agent

There are basically two issues that need to be explored with re-
spect to the J-RW mechanism presented in Section 3: (a) for how
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long should the J-RW-agent stay in State 0 (governed by a); and (b)
for how long should the J-RW-agent stay at State 1 (governed by b).

Let us assume that a is close to 0. This is a trivial case in which
the J-RW mechanism resembles the RW mechanism. This choice is
expected to be a suitable one in topologies of highly connected
nodes (large number of neighbors) such that the agent is allowed
to move to nodes residing away from the already covered network
parts. This may happen due to its own probabilistic movement
within the network. An obvious example is the fully connected
topology, but as it will be shown later using simulation results, this
is also applied for topologies of smaller connectivity (i.e., smaller
values of rc) than the fully connected topology.

On the other hand, values of a close to 1, mean that the agent
will not stay long in State 0. This eventually means that the agent
will not be allowed a large time period to cover a certain network
part. In this case, the agent will be mostly ‘‘jumping” (depending
on the value of b) to different network parts thus failing to exhaus-
tively cover network areas. This resembles a RW-agent moving
over an overlay topology of longer links.

The connectivity of the topology (which for the case of RGGs is
related to rc) plays an important role for the investigation of the
appropriate values of b with respect to coverage under the J-RW
mechanism. Highly connected topologies (i.e., comparably high
values of rc but not necessarily close to the particular value that
the topology is fully connected) are characterized by significantly
small diameters, [17]. In such networks, a RW-agent is not ex-
pected to be limited within certain network parts and therefore,
jumping would not improve coverage. In such cases, b should be
close to 1. On less connected topologies (i.e., topologies of small
values of rc but large enough for the network to be connected) it
is expected the RW-agent to frequently revisit nodes due to the
topology’s structure (e.g., bottlenecks). In such a case, b should
be small enough to allow the agent to move to different network
parts. On the other hand, too small values of b (e.g., b close to 0)
will eventually result to an agent mostly operating in State 1 (i.e.,
jumping) at the expense of exploring more thoroughly the visiting
part of the network.

As it can be concluded from the previous discussion, coverage
under the J-RW mechanism is related to rc; a and b. However, an
analytical expression for the coverage considering rc; a and b is
difficult to be derived and its further investigation will be based
on simulations presented in the following section. Let CjðtÞ ðeCjðtÞÞ
denote the coverage under the J-RW mechanism in a similar way
as CrðtÞ ðeCrðtÞÞ denotes coverage under the RW mechanism. After
a long time, it is reasonable to assume that the J-RW-agent will
have moved to all different network parts and have covered (on
average) the same proportion of network nodes within each visited
network part. Therefore, at time t it is expected that (on average)
the fraction of non-visited neighbor nodes of the node that the
agent is located at, will be N � ð1� CjðtÞÞ. Following an analysis
similar to the one presented for the case of the RW mechanism,
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the following analytical expression for coverage under the J-RW
can be written
eCjðtÞ ¼ 1� e�

k0
Nt ; ð6Þ

where k0 is a positive constant depending on the particulars of the
topology (i.e., rc) and the J-RW mechanism (i.e., a and b), as it will
be also shown in the following section using simulation results.
5. Simulation results and evaluation

A simulation program exploiting the capabilities of the Om-
net++ simulation platform, [25], was created for the simulation
purposes. The aim of the simulation results presented in this sec-
tion is twofold: to confirm the analytical findings of the previous
section and to shed more light on the behavior of the J-RW mech-
anism (mostly in comparison to the RW mechanism) for cases not
covered by the analysis.

There are multiple simulation runs executed under specific sets
of parameters for the network and the investigated schemes. Dur-
ing each simulation run there is a large-scale node set up, with
node population varying from 100 to 3000 nodes depending on
the case. The nodes are placed at random locations on a square
plain ½0;1� � ½0;1�. The random positions ðxu; yuÞ of each node
u 2 V are chosen within the set [0,1] using the uniform probability
distribution. Each node u is aware about its own position: ðxu; yuÞ.
Each node is connected to some other node if the euclidean dis-
tance among them is less or equal to rc . Clearly, for rc P

ffiffiffi
2
p

, the
resulting network is fully connected. Depending on N (the size of
the network), the lower bound of rc for which the topology remains
connected varies (typically decreases as N increases). Four different
values of rc (0.05, 0.1, 0.5 and 1.0) are considered in the sequel for
those topologies of N ¼ 1000. Note that all four values are less thanffiffiffi

2
p
� 1:4, since a fully connected network is not representative of

the wireless environment (e.g., wireless sensor networks) that is
considered here. Networks with values of N P 104 were impossi-
ble to be simulated due to restrictions in memory imposed by
our simulator.

Coverage is the main focus in the result to be presented. These
results correspond to one experimentation instance (apart from
some cases which are explicitly mentioned) and not averaged val-
ues. Averaging would have given a macroscopic view but it would
also hide important details.

5.1. The RW-agent

An important contribution in the analytical part of this paper, is
the derivation of the coverage in a fully connected network (i.e.,
rc P

ffiffiffi
2
p

), shown in Eq. (3). Fig. 4a presents coverage as a function
of t (i.e. the number of movements of the random walker) in fully
connected network topologies of 100, 500, 1000 and 3000 nodes.
For each network topology, the analytically derived value eCrðtÞ is
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also depicted. It is important to note that the analytical findings are
almost identical to the simulation results. Fig. 4b presents (normal-
ized) coverage as a function of t=N. As before, it is demonstrated
that eCrðt=NÞ is almost identical to Crðt=NÞ as it is concluded by
observing simulation results for the case of a fully connected
topology.

The fact that all curves follow the same pattern as it is illustrated
in Fig. 4b allows for certain observations. First, it is obvious that for
about 0:1N movements (see dotted line at t=N ¼ 0:1 depicted in
Fig. 4b), the random walker has a very good performance (the num-
ber of revisits remains small) in the sense that a new movement most
likely results in visiting a node that has not been visited before. At
time t ¼ N, it is interesting to see that for almost all cases, 63.2% of
the total number of network nodes has been covered as it was ex-
pected from the analysis presented in the previous section. For
N ¼ 100; t ¼ N lnðNÞ corresponds to t=N ¼ lnð100Þ � 4:6 in Fig. 4b.
As expected from the analysis (and also depicted in Fig. 4b), coverage
is about 1� 1=N ¼ 99%, which is very close to that depicted using
simulation results.

Fig. 5 presents simulation results for various topologies derived
for rc ¼ 0:05; 0:1; 0:5 and 1.0. The first observation is that for the
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Fig. 5. Coverage for topologies of 1000 nodes and various values of rc (0.05, 0.1, 0.5
and 1.0). eC rðtÞ is also depicted for corresponding values of k (0.3, 0.7, 0.9 and 1.0).
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appropriate value of k (i.e., k ¼ 0:3 for rc ¼ 0:05; k ¼ 0:7 for
rc ¼ 0:1; k ¼ 0:9 for rc ¼ 0:5 and k ¼ 1:0 for rc ¼ 1:0), the analytical
expression for coverage, given by Eq. (5) (i.e., eCrðtÞ ¼ 1� e�kt)
approximates well the simulation results. Another interesting
observation is that for rc > 0:1, the appropriate value of k is very
close to 1.0, This is basically due to the fact that the number of
neighbors (on average) increases much faster than rc (it is pr2

c N
on average) and, thus, a small increase in rc results in a large in-
crease of the node degree (number of neighbors). For N ¼ 1000
and rc ¼ 0:1, there are (on average) about 31 neighbor nodes for
each node which implies that the topology is highly connected.
As rc increases further, it is interesting to observe that the coverage
approaches closely 1� e�t , even for cases for which rc is signifi-
cantly smaller that

ffiffiffi
2
p
� 1:4.
5.2. The J-RW-agent

Fig. 6 presents simulation results under the J-RW mechanism
for a network of 1000 nodes and various values of rc and a. b has
been kept constant and equal to 0.4, which means that as soon
as State 1 is assumed (i.e., directional movement) the agent moves
(on average) for 2–3 nodes towards a certain direction (more de-
tails are provided in the description of the J-RW mechanism in Sec-
tion 3) before State 0 is assumed. In Fig. 6a, coverage under the RW
mechanism is clearly depicted and it is less than the coverage un-
der J-RW for any value of a (e.g., 0.2, 0.4, 0.6 and 0.8). Note that the
case depicted in Fig. 6a corresponds to a topology that is not highly
connected ðrc ¼ 0:05Þ, thus even a relatively small value of b ¼ 0:4
results in the J-RW doing significantly long jumps to get a perfor-
mance improvement.

As the topology becomes more connected (rc increases), the
advantage of the J-RW mechanism is less obvious. For example, for
the case depicted in Fig. 6b ðrc ¼ 0:1Þ, coverage under the random
walk without backtracking mechanism is still smaller than that un-
der the J-RW mechanism (for any value of a), even though not that
smaller as before, while for the case depicted in Fig. 6c ðrc ¼ 0:5Þ,
coverage under the random walk without backtracking mechanism
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is now larger than that under the J-RW mechanism (for any value of
a). As rc increases further, coverage under the random walk without
backtracking mechanism is clearly higher than that under the J-RW
mechanism for the specific combination of values of a and b. This is
clearly depicted in Fig. 6d for the case of rc ¼ 1:0 and can be attrib-
uted to the fact that the random walk without backtracking mecha-
nism can now fully exploit the increased connectivity of the graph. In
particular, subsequent movements of the RW-agent in highly con-
nected graphs are similar to J-RW-agent movements in low connec-
tivity graphs (in terms of how far in physical distance the agent
moves). Thus, there is no coverage benefit when introducing J-RW
agent in highly connected graphs (as compared with RW-agent),
on the contrary the J-RW mechanism of ‘‘locking” in State 1 tends
to push the agents away towards the physical boundaries of the
examined network and thus result in an actual decrease in network
coverage.

Another interesting aspect is the shape of the curve correspond-
ing to the J-RW mechanism. As it can be observed in Fig. 6, it
clearly follows the pattern of the analytical expression 1� e�

k0
Nt ,

for suitably selected values of k0, as it was already mentioned in
Section 4. This is more clearly seen in the simulation results de-
picted in Fig. 7 along with plots for eCrðt=NÞ and eCjðt=NÞ. It is obvi-
Fig. 8. Coverage for various v
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ous that simulation results follow the same pattern for the J-RW
mechanism as it is also the case (also shown before) for the ran-
dom walk without backtracking mechanism.

The particular value of b that was used for the simulation re-
sults depicted in Fig. 6 was fixed ðb ¼ 0:4Þ. Fig. 8 presents simula-
tion results (coverage) as a function of both a and b (their values in
the range [0.2,0.8]) at time t ¼ N and Fig. 9 at time t ¼ N lnðNÞ.

The results depicted in Fig. 8a correspond to rc ¼ 0:05. About
25% of the network is covered under the random walk without
backtracking mechanism while coverage for this case under the
J-RW mechanism varies from 30% to 55% depending on the partic-
ular values of a and b. For rc ¼ 0:1, as depicted in Fig. 8b, coverage
under the random walk without backtracking mechanism is again
smaller than that under the J-RW mechanism for any selection of a
and b. In Fig. 8c ðrc ¼ 0:5Þ, it is interesting to see that coverage un-
der the random walk without backtracking mechanism is greater
than that under the J-RW mechanism, apart from those cases that
b is high (e.g., 0.8) and a is small (e.g., 0.2). In such cases the high
value of b results in relatively small jumps within the network,
which are small enough to be effective in such a highly connected
network. Any smaller value of b would result in larger jumps with-
in the highly connected graph, ‘pushing’ again the J-RW agents to-
wards the boundaries of the network and reducing performance.
Thus the J-RW-agent is able to move now between different ‘neigh-
bor areas’ and explore them efficiently.

As rc increases further, as it is the case in Fig. 8c for rc ¼ 1:0, it is
obvious that there is no combination of a and b in the given range
of values such that coverage under the J-RW mechanism be greater
than coverage under the random walk without backtracking mech-
anism. At this point it is important to note that the J-RW mecha-
nism becomes equivalent to the random walk without
backtracking mechanism for a ¼ 0 and b ¼ 1 (which means that
the mechanism always stays at State 0).

Simulation results for t ¼ N lnðNÞ are depicted in Fig. 9. The
observations are identical to those regarding Fig. 8 apart from
the fact that coverage is close to 1 (which is expected given the
analytical results). Similarly to the case of t ¼ N, for t ¼ N lnðNÞ
coverage under the J-RW mechanism is larger than that under
alues of a and b at t ¼ N.
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the RW for topologies of small values of rc. It is interesting to ob-
serve in Fig. 9a that for large values of both a and b (e.g., 0.8) cov-
erage under the J-RW can be close to 98%, which is a significant
improvement when compared to coverage under the random walk
without backtracking mechanism that is close to 86%. In all other
cases and particularly those for which coverage under the random
walk without backtracking mechanism is close to 100%, coverage
under the J-RW mechanism is close to 100% for values of b not that
small (long jumps should be avoided in such highly connected
topologies). Note that values for a and b around 0.5, appear to be
an appropriate selection, as it is observed from the simulation re-
sults depicted in both Figs. 8 and 9, since: (a) for topologies of
small rc , coverage under the random walk without backtracking
mechanism is greater than coverage under the J-RW mechanism;
and (b) for all other cases, coverage is almost the same under either
mechanism.
6. Conclusions

Random walk based solutions have been proposed for informa-
tion dissemination in large-scale wireless sensor and ad hoc net-
works. However, such random walk based agents are prone to
inefficiencies due to frequent revisits to already covered nodes,
resulting in relatively large network cover time. In this paper a
new class of random walk based agents, referred to as the Jumping
Random Walk agent has been introduced. As this new class con-
tains the (classical) random walk without backtracking agent (for
a ¼ 0) it can only improve on the performance of the RW-agent
or – in the worst case – achieve that of the RW-agent.

The coverage (i.e., the percentage of network nodes visited by
the disseminating agent) as a function of time is studied both ana-
lytically and through simulations in this paper. Geometric random
graph topologies are used to model the underlying network topol-
ogy, which is a suitable abstraction for the aforementioned wire-
less environment. The analytical results are confirmed through
simulations and it is shown that the J-RW-agent, other than the
RW-agent yields the best performance in not highly connected
Please cite this article in press as: L. Tzevelekas et al., Random walk with ju
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topologies. The comparative performance of the RW-agent and
other members from the proposed J-RW-agent class is thoroughly
investigated through numerous results and discussion that shed
light into the intrinsic capabilities of these mechanisms and the
network conditions that affect their performance.
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