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Abstract— Service placement is a key problem in communica-
tion networks as it determines how efficiently the user serde
demands are supported. This problem has been traditionally
approached through the formulation and resolution of largeopti-
mization problems requiring global knowledge and a continuous
recalculation of the solution in case of network changes. S
approaches are not suitable for large-scale and dynamic nebrk
environments. In this paper, the problem of determining the
optimal location of a service facility is revisited and addessed
in a way that is both scalable and deals inherently with network
dynamicity. In particular, service migration which enables service
facilities to move between neighbor nodes towards more comm
nication cost-effective positions, is based omocal information.
The migration policies proposed in this work are analytically
shown to be capable of moving a service facility between ndigor
nodes in a way that the cost of service provision is reduced
and — under certain conditions — the service facility reache the
optimal (cost minimizing) location, and locks in there as lag as
the environment does not change; as network conditions chae,
the migration process is automatically resumed, thus, natally
responding to network dynamicity under certain conditions The
analytical findings of this work are also supported by simuldion
results that shed some additional light on the behavior and
effectiveness of the proposed policies.

Index Terms— Service Placement, Service Migration, Auto-
nomic Networks, Scalability.

I. INTRODUCTION

NTERNET globalization and expansion make the servic
placement problem a challenging one and necessitate

careful selection of the location of the service facilities

facility being a service provisioning infrastructure), aimin
at bringing the service provision points close to the demal

in order to minimize communicatiorcosts (i.e., resource
consumption) and enhance the Quality of Service (QoS)

the provided service. Due to the recent technological cesn

(e.g., powerful machines and services have proliferatibe),
traditional problem of placing relatively few big services
one of the few (powerful) potential service provider fais
(big network elements) is increasingly being transfornmed i
a problem of placing the one or more service facilities in o

of the numerous network nodes that are now capable of hos

services. Peer-to-peer networks, cloud computing, conlien
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tributions networks, software updates and patches andisens
networks are examples of such modern environments.

The problem of determining the optimal service placement
has been studied in the past in areas such as transportation
and supply networks [1], and has been approached through
the formulation and solution of large optimization probkem
(N P-hard) requiringglobal knowledge as for instance is
the case with thek-median problem [2]. Such approaches
requiring global knowledge and a continuous recalculatibn
the solution in case of network changes; not scaleand are
not suitable for dynamic network environments, such aseghos
considered in this work. Instead, approaches basetbcal
informationshould be adopted, despite the fact that they might
not be able to guarantee optimality all the time (near-ogtim
solutions).

In this paper, the problem of determining the optimal
location of a service facility is revisited and addressediin
way that is both scalable and deals inherently with network
dynamicity. The approach advocated in this paper — parts of i
initially presented in [3] and [4] — is that of moving a semic
facility among neighbor nodes by utilizing local informati
in a such way that the cost of service provision is reduced
and the service facility reaches under certain conditidmes t
optimal (cost minimizing) location, and locks in there ando
as the environment does not change; as network conditions
c@ange, the migration process is automatically resumen, th
turally responding to network dynamicity.

he first proposed policy (referred to ddigration Policy

n

ng a monotonically cost decreasing path in the network.
or special cases of topologies such as trees, it is anallytic
own that under Migration Policy a single facility moves
ntil it reaches the optimal position (i.e., the node at Whic
he overall cost is minimized). In the general case, service
facility migration under Migration Policys, allows for overall
cost reduction, but it may fail to move the facilities untilet
end of a monotonically cost decreasing path, mostly due to
unforeseershortcuts(i.e., alternative shortest paths utilized

%}]is analytically shown to be capable of moving the facititie

e . o o
:hy some nodes to reach a certain facility after a facility

m%vement). The potential cost reduction that is due to the
aforementioned shortcuts is not taken into account under
Migration PolicyS, thus certain facility movements that would
allow for further cost reduction are not detected and thus no
implemented.

The aforementioned limitation is overcome in the case of a
single facility and for topologies of equal link weights, ieh
still utilizing only local information. Note that topologs
with equal link weights and a single service facility are not
uncommon. For such environments, a new policy (referred to



as Migration Policy E) is proposed that moves the facility The focus in this work is on distributed approaches being
until the end of a monotonically cost decreasing path, giedi based on local information (as opposed to the aforemerdione
that tentative movements to the one-hop neighbor nodes aemtralized local-search-based approaches attemptirasto
allowed. sume local minima of performance) in order to avoid scalabil
The additional overhead due to the tentative facility movéty problems introduced by global knowledge requiremens.
ments under Migration Policg (when compared to Migration the best of the authors’ knowledge, the first distributeditgc
Policy S), motivates the introduction of a hybrid policylocation was described by Jain and Vazirani [14]. Moscilrod
(referred to aMigration Policy H) that efficiently combines and Wattenhofer [24] proposed the first distributed apgroac
the Migration PoliciesS and E, in the case of equal link Their work focuses on primal-dual techniques — in order to
topologies and a single facility. Under Migration Polidy, derive worst-case performance bounds — which are diffioult t
a single facility moves until no further movement is possiblimplement (e.g., impractical communication model) conegar
under Migration PolicyS. Then, Migration PolicyE takes to the work presented in this paper. A recent work by Krivitsk
over and moves the facility until no further movement ist al. [25] proposes a distributed hill-climbing algorithrased
possible. The first part of facility movement benefits frora thon local majority votes and used by nodes to agree on the
guaranteed cost reduction under Migration Poliyand the next step of the algorithm. The overall overhead is kept low
almost negligible overhead. The second part moves thetfacilby avoiding unnecessary votes. The algorithm converges to
towards positions of even smaller overall cost (i.e., the eh the optimal solution, as shown using simulation resultds Th
the monotonically cost decreasing path), at the expendeeof aipproach is different from the one proposed here (evaluated
extra overhead due to the tentative facility movements. both through analysis and simulations) since no majority
The analytical findings of this work are also supported byoting is considered and the need for local information is
simulation results. In addition, simulation results powvifor almost negligible.
further insight on the behavior of the proposed policies,and The closest works to the one presented here are [26] and
particularly, illustrate their effectiveness for cases captured [27]. Ragusa et al. [26] propose a heuristic approach for
by the analysis. More specifically, it is shown that in readis partitioning the network into a number df clusters self-
topologies, the overhead (due to tentative facility movetsle managed through mobile agents. Each agent migrates to more
under Migration Policies® and H can be prohibitively large efficient positions within the cluster after deriving the dian
and therefore, Migration Policg becomes the obvious alter-position in a centralized manner. Clusters may be further
native. This is also the case in dynamic environments duepartitioned or merged in response to dynamic network chenge
the latter’s capability to move — almost immediately — seevi based on empirically selected threshold values. The second
facilities to more effective positions. approach, proposed by Laoutaris et al. [27] solves the ervi
Section 1l presents related work and in Section 1l thplacement problem in a distributed manner reusing existing
service placement problem is described in detail. Migrationear-optimal centralized approaches inside suitably eefin
Policy S is presented and studied in Section IV while Migraballs (i.e., network areas of hops away from each service
tion PoliciesE and H are presented and studied in Sectiofacility). As service facilities move inside the network;
V. Section VI presents simulation results and the conchssioballs are partitioned or merged based on the outcome of the
are drawn in Section VII. centralized approaches. The main difference between [26],
[27] and the work presented here, amounts to the requirement
for local information in order to select more efficient pasis
for the mobile agents in [26] and to incorporate classical
The service placement problem has been addressed in dbatralized solution approaches in [27]. Instead, the gsed
past particularly in the area of transportation, supplyvoeks service migration approach relies on strictly local infation;
etc., most of these works surveyed in [1]. It has been showhis local information is passively collected by the seevic
that the optimal solution of placing service facilities in a facility itself, as opposed to requiring the deployment of
network (i.e., thek-median problem) is afv P-hard problem a mechanism that provides both the demand and topology
for general graphs [2]. Even in the case of undirected tr@gormation within each cluster as in [26] and [27].
topologies, the complexity remains as highagN) [5] (N is Several other approaches have also been proposed, spe-
the number of nodes in the network). In order to deal with thsific to the considered applications, including interméaglia
increased complexity, several near-optimal approachee haaching [28], reflectors’ deployment [29], online versi@9],
been proposed that can be categorized as either centraligetement based on mobility [31], content distribution][32
or distributed [6]. The centralized approaches focus oedye replication in overlays [33], service discovery in mobild a
heuristics [7], [8], [9], [10], on linear programming [1].2], hoc networks [34], gateway placement [35], sensor networks
[13], on primal-dual [14], [15], local search [16], [17], @n [36], [37], replica placement updates [39], distributecusi
other techniques [18], [19], [20], [21], [22], [23] that lafeen platform [38].
proposed in the past to deal with the increased complexity of
the service placement problem. However, all of them require
global knowledge of the network topology and demands, and
this information is generally not available in the largedsc  The network topology is represented by a connected undi-
network environment considered in this paper. rected graphG(V, E), whereV is the set of nodes an&

Il. RELATED WORK

IIl. PROBLEM STATEMENT



the set of links among them. LdfX| denote the size of this rule further, consider node that forwards data towards
a particular setX. Let N be the number of nodes in thethe facility node0 over path{(7,8),(8,0)}, as depicted in
network or N = |V|. Let S, denote the set of neighborFigure 1.a. After the service moves to notlenode7 would
nodes of nodev (i.e., nodes having a link with node). - based on the above rule — utilize pdilt, 8), (8,0), (0,1)},
Let (u,v) denote the link between two neighbor nodeand instead of the equal cost pafli7,6), (6,0), (0,1)}.

v; each such link is assigned a positive value referred to ad.et C;(x) denote the cost incurred by facility for serving
weight and denoted a®(u,v). For a given graphG(V, E), nodesv at timet, for all v € T;*. Clearly,

let d(x,y) denote thedistancebetween node: and nodey,

corre(sp021ding to the summation of the weights of the links Ci(z) = Z Avd(v, 7). 1)
along ashortest pattbetween these nodes (for the same node VueTy

v, d(x,z) = w(z,x) = 0); alternatively,d(z,y) is referred to The overall costover all facilities in the network at time
as thetraveling costbetween nodes andy. In this paper, a t, denoted asCy, is given by,C; = >, g, Ci(z) =
facility is considered to be hosted by one of the network 80d _v,c k, 2 voery Avd(v,z). Assuming fixed network topol-
It is also possible that the service provisioning is repiida- 0gy and service demands, it is evident that the (optimal) set
to cope with a higher demand or for increased reliability of facility locations for which cost minimization is achied
and, thus, more that one facility may be deployed. Witho(denoted byK) does not depend on timg and the same
any loss of generality, only one service — and the associafeelds true for the correspondimginimum costdefined asC'.
one or multiple service facilities — is considered in thipga Leta, = < be defined as thapproximation ratioof the cost

Let the mean rate at which data packets associated wifuced at timet when the §et of facility nodes i&’;, over
a particular nodev are transferred through the network bdn€ minimum (optimal) one; the closer the valuecfto 1,
denoted by), (.., service demands). Léf; denote the set the closer the induced cost at timeo the optimal one.

of facility nodes (i.e., nodes hosting a facility corresgiog 1€ optimal set” and the resulting minimal cost’ can
to a certain service) at time In the sequel; will take discrete °€ detérmined by solving the previously mentioriethedian

values corresponding to facility movements. problem, ¢ = | K|). This difficult and large optimization prob-

. . .. lem cannot be afforded in the large-scale and dynamic n&twor
Between a given facility node and any other node in tFBSeB

X _ vironments considered here, where the network topology
network, a _shortest path route_ is assumed to be establighe subject to frequent changes requiring the recalculatibn
the underlying employed routing protocol, [40]. Eventyadl o (oxnensivel-median solution. In the sequel, services are
shortest path tree is created, rooted at the particulalitfaci i ated in order to exploit information locally availabée
node and including all network nodes. Such a tree (depic

with dense lines) rooted at the facility node(marked by facility nodes.

a dotted hexagonal) is shown in Figure 1.a, where the sery, SERVICE MIGRATION BASED ON STRICTLY LOCAL
vice demands and link weights are setltdo facilitate the INEORMATION

discussion. In general, a shortest path tree associatédawit . . . . . o
given root node is not unique. When the number of facilitges i Strictly local mfotmatlon refers to information t.hat 'S‘m’.‘
greater than one, then a forest of shortest path trees itedreaat.)Ie o_nIy at a pgrtlcular nod_e. Bgsed on such information, a
with each tree rooted at the corresponding facility nodg.(e.m'gratIorl _pollcy IS pf‘?Posed n .th's section to reduce thet co
as depicted in Figure 1.b). L& denote the set of all possiblealcter moving the fgcﬂme; .to f.‘e'ghbor nodes. .
shortest path trees in a network at tirhelet 7;(z) denote Assume a service facility is located at nodeat time .

the subset of; (i.e., T:(x) C T) containing the shortest pathThere. exist a numb(_ar of neighbor nodgs over ;Nh'Ch data
trees rooted at node. Let 77 be the shortest path tree inassociated with service demands of all nodesT; \{x}, are

T;(x) over which data corresponding to the nodes’ servif rwardle d t%tk;e partlcyl?r(;aqltlrt]y.ﬂI]n the e_xarr(;ple degd::n d
demands are forwarded towards the facility nadey € T}* lgure ~.a, dala associated wi € service demands tewar

o . Iy the facility node0, are forwarded over linK0, 1) for nodes
will indicate that nodev is served by facility node:. 1 and 2, over link (0,6) for nodes3, 4, 5 and 6, and over

Let z 5 y denote thefacility movemenfrom nodex to jink (0,8) for nodes7, 8 and9. That is, nodes of a certain
its neighbor nodey initiated at timet; at time¢ (¢ + 1) the  gybtree ofl” forward data associated with their own service
facility is located at noder (y). Assume thatKo, = {0} demands through some nogey € S,. Let I¥(T{) denote
and T is the shortest path tree depicted in Figure 1.ghe particular subtree, which is also a tree of root ngdn
Assume thatk; = {1} and 7] is the shortest path treethe previous example, there are three such subtrees denoted
depicted in Figure 1.c after a facility movememt> 1. It by INTY), I°(T?) and I3(T}), as shown in Figure 1.a.
is reasonable to assume that any routing protocol wouldbtry t Let A (I¥(7})) denote theaggregate service demanttsat
minimize the overhead introduced by such a facility moveimeare forwarded to the facility node through link (z,y) (for
by preserving previously established shortest paths ard some neighbor nodg € S,, andy € T7) over subtree
switching to new ones, provided that the previous ones are 78 (7). A (I¥(T{)) is equal to the summation of the service
worse than any new one. Thisigration rulewill be adopted demands of the individual nodes of the corresponding septre
here and ensures that the new shortest pathTifeaould be or:
the one depicted in Figure 1.c and not the one depicted in AIV(TY)) = Z Ay (2
Figure 1.d (both belong t@7 (1)) or any other. To illustrate Yoelv(TF)
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Fig. 1. Shortest path trees and subtrees for an example rietwo

A (I¥(TF)) can be available to facility node using a nodes ofz (i.e., setS, \ {y}) plus the service demands of node
monitoring mechanism that captures the incoming and out-tself (i-e-,ZWeSw\{y}A(I”(Ti”))Hz = A(TF\I¥Y(TF)),
going packets or, in casg, is known to nodev, by com- sinceUy,eg,\(,1 [ (1) U{z} = T\ IY(T})). As mentioned
municating these values to (e.g., through piggybacking). before, bothA (T \ IY(Ty)) and A(I¥(T7)) are locally
It will be assumed that each facility node has knowledge available at node: (i.e., strictly local information).
of A(I¥(T7)) for all neighbor nodeg; € S,. This locally In view of Lemma 1, two interesting observations can be
available information will be utilized by the proposed deev made regarding the difference when the facility is located a
migration policy. neighbor nodes. First, the difference does not depend on the
weights of the links of the network, apart from the weight
of the link among them, i.e.w(x,y). Second, it depends
on the difference between the aggregate service demands.

Consider the case of one facility located at nod& timet.  Consequently, global knowledge of the network (i.e., knowl
The key question for service migration is to establish weethedge of the weights of each link and the service demands
a cost reduction is achieved by moving the facility to nodgf each node in the network) is not necessary to determine
y. Since — according to Equation (1) — the previous requirgfferences in costs associated with neighboring facilibgdes
global information, the main challenge is to derive a candit and, eventually, determine the facility node that indudess t
that would be based on information that is |OC3.||y availaddle lowest cost among all neighboring nodes. Even know|edge
the facility nodex, such as\(1¥(7}")). of w(z,y) is not necessary, as it is shown later in Theorem

Letcﬁl(y) denote enypothetical cosassuming that (a) the 1. What is actually required is information regarding the
facility moves to node at timet+1; and (b) the correspondingaggregate service demands, which can be available at the
shortest path tree over which data are forwarded towards faeility node.
facility node y (which should have beef |, if facility Theorem 1:For a single service facility in a network lo-
movement: - y had actually taken place) remains the curreg@ted at some node at time ¢ and some neighbor node
one (i.e.,T). For this hypothetical cost, let the distance € Sz, if the facility moves to node, then cost reduction is
between any nodethat is served by facility over the shortest achieved, i.e.Cy1 < C, provided thatA (T} \ I¥(T7)) <
path treeT? be denoted byd” (v,y) instead ofd(v,y). A(IY(T})).

Equivalently, CtTfl (y) = Yveers Mod’™ (v,y). Note that in The proof of Theorem 1 can be found in Appendix B.
general shortest path trees are different for differentsoo Motivated by Theorem 1, the following migration policy
(e., TV, # T7), except for the special case of topologie$ Proposed, referred to hereafter kiigration Policy S to
with unique shortest path trees [4@]nique shortest path tree €Mphasize the use of strictly local information (i.§),and to
topologiesare those for whictf}(z) = T;(y), for all pairs of distinguish it from other migration policies proposed faite
nodesz,y € V, at any timet. The following lemmas are the thiS paper. o _ -

basis for the migration policy presented later. Definition of M_|grat|on P0I|cy_$: F_or a facility located at

Lemma 1:For a single service facility in a network locatec?®me noder at time ¢, the facility is moved from noder
at some node: at time ¢ and some neighbor nodg € 5,, t© Some neighbor nodg at time ¢ iff A(7; \ I*(7y)) <
CT\(y) > Copr(y) is satisfied (the equality holds for unique® (1" (71))-

shortest path tree topologies). In addition, the diffeeche- L According to Migr?ti(;)n EOHCVS and in view of fThheo;eml_
tween cosiC%, (4) and cosiC(x) is given by: , it is easy to conclude that every movement of the facility

results in cost reduction.
Cl (y) - Colz) = (A(Tt””\Iy(Tf)) fA(Iy(Tf)))w(a:,y). _
(3) B. Multiple Facilities
The proof of Lemma 1 can be found in Appendix A. The following theorem shows that under Migration Policy
The right part of Equation (3) depends on the link weigh§, overall cost reduction is always achieved (i@, < C}),
w(z,y), the aggregate service demands that are forwardedvtbatever the number of facilities in the network.
nodez through nodey (i.e.,A(Iy(Tg“))) and therestofthe ag- Theorem 2:In a network of more than one facilities, if
gregate service demands that arrive through the other beigha facility located at some node at time ¢ moves under

A. Service Migration for a Single Facility



Migration Policy.S to some neighbor nodg thenC;; < C;. facility node (i.e., nodegs at timet + 1). Basically, the reason

The proof of Theorem 2 can be found in Appendix C. for some nodev to utilize a shortcut is that the distance
Moving a facility under Migration PolicyS and achieving towards the new facility nodg over this shortcut (i.ed(v, y))

overall cost reduction does not necessarily mean that tisesmaller than that utilizing the previous path towards the

facility will eventually reach the optimal position (i.ethe (previous facility) noder (i.e., d(v,z)) plus the weight of

solution of thek-median problem) that minimizes the overallink (x,y) (i.e., w(z,y)). More formally:

cost. This is guaranteed (as shown next) for unique shortes .

path tree topologies (e.g., trees) and for a single facility %J , = v € TAY(TY) andd(v, y) < d(v, 2)+w(z, y)}.
Theorem 3:In a network consisting of a unique shortest _ (4)

path tree, a single service facility always arrives at the off? the previous exampleb . = {3,5}.

timal location under Migration Policys, assuming a static

environment. A. Cost Reduction and Tentative Facility Movements

The proof of Theorem 3 can be found in Appendix D. Lemma 2:For a single facility in a network and facility

Unique shortest path tree topologies (e.g., trees) are Svement: by Chay < C, is satisfied iff
uncommon; in fact, trees are formed frequently as a result i+l t '

t
s

of routing protocols in dynamic environments (e.g., mohbite (A(Iy(Tg“)) — A(I‘”(Tf’ﬂ)))w(x,y)

hoc networks [6]). In addition, the presence of a singleiserv

facility within certain network boundaries is also freqtien > > M(d(v,y) —dv, ). (5)
Consequently, the results of Theorem 3 apply to many real VvED .

cases. Migration PolicyS is also useful for environmentsThe proof of Lemma 2 is similar to the proof of Lemma 1.
that do not comply with the previous conditions, since it Based on the paradigm of Migration Policy that was
allows for cost reduction (even though not necessarily st ¢ proposed after Theorem 1, another policy could be proposed
minimization) based on strictly local information. based on Lemma 2, requiring knowledge mf(Iy(Tf)),

A(Ix(TtyH)), w(z,y) and v, co B Ay (d(v,y) — d(v,:c)).

V. SERVICE MIGRATION BASED ON ONE-HOP LOCAL A(I%(T#)) and w(z,y) are available at time at nodes.
INFORMATION On the other handA (I*(T}, ,)), which is available at node

Suppose that at timea single facility is located at node y at timet¢ + 1, could be made available after a tentative
and moves to neighbor node If the shortest path tree of rootfacility movement to node; and then moving back to the
nodey is different from that of root node (i.e., T}, , # T}"), previous facility nodez before deciding if a (permanent)
then this indicates that some nodes have preferrgiioatcut  facility movementz RaN y should take place. However,
i.e., a shortest path towards the new facility nadé¢hat is > vves Y (d(’u,y)—d(’u,x}) is not known either at node
shorter than that towards nodeplus the weighto(z, y) (fur- :
ther details about shortcuts are given next). Migratioridyol
S fails to capture the potential cost reduction caused by t
aforementioned shortcuts and decide on a facility movement
that would eventually allow for further cost reduction. Th&. Service Migration in Topologies of Equal Link Weights
aim of this section is to overcome this limitation of Migati The main objective of the analysis next is to simplify the
Policy S using information that is available at the neighboright term of Lemma 2 using information that is available
nodes (one-hop) of a facility node by permitting tentativat least one hop away from the facility node (i.e., term
movements of the facility to these nodes and reducing t@w@ Y (d('u,y) — d(u,x))). The objective is not to
way the impact of the (unknown) shortcuts. ey .

Consider the facility movemertt % 1 depicted in Figures determ|ne_<I>xi>y o_r (d(”’y) B d(”’x))’ W_h'Ch are ba;ed on
1.a and 1.c. It easy to see that there exist nodes whoseaiistd#n-local information, but rather to exploit the aforemened
from the facility remains the same, or increases, or deegeadentative facility movements in such a way that the rightrter
In that example, node8 and 5 have chosen a shortcut to®f Lémma 2 becomes obsolete (i.6), This is possible in
implement the new shortest path towards the (new) facilifgPologies with equal link weights (normalized tohere), as
node (node3 is a neighbor of the new facility node and nod&hown analytically next. _

5 utilizes the path through nodk instead of the one through ToPologies with equal link weights (e.gw(u,v) = 1,
node6). Note that when the facility was located at nogle Y(u,v) € E) may be considered as a worst case scenario
the existence of these shortcuts was not known to odeis with respect to shortcuts (provided that the topology is anot
is basically the reason why Migration Polic§ is unable to tree). In particular,_ equal Iin_k weights allow fqr an incsed
foresee the corresponding cost reduction (it assumes tat nhumber of alternative paths in the network, which on the even
3 will utilize path {(3,6), (6,0), (0,1)} instead of link(3, 1), of a facility movement are likely to be utilized (i.e., shctuts),
and that nodé will utilize path {(5,6), (6,0), (0,1)} instead resulting in® . 70, for some facility movement — y.

of path{(5, 3), (3,1)}, which is a safe worst-case assumption)n these t0p0|OegeSI)zi> can be analyzed further as follows.

In view of the above discussion, @x%y denote the set Lemma 3:For a singlg facility in a network of link weights
of nodes ofT* \ I¥(T{) utilizing a shortcut towards the newequal tol and a facility movement - y, for some node €

Ty . ...
x or nodey at any time. Eventually, the condition of Lemma
%erequires information that is not locally available.



Sq, then for any node € ¢ ., eitherd(v,y) —d(v,z) =0 Lemma 5:In topologies of a unique shortest path tree and
Ty

or d(v,y) — d(v,x) = —1. a single facility, Migration Policiess and £/ permit the same

The proof of Lemma 3 can be found in Appendix E. facility movements. For any other topology of equal link
Let®° , denote the subset of nodes ® , for which weights, if a facility movement is permitted under Migratio

z—y o Y Policy S, then it is also permitted under Migration Poligy.

d(v,y) — d(v,z) =0, and @zi)y denote the subset of nodesrpe reverse is not always true.

v € ® , for which d(v,y) — d(v,z) = —1. ® , = The proof of Lemma 5 can be found in Appendix G.

®, US L andd®, Nd' = . In the example _Thls_ Iemm_a motivates the following proposed (hybrid)
Ty T—y Ty T—y Mlgratlon POllcyH.

presented in Figure 1l.a and the facility movements 1, Definition of Migration PolicyH: A facility moves in the

as depicted in Figure 1.¢p°, = {5} (d(5,0) = 2 and network under Migration Policys as far as possible, then it
0—1

d(5,1) =2) and®d~! = {3} (d(3,0) = 2 andd(3,1) = 1). is moved under Migration Policys. The fgcility stops if it
. . 0—=1 . . . _cannot move under any of the aforementioned policies.

I |s_p9_SS|bIe to S|mpI|fy0the right term of Lemma 2 since It should be mentioned that the end of a monotonically
by definition, for anyv € @zgy’ d(v,y) —d(v,x) = 0. The o decreasing path is not necessarily the optimal pasitio
following lemma exploits tentative facility movements o  except for unique shortest path tree topologies and a single
for further simplification. facility. In all other cases, a facility may stop away froneth

Lemma 4:For a single facility in a network of link weights optimal position simply because there is a local minimum of
equal tol located at noder at timet¢ and tentative facility the overall cost at that facility node. If the optimal pasitiis at
movements: - y andy L, 2, for some nodey € S,, if the end of the monotonically cost decreasing path, theitfacil
z 2 y takes place, the® ! = 0. will arrive at the optimal position and remain there (under

t+2
The proof of Lemma 4 can be féund in Appendix F. Migration Policy S, E or H) as long as network conditions
do not change.

Theorem 4:For a single facility in a network of link
weights equal td located at node: at timet, cost reduction

V1. SIMULATION RESULTS
is achieved for facility movement 2, Yy, y € Sy iff

g, - . . A simulation tool was written in programming language
A (T”tl)) < A(Ii(th“))' after tentative facility move- C for creating network topologies (trees, grids, geometric
mentsz — y andy —— z.. random graphs [41], Erdés-Rényi random graphs [42], and
The proof of Theorem 4 is based on Lemmas 2 and 4 apghert-Barabasi graphs [43]) and implementing the migrat

the fact that shortest path tré¢, ; is identical to77/, ,, since pqjicies. The goal of the simulations presented here isdlgiof
there is a single facility. _ o ~ (a) toillustrate the behavior of the migration policies amdw

~ Motivated by Theorem 4, the following migration poliCyihejr accordance with the analytical study; (b) to capturges

is proposed f_or to_pologlc_es of equal link weights, referred t,q; analytically studied (e.g., response to dynamic change
hereafter agvigration Policy E. 3 For this reason, these results are not averaged over many

Definition of Migration Policy £ For a facility located at experiments but rather the outcome of individual simufatio
node at timet, the facility is moved from node: to the experiments. Averaging would have given a macroscopic view
neighbor node at timet+2, if A(I%(T},,)) < A(I¥(T2)). (which is already covered by the analysis) but it would have
after tentative facility movements 5 y andy SaZ N missed the idiosyncrasies of the migration policies.

Migration Policy E is capable of moving a single facility In all the results presented in this section, the initialipos
repeatedly until the end of a monotonically cost decreasifgr the facilities is randomly chosen (and remains the same
path for topologies of equal link weights, as ensured kgr all experiments concerning the same topology). Titne
Theorem 4 (cost reduction is achieved iff(1” (7, ,)) < corresponds to facility movements and starts at tirre1 in
A(I¥(TF.,)) is satisfied, or, according to the definition ofach case.

Migration Policy E, iff a facility movement takes place under Figure 2 presents simulation results under Migration Rolic
Migration Policy E). The previous inequality is based onS. In Figure 2.a (tree topology of00 nodes and equal link
aggregate service demands information that is locallylavi® weights), all three curves af, are monotonically decreasing.
at the candidate new facility nodg after a tentative facility This is consistent with Theorem 1 and Theorem 2 (facilities
movement to nodes from the current facility noder (i.e., are moving to neighbor nodes of smaller overall cost). When
A(I””(Tg‘ﬂrl))) and locally available at nodeafter the tentative the cost cannot be further reduced, the facility stops ngvin
facility movement back to node (i.e., A(Iy(TtﬁQ))). For a single facility, the approximation ratio becomief.e.,
optimal position, also captured by Theorem 3) at tigng.e.,

. . after 6 movements of the facility). For two facilities, fhiyi

C. Hybrid Policy movements stop at timé; at this last movementg > 1,

As the tentative movements associated with Migratigiplying that they did not arrive at the optimal positionse(t
Policy E' introduce overhead (two facility movements pegnalysis did not provide any guarantee for that). For three
neighbor node), a hybrid policy is proposed here that corminfacilities, facility movements stop at time¢ whereay = 1,
Migration Policy S and E' so that tentative movements are@mplying that the facilities arrived (and remained) at thep-
avoided whenever possible. timal positions. Note that according to the analysis (Tkeor
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Fig. 2. Migration PolicyS in tree and grid topologies af00 nodes.

2), under Migration Policys, if facilities do move, overall cost migration is studied considering morealistic topologiedike
reduction is always achieved while they may or may not finallyeometric random graphs (suitable for studying mobile ad
arrive at the optimal positions. In Figure 2.b (grid topoksy hoc networks [41]), Erd6és-Rényi random graphs (suitdbie
of 100 nodes and equal link weights), as before, all facilitiesomparison reasons [42]), and Albert-Barabasi graphs€po
move along a monotonically cost decreasing path. Howeviaw graphs that model many modern networks including the
they fail to arrive at the optimal positiong,(> 1 in all cases). Internet [43]), in dynamically changing environments. Mor
It is possible to arrive at the optimal positions but this @ n specifically, geometric random graphs are created consgler
guaranteed, as indicated by the analytical results. a connectivity radious. = 0.21 around each node in the
Figure 3 presents simulation results under Migration Pofduare plango, 1] x [0, 1], Erdés-Rényi random graphs con-
cies E and H. In Figure 3.a (Migration PolicyE), for a sidering connectivity probability. = 0.1 and Albert-Barabasi
single facility, asp = 1. Note thatass = 1, which means Pased on preferential attachment [43].
that the facility has moved to the optimal position as soon Figure 4.a presents simulation results under Migration Pol
as time24. However, it takess more time units (i.e., time icy S for various network sizes. Link weights are equal,
t = 30) for the facility to stop moving due to tentativewhich is a worst-case scenario under Migration Policyl et
movements under Migration Polick. This overhead due to T" denotetermination timeand letay correspond toa; at
tentative facility movements is more obvious when comparéermination time. Based on Figure 4.a, it is observed that th
to Migration Policy S (e.g., in Figure 2.b, facility movementsapproximation ratio is not affected as the network size in-
stop at time7 instead of30). For two or three facilities, it is creases. It is also interesting to observe that the appiadiom
interesting to note that under Migration Poli¢y, the overall ratio remains below .5, which is small considering the fact
cost does not necessarily decrease (e.g., around2inthe that equal link topologies do not allow for significant impes
approximation ratio increases and decreases in both casegnts under Migration Policyy. When Migration PolicyF
Recall that according to the analysis, a monotonically cost employed for topologies such as those depicted in Figure
decreasing path is followed under Migration Poligyfor a 4.a, the approximation ratio is improved. However, the gric
single facility and topologies of equal link weights. to pay is the increased number of tentative facility movetsien
Figure 3.b presents results under Migration Poligyfor a and eventually the increased time delay (as depicted inr&igu
single facility. This case is better suited for Migrationliep £ 4.0). It is obvious that termination timé& increases asV
and, consequently, Migration Polidy. Note thata; ~ 1.1 is increases for the realistic network topologies considéwere,
achieved as a result of Migration Poliy(see the resemblanceand therefore, prohibitive for the use of either Migratiaiiéy
of the curve depicted in Figure 2.b for a single facility)té&xf £ or H for large values ofV.
some additional time, tentative movements to neighbor siode The response to dynamically changing network environ-
take place under Migration Polici (which is resumed after ments is also investigated. In order to capture this effect
the facility stopped moving under Migration Poli&) and the using simulations, the previously described topologiesoaice
facility stops at the optimal position, which in this run oceed again considered in an environment in which service demands
att = 20. It is interesting to see that under Migration Policxchange every time unit for a fraction of the network nodes,
H (Figure 3.b), the facility moves to the optimal position irthus forcing changes in the optimal facility positions. lGebe
less time g2 = 1) than under Migration Policy (a3o = 1). the fraction of the network nodes that at each time unit keep
This considerable saving in time (or number of movementsjichanged their service demands. The rest ({le5 3)N)
is due to the initial employment of Migration Policy, which  of the nodes set their own service demands to 1.0 (i.e., heavy
requires no tentative facility movements. Therefore, undeervice demands).
Migration Policy H, both time and facility movements are Figyre 5 presents simulation results under Migration Bolic
saved when compared to Migration Poli&y S (the approximation ratio as a function @f). a; is the
Tree and grid topolgies served well so far the purposeseraged value of the approximation ratig over time,
of demonstrating the particulars of the proposed migratiavithout taking into account the values corresponding to the
policies and confirming the analytical results. In the séquénitial convergence period in each case. Figure 5.a andr€&igu
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Fig. 4. Approximation ratio and termination time as a fuotiof .

5.b illustrate tha@; does not dramatically change despite H becomes prohibitive and Migration Policy becomes the
This is basically attributed to the fact that under Migratioobvious choice. Moreover, in response to dynamic network
Policy S, facilities move immediately (i.e., without the neecthanges, Migration PolicyS' is more effective due to its
for any tentative facility movement) to more effective posicapability to move facilities to more effective positiorimast
tions. If Migration Policy E (or H) was used, the need forimmediately.
tentative movements would have been prohibitive because by
construction, this policy assumes that the network enwivemnt VII. CONCLUSIONS
remains static as long as tentative facility movements takeservice migration was explored in this paper as a way
place. Given that Migration Policfz' (and H) can be used of addressing the service placement problem in large scale
only for one service facility and topologies of equal linkgnd dynamic (autonomic) networking environments. Unlike
weights, it is obvious that this policy is applicable to anar classical approaches that require the knowledge of global
range of network environments, whereas Migration Pobicy network topology and detailed service demands, the prapose
is applicable to all of network environments. approach requires only local topology information (neigtsb

By comparing the results depicted in Figure 5.a and Figugg the service hosting node) and aggregate service demands
5.b, it is also interesting to observe that for two faciitie that become readily available to the service hosting node.
(a) for geometric random graphs; slightly increases; (b) Furthermore, as the network conditions change, one of the
for Erd6s-Rényi random graphs; remains about the same;three migration policies presented here (Migration Policy
and (c) for Albert-Barabasi random graphs,decreases. The S) inherently incorporates these changes in determining the
obvious conclusion is that depending on the topology, anigration path to follow in each step, as opposed to reqgirin
increment of the number of facilities may eventually result to take a snapshot of the environment (network topology and
different values for the approximation ratio under migrati  service demands) at a certain time and to solve the corredspon

In summary, in any (connected) topology and for aning large optimization problem (classical approach).
number of facilities moving under Migration Polic§, cost Regarding future work, as new network environments ap-
reduction is achieved. For topologies with equal link wésghpear (e.g., social networking) and more services emerge,
yielding multiple shortest path trees, a single facilitydam numerous facilities belonging to different services magrev
static environment, Migration Polic¥ is capable of improv- tually reside in a small number of (cost-effective) nodes
ing on the performance of Migration Policy, by invoking resulting in problems like denial of service, single poirit o
Migration Policy £ when the former cannot yield any furtherfailure, energy consumption and fairness. In order to deal
improvement. In addition, Migration Policy/ is faster than with these emerging environments, service migration shoul
Migration Policy E. In realistic topologies, it becomes obvioude further enhanced with the appropriate mechanisms ta avoi
that as the network size increases, the overhead due to ¢bacentration of numerous facilities of different sergiee the
tentative facility movements under Migration Policie&sand same nodes. Furthermore, future work should focus on real
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topology and service demands scenarios (e.g., input fram rge8] J.-H. Lin, and J.S. Vitter, “Approximation Algorithmgor Geometric
traces) and on the Implementatlon Of a testbed to be able to Median Problems," Information Processing Letters, 44’249, 1992.

evaluate further on the applicability of the proposed petic
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APPENDIX cost (Theorem 1).

A. Proof of Lemma 1

With respect to some nodg, the distance from any E. Proof of Lemma 3
node v over any shortest path of’,,, is smaller than
or equal to the distance over a shortest path of any oth
shortest path tree of different root (e.dly*). Therefore,
d(v,y) < d%% (v,y), Yo € V, and based on Equation (1),
Cit1(y) < CtTjﬂ( ). The equality holds for the particular
case thatly,, = Ty, as it is the case for unique shorte
path tree topologies. For any nodec IY¥(T7%), d™* (v,y) =
d(v,z) — w(z,y), while for any nodev € TF \ Iy(T*) F. Proof of Lemma 4

Slncew( ,y) =1, it appears that for any nodee <I> 2y

v Y) — ) < 1. Note that when the service is Iocated at
nodex at tlmet d(v,y) — d(v,x) > —1. Given thatd(v, y)
andd(v, z) take discrete values, both previous inequalities are
§at|sf|ed ford(v,y) — d(v,x) =0, or,d(v,y) — d(v,z) = 1.

d" (v,y) = d(v, z) +w(zx,y). From the above and in view of Based on the migration rul& .., N® ! =@. The
. L. . T y——zx RN

Equations (1) and (2), it is derived that,,(y) — Ci(z) = next step is to show that there is no nade ® ., , such

~ Dwwerv(ry) MW@ Y) + Dyperapury) Aw(ny) = thatd(v,y)—d(v, z) = —1. Assume that there is a nodesuch

(A(TY \Iy(Ti)) = AIU(TE))) wley). thatv € @ ..» , andd(v,y) — d(v,z) = —1. Since this is

B. Proof of Theorem 1 valid for the facility movement 2 y, it should have been
. t . 1
Based on Lemma 1 and the fact thatz,y) > 0, when valid for z — y as well. Given that,cby_)t“ ne-, =40,

A(TE N\ Iy(Tw)) < A(IY(T}), it is ensured thaCt+1( ) < Wwhen the facility returns to node, v € Iy(TtﬁQ) Slncev ¢

Ci(x). SinceClE,(y) > Ciir1(y), Cipaly) < Cu(x) is also  Lit2 \ V(1) thenv ¢ Qs which is a contradiction.
satisfied. Given that there is a single facility in the netyor Eventually,®~ 1t+2 = {.
Ciy1 < C is also satisfied. Ty

C. Proof of Theorem 2 G. Proof of Lemma 5

- t . . .
Let f:(v) denote the facility node corresponding to somg F_or_ a fac'“t?]’ movemenrtf - Z un'slt_—:-r I\/I_|gra;|o="_| Polr;cy
network nodev at time . Let Z be a set of nodes such”: 'L IS €nough to prove that under Migration Poligy, the

_ . facility will also move to nodey at time¢ + 3 (taking into
that, Z = : Vz € V and . The . SN
case of Z iz@ is Ztrivial to prov]:?tl)g)s)ed#oﬁft(Tvrziorem 1 account the tentative movements). Under Migration Paficy

For the case thaZ # (), let C} +1 represent ahypothetical h(Tme(Tx d) < A]QI;(Tx)) is ;atlisfied It i?\e?gughto show
overall costat timet + 1, assuming all nodes € Z forced t att;gﬁcon |t|onc|) |grflt|fond ochE E' eth ( ( thtl)) < |
to continue to be served by the same facilities as it Wég 77 t+2>j)y) |Tszaso S?\IS]IyeTI ue ijeTngra |C(;)n rute,
the case at time (i.e., K; instead ofKtH) Based on Y(T7) < IV(Ti,), or ( ( >) < ( ( ,t+2)) ven

tha tT‘”\Iy(T*) = 1T/ )u@ o (T €T
the definition of the hypothetlcal coiﬁtﬂ( ) in Section —y

t+1 t+1
IV, Cly = Soaex, Ct+1(y). For all facility movements IY(TF) (the equality holds for those cases tltIatt = 0).
v 5oy xe Kt andy € K1, under Migration Policy

Therefore,/\([*(Ttﬂl)) < A(TENIU(TYE)), is satlsfled Since
AT\ IV(TE)) < A(IY(TE)), AI7(T ) < A(IY(TES))
5, Ct(_ _) o Ct“( ) is satisfied, ?r by summmg up fOrls also satisfied. The reverse of the lemma’s hypothesisiés tr
all facility nodes,Cv > > v, c, Crf1(y) = Ciir- TheN, for those cases thak ,  # 0.
Ci+1 = C{,1 + A, whereA is the cost difference contributed Ty

by those nodes € Z (cost contributed using the new facilities



