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Abstract— Service placement is a key problem in communica-
tion networks as it determines how efficiently the user service
demands are supported. This problem has been traditionally
approached through the formulation and resolution of largeopti-
mization problems requiring global knowledge and a continuous
recalculation of the solution in case of network changes. Such
approaches are not suitable for large-scale and dynamic network
environments. In this paper, the problem of determining the
optimal location of a service facility is revisited and addressed
in a way that is both scalable and deals inherently with network
dynamicity. In particular, service migration which enables service
facilities to move between neighbor nodes towards more commu-
nication cost-effective positions, is based onlocal information.
The migration policies proposed in this work are analytically
shown to be capable of moving a service facility between neighbor
nodes in a way that the cost of service provision is reduced
and – under certain conditions – the service facility reaches the
optimal (cost minimizing) location, and locks in there as long as
the environment does not change; as network conditions change,
the migration process is automatically resumed, thus, naturally
responding to network dynamicity under certain conditions. The
analytical findings of this work are also supported by simulation
results that shed some additional light on the behavior and
effectiveness of the proposed policies.

Index Terms— Service Placement, Service Migration, Auto-
nomic Networks, Scalability.

I. I NTRODUCTION

I NTERNET globalization and expansion make the service
placement problem a challenging one and necessitate a

careful selection of the location of the service facilities(a
facility being a service provisioning infrastructure), aiming
at bringing the service provision points close to the demand
in order to minimize communicationcosts (i.e., resource
consumption) and enhance the Quality of Service (QoS) of
the provided service. Due to the recent technological changes
(e.g., powerful machines and services have proliferated),the
traditional problem of placing relatively few big servicesin
one of the few (powerful) potential service provider facilities
(big network elements) is increasingly being transformed into
a problem of placing the one or more service facilities in one
of the numerous network nodes that are now capable of hosting
services. Peer-to-peer networks, cloud computing, content dis-
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tributions networks, software updates and patches and sensor
networks are examples of such modern environments.

The problem of determining the optimal service placement
has been studied in the past in areas such as transportation
and supply networks [1], and has been approached through
the formulation and solution of large optimization problems
(NP -hard) requiringglobal knowledge, as for instance is
the case with thek-median problem [2]. Such approaches
requiring global knowledge and a continuous recalculationof
the solution in case of network changes;do not scaleand are
not suitable for dynamic network environments, such as those
considered in this work. Instead, approaches based onlocal
informationshould be adopted, despite the fact that they might
not be able to guarantee optimality all the time (near-optimal
solutions).

In this paper, the problem of determining the optimal
location of a service facility is revisited and addressed ina
way that is both scalable and deals inherently with network
dynamicity. The approach advocated in this paper – parts of it
initially presented in [3] and [4] – is that of moving a service
facility among neighbor nodes by utilizing local information,
in a such way that the cost of service provision is reduced
and the service facility reaches under certain conditions the
optimal (cost minimizing) location, and locks in there as long
as the environment does not change; as network conditions
change, the migration process is automatically resumed, thus,
naturally responding to network dynamicity.

The first proposed policy (referred to asMigration Policy
S) is analytically shown to be capable of moving the facilities
along a monotonically cost decreasing path in the network.
For special cases of topologies such as trees, it is analytically
shown that under Migration PolicyS a single facility moves
until it reaches the optimal position (i.e., the node at which
the overall cost is minimized). In the general case, service
facility migration under Migration PolicyS, allows for overall
cost reduction, but it may fail to move the facilities until the
end of a monotonically cost decreasing path, mostly due to
unforeseenshortcuts(i.e., alternative shortest paths utilized
by some nodes to reach a certain facility after a facility
movement). The potential cost reduction that is due to the
aforementioned shortcuts is not taken into account under
Migration PolicyS, thus certain facility movements that would
allow for further cost reduction are not detected and thus not
implemented.

The aforementioned limitation is overcome in the case of a
single facility and for topologies of equal link weights, while
still utilizing only local information. Note that topologies
with equal link weights and a single service facility are not
uncommon. For such environments, a new policy (referred to
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as Migration Policy E) is proposed that moves the facility
until the end of a monotonically cost decreasing path, provided
that tentative movements to the one-hop neighbor nodes are
allowed.

The additional overhead due to the tentative facility move-
ments under Migration PolicyE (when compared to Migration
Policy S), motivates the introduction of a hybrid policy
(referred to asMigration Policy H) that efficiently combines
the Migration PoliciesS and E, in the case of equal link
topologies and a single facility. Under Migration PolicyH ,
a single facility moves until no further movement is possible
under Migration PolicyS. Then, Migration PolicyE takes
over and moves the facility until no further movement is
possible. The first part of facility movement benefits from the
guaranteed cost reduction under Migration PolicyS and the
almost negligible overhead. The second part moves the facility
towards positions of even smaller overall cost (i.e., the end of
the monotonically cost decreasing path), at the expense of the
extra overhead due to the tentative facility movements.

The analytical findings of this work are also supported by
simulation results. In addition, simulation results provide for
further insight on the behavior of the proposed policies and,
particularly, illustrate their effectiveness for cases not captured
by the analysis. More specifically, it is shown that in realistic
topologies, the overhead (due to tentative facility movements)
under Migration PoliciesE andH can be prohibitively large
and therefore, Migration PolicyS becomes the obvious alter-
native. This is also the case in dynamic environments due to
the latter’s capability to move – almost immediately – service
facilities to more effective positions.

Section II presents related work and in Section III the
service placement problem is described in detail. Migration
Policy S is presented and studied in Section IV while Migra-
tion PoliciesE and H are presented and studied in Section
V. Section VI presents simulation results and the conclusions
are drawn in Section VII.

II. RELATED WORK

The service placement problem has been addressed in the
past particularly in the area of transportation, supply networks
etc., most of these works surveyed in [1]. It has been shown
that the optimal solution of placingk service facilities in a
network (i.e., thek-median problem) is anNP -hard problem
for general graphs [2]. Even in the case of undirected tree
topologies, the complexity remains as high asO(kN) [5] (N is
the number of nodes in the network). In order to deal with the
increased complexity, several near-optimal approaches have
been proposed that can be categorized as either centralized
or distributed [6]. The centralized approaches focus on greedy
heuristics [7], [8], [9], [10], on linear programming [11],[12],
[13], on primal-dual [14], [15], local search [16], [17], and
other techniques [18], [19], [20], [21], [22], [23] that have been
proposed in the past to deal with the increased complexity of
the service placement problem. However, all of them require
global knowledge of the network topology and demands, and
this information is generally not available in the large-scale
network environment considered in this paper.

The focus in this work is on distributed approaches being
based on local information (as opposed to the aforementioned
centralized local-search-based approaches attempting toas-
sume local minima of performance) in order to avoid scalabil-
ity problems introduced by global knowledge requirements.To
the best of the authors’ knowledge, the first distributed facility
location was described by Jain and Vazirani [14]. Moscibroda
and Wattenhofer [24] proposed the first distributed approach.
Their work focuses on primal-dual techniques – in order to
derive worst-case performance bounds – which are difficult to
implement (e.g., impractical communication model) compared
to the work presented in this paper. A recent work by Krivitski
et al. [25] proposes a distributed hill-climbing algorithmbased
on local majority votes and used by nodes to agree on the
next step of the algorithm. The overall overhead is kept low
by avoiding unnecessary votes. The algorithm converges to
the optimal solution, as shown using simulation results. This
approach is different from the one proposed here (evaluated
both through analysis and simulations) since no majority
voting is considered and the need for local information is
almost negligible.

The closest works to the one presented here are [26] and
[27]. Ragusa et al. [26] propose a heuristic approach for
partitioning the network into a number ofk clusters self-
managed through mobile agents. Each agent migrates to more
efficient positions within the cluster after deriving the median
position in a centralized manner. Clusters may be further
partitioned or merged in response to dynamic network changes
based on empirically selected threshold values. The second
approach, proposed by Laoutaris et al. [27] solves the service
placement problem in a distributed manner reusing existing
near-optimal centralized approaches inside suitably defined r-
balls (i.e., network areas ofr hops away from each service
facility). As service facilities move inside the network,r-
balls are partitioned or merged based on the outcome of the
centralized approaches. The main difference between [26],
[27] and the work presented here, amounts to the requirement
for local information in order to select more efficient positions
for the mobile agents in [26] and to incorporate classical
centralized solution approaches in [27]. Instead, the proposed
service migration approach relies on strictly local information;
this local information is passively collected by the service
facility itself, as opposed to requiring the deployment of
a mechanism that provides both the demand and topology
information within each cluster as in [26] and [27].

Several other approaches have also been proposed, spe-
cific to the considered applications, including intermediate
caching [28], reflectors’ deployment [29], online version [30],
placement based on mobility [31], content distribution [32],
replication in overlays [33], service discovery in mobile ad
hoc networks [34], gateway placement [35], sensor networks
[36], [37], replica placement updates [39], distributed shared
platform [38].

III. PROBLEM STATEMENT

The network topology is represented by a connected undi-
rected graphG(V, E), whereV is the set of nodes andE
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the set of links among them. Let|X | denote the size of
a particular setX . Let N be the number of nodes in the
network or N = |V |. Let Sv denote the set of neighbor
nodes of nodev (i.e., nodes having a link with nodev).
Let (u, v) denote the link between two neighbor nodesu and
v; each such link is assigned a positive value referred to as
weight and denoted asw(u, v). For a given graphG(V, E),
let d(x, y) denote thedistancebetween nodex and nodey,
corresponding to the summation of the weights of the links
along ashortest pathbetween these nodes (for the same node
v, d(x, x) = w(x, x) = 0); alternatively,d(x, y) is referred to
as thetraveling costbetween nodesx andy. In this paper, a
facility is considered to be hosted by one of the network nodes.
It is also possible that the service provisioning is replicated –
to cope with a higher demand or for increased reliability –
and, thus, more that one facility may be deployed. Without
any loss of generality, only one service – and the associated
one or multiple service facilities – is considered in this paper.

Let the mean rate at which data packets associated with
a particular nodev are transferred through the network be
denoted byλv (i.e., service demands). LetKt denote the set
of facility nodes (i.e., nodes hosting a facility corresponding
to a certain service) at timet. In the sequel,t will take discrete
values corresponding to facility movements.

Between a given facility node and any other node in the
network, a shortest path route is assumed to be established by
the underlying employed routing protocol, [40]. Eventually, a
shortest path tree is created, rooted at the particular facility
node and including all network nodes. Such a tree (depicted
with dense lines) rooted at the facility node0 (marked by
a dotted hexagonal) is shown in Figure 1.a, where the ser-
vice demands and link weights are set to1 to facilitate the
discussion. In general, a shortest path tree associated with a
given root node is not unique. When the number of facilities is
greater than one, then a forest of shortest path trees is created,
with each tree rooted at the corresponding facility node (e.g.,
as depicted in Figure 1.b). LetTt denote the set of all possible
shortest path trees in a network at timet. Let Tt(x) denote
the subset ofTt (i.e.,Tt(x) ⊆ Tt) containing the shortest path
trees rooted at nodex. Let T x

t be the shortest path tree in
Tt(x) over which data corresponding to the nodes’ service
demands are forwarded towards the facility nodex. v ∈ T x

t

will indicate that nodev is served by facility nodex.

Let x
t
−→ y denote thefacility movementfrom nodex to

its neighbor nodey initiated at timet; at time t (t + 1) the
facility is located at nodex (y). Assume thatK0 = {0}
and T 0

0 is the shortest path tree depicted in Figure 1.a.
Assume thatK1 = {1} and T 1

1 is the shortest path tree
depicted in Figure 1.c after a facility movement0

0
−→ 1. It

is reasonable to assume that any routing protocol would try to
minimize the overhead introduced by such a facility movement
by preserving previously established shortest paths and not
switching to new ones, provided that the previous ones are not
worse than any new one. Thismigration rulewill be adopted
here and ensures that the new shortest path treeT 1

1 would be
the one depicted in Figure 1.c and not the one depicted in
Figure 1.d (both belong toT1(1)) or any other. To illustrate

this rule further, consider node7 that forwards data towards
the facility node0 over path{(7, 8), (8, 0)}, as depicted in
Figure 1.a. After the service moves to node1, node7 would
– based on the above rule – utilize path{(7, 8), (8, 0), (0, 1)},
instead of the equal cost path{(7, 6), (6, 0), (0, 1)}.

Let Ct(x) denote the cost incurred by facilityx for serving
nodesv at time t, for all v ∈ T x

t . Clearly,

Ct(x) =
∑

∀v∈T x
t

λvd(v, x). (1)

The overall cost over all facilities in the network at time
t, denoted asCt, is given by, Ct =

∑

∀x∈Kt
Ct(x) =

∑

∀x∈Kt

∑

∀v∈T x
t

λvd(v, x). Assuming fixed network topol-
ogy and service demands, it is evident that the (optimal) set
of facility locations for which cost minimization is achieved
(denoted byK) does not depend on timet, and the same
holds true for the correspondingminimum costdefined asC.
Let at = Ct

C
be defined as theapproximation ratioof the cost

induced at timet when the set of facility nodes isKt, over
the minimum (optimal) one; the closer the value ofat to 1,
the closer the induced cost at timet to the optimal one.

The optimal setK and the resulting minimal costC can
be determined by solving the previously mentionedk-median
problem, (k = |K|). This difficult and large optimization prob-
lem cannot be afforded in the large-scale and dynamic network
environments considered here, where the network topology
is subject to frequent changes requiring the recalculationof
the (expensive)k-median solution. In the sequel, services are
migrated in order to exploit information locally availableat
the facility nodes.

IV. SERVICE M IGRATION BASED ON STRICTLY LOCAL

INFORMATION

Strictly local information refers to information that is avail-
able only at a particular node. Based on such information, a
migration policy is proposed in this section to reduce the cost
after moving the facilities to neighbor nodes.

Assume a service facility is located at nodex at time t.
There exist a number of neighbor nodesSx over which data
associated with service demands of all nodesv ∈ T x

t \{x}, are
forwarded to the particular facility. In the example depicted in
Figure 1.a, data associated with the service demands towards
the facility node0, are forwarded over link(0, 1) for nodes
1 and 2, over link (0, 6) for nodes3, 4, 5 and 6, and over
link (0, 8) for nodes7, 8 and 9. That is, nodes of a certain
subtree ofT x

t forward data associated with their own service
demands through some nodey, y ∈ Sx. Let Iy(T x

t ) denote
the particular subtree, which is also a tree of root nodey. In
the previous example, there are three such subtrees denoted
by I1(T 0

t ), I6(T 0
t ) andI8(T 0

t ), as shown in Figure 1.a.
Let Λ (Iy(T x

t )) denote theaggregate service demandsthat
are forwarded to the facility nodex through link (x, y) (for
some neighbor nodey ∈ Sx, and y ∈ T x

t ) over subtree
Iy(T x

t ). Λ (Iy(T x
t )) is equal to the summation of the service

demands of the individual nodes of the corresponding subtree,
or:

Λ (Iy(T x
t )) =

∑

∀v∈Iy(T x
t )

λv. (2)
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Fig. 1. Shortest path trees and subtrees for an example network.

Λ (Iy(T x
t )) can be available to facility nodex using a

monitoring mechanism that captures the incoming and out-
going packets or, in caseλv is known to nodev, by com-
municating these values tox (e.g., through piggybacking).
It will be assumed that each facility nodex has knowledge
of Λ(Iy(T x

t )) for all neighbor nodesy ∈ Sx. This locally
available information will be utilized by the proposed service
migration policy.

A. Service Migration for a Single Facility

Consider the case of one facility located at nodex at timet.
The key question for service migration is to establish whether
a cost reduction is achieved by moving the facility to node
y. Since – according to Equation (1) – the previous requires
global information, the main challenge is to derive a condition
that would be based on information that is locally availableat
the facility nodex, such asΛ(Iy(T x

t )).
Let CT x

t

t+1(y) denote ahypothetical costassuming that (a) the
facility moves to nodey at timet+1; and (b) the corresponding
shortest path tree over which data are forwarded towards the
facility node y (which should have beenT y

t+1, if facility

movementx
t
−→ y had actually taken place) remains the current

one (i.e., T x
t ). For this hypothetical cost, let the distance

between any nodev that is served by facilityy over the shortest
path treeT x

t be denoted bydT x
t (v, y) instead of d(v, y).

Equivalently,CT x
t

t+1(y) =
∑

∀v∈T x
t

λvdT x
t (v, y). Note that in

general shortest path trees are different for different roots
(i.e., T y

t+1 6= T x
t ), except for the special case of topologies

with unique shortest path trees [40].Unique shortest path tree
topologiesare those for whichTt(x) = Tt(y), for all pairs of
nodesx, y ∈ V , at any timet. The following lemmas are the
basis for the migration policy presented later.

Lemma 1:For a single service facility in a network located
at some nodex at time t and some neighbor nodey ∈ Sx,
C

T x
t

t+1(y) ≥ Ct+1(y) is satisfied (the equality holds for unique
shortest path tree topologies). In addition, the difference be-
tween costCT x

t

t+1(y) and costCt(x) is given by:

C
T x

t

t+1(y)−Ct(x) =
(

Λ
(

T x
t \ Iy(T x

t )
)

−Λ
(

Iy(T x
t )

)

)

w(x, y).

(3)
The proof of Lemma 1 can be found in Appendix A.

The right part of Equation (3) depends on the link weight
w(x, y), the aggregate service demands that are forwarded to
nodex through nodey (i.e.,Λ

(

Iy(T x
t )

)

) and the rest of the ag-
gregate service demands that arrive through the other neighbor

nodes ofx (i.e., setSx\{y}) plus the service demands of node
x itself (i.e.,

∑

∀v∈Sx\{y} Λ
(

Iv(T x
t )

)

+λx = Λ
(

T x
t \Iy(T x

t )
)

,
since∪∀v∈Sx\{y}I

v(T x
t )∪{x} = T x

t \Iy(T x
t )). As mentioned

before, bothΛ
(

T x
t \ Iy(T x

t )
)

and Λ
(

Iy(T x
t )

)

are locally
available at nodex (i.e., strictly local information).

In view of Lemma 1, two interesting observations can be
made regarding the difference when the facility is located at
neighbor nodes. First, the difference does not depend on the
weights of the links of the network, apart from the weight
of the link among them, i.e.,w(x, y). Second, it depends
on the difference between the aggregate service demands.
Consequently, global knowledge of the network (i.e., knowl-
edge of the weights of each link and the service demands
of each node in the network) is not necessary to determine
differences in costs associated with neighboring facilitynodes
and, eventually, determine the facility node that induces the
lowest cost among all neighboring nodes. Even knowledge
of w(x, y) is not necessary, as it is shown later in Theorem
1. What is actually required is information regarding the
aggregate service demands, which can be available at the
facility node.

Theorem 1:For a single service facility in a network lo-
cated at some nodex at time t and some neighbor node
y ∈ Sx, if the facility moves to nodey, then cost reduction is
achieved, i.e.,Ct+1 < Ct, provided thatΛ

(

T x
t \ Iy(T x

t )
)

<
Λ

(

Iy(T x
t )

)

.
The proof of Theorem 1 can be found in Appendix B.

Motivated by Theorem 1, the following migration policy
is proposed, referred to hereafter asMigration Policy S to
emphasize the use of strictly local information (i.e.,S) and to
distinguish it from other migration policies proposed later in
this paper.

Definition of Migration PolicyS: For a facility located at
some nodex at time t, the facility is moved from nodex
to some neighbor nodey at time t iff Λ

(

T x
t \ Iy(T x

t )
)

<
Λ

(

Iy(T x
t )

)

.
According to Migration PolicyS and in view of Theorem

1, it is easy to conclude that every movement of the facility
results in cost reduction.

B. Multiple Facilities

The following theorem shows that under Migration Policy
S, overall cost reduction is always achieved (i.e.,Ct+1 < Ct),
whatever the number of facilities in the network.

Theorem 2:In a network of more than one facilities, if
a facility located at some nodex at time t moves under
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Migration PolicyS to some neighbor nodey, thenCt+1 < Ct.
The proof of Theorem 2 can be found in Appendix C.

Moving a facility under Migration PolicyS and achieving
overall cost reduction does not necessarily mean that the
facility will eventually reach the optimal position (i.e.,the
solution of thek-median problem) that minimizes the overall
cost. This is guaranteed (as shown next) for unique shortest
path tree topologies (e.g., trees) and for a single facility.

Theorem 3:In a network consisting of a unique shortest
path tree, a single service facility always arrives at the op-
timal location under Migration PolicyS, assuming a static
environment.
The proof of Theorem 3 can be found in Appendix D.

Unique shortest path tree topologies (e.g., trees) are not
uncommon; in fact, trees are formed frequently as a result
of routing protocols in dynamic environments (e.g., mobilead
hoc networks [6]). In addition, the presence of a single service
facility within certain network boundaries is also frequent.
Consequently, the results of Theorem 3 apply to many real
cases. Migration PolicyS is also useful for environments
that do not comply with the previous conditions, since it
allows for cost reduction (even though not necessarily for cost
minimization) based on strictly local information.

V. SERVICE M IGRATION BASED ON ONE-HOP LOCAL

INFORMATION

Suppose that at timet a single facility is located at nodex
and moves to neighbor nodey. If the shortest path tree of root
nodey is different from that of root nodex (i.e.,T y

t+1 6= T x
t ),

then this indicates that some nodes have preferred ashortcut,
i.e., a shortest path towards the new facility nodey that is
shorter than that towards nodex plus the weightw(x, y) (fur-
ther details about shortcuts are given next). Migration Policy
S fails to capture the potential cost reduction caused by the
aforementioned shortcuts and decide on a facility movement
that would eventually allow for further cost reduction. The
aim of this section is to overcome this limitation of Migration
Policy S using information that is available at the neighbor
nodes (one-hop) of a facility node by permitting tentative
movements of the facility to these nodes and reducing that
way the impact of the (unknown) shortcuts.

Consider the facility movement0
t
−→ 1 depicted in Figures

1.a and 1.c. It easy to see that there exist nodes whose distance
from the facility remains the same, or increases, or decreases.
In that example, nodes3 and 5 have chosen a shortcut to
implement the new shortest path towards the (new) facility
node (node3 is a neighbor of the new facility node and node
5 utilizes the path through node3, instead of the one through
node6). Note that when the facility was located at node0,
the existence of these shortcuts was not known to node0; this
is basically the reason why Migration PolicyS is unable to
foresee the corresponding cost reduction (it assumes that node
3 will utilize path {(3, 6), (6, 0), (0, 1)} instead of link(3, 1),
and that node5 will utilize path {(5, 6), (6, 0), (0, 1)} instead
of path{(5, 3), (3, 1)}, which is a safe worst-case assumption).

In view of the above discussion, letΦ
x

t−→y
denote the set

of nodes ofT x
t \ Iy(T x

t ) utilizing a shortcut towards the new

facility node (i.e., nodey at timet + 1). Basically, the reason
for some nodev to utilize a shortcut is that the distance
towards the new facility nodey over this shortcut (i.e.,d(v, y))
is smaller than that utilizing the previous path towards the
(previous facility) nodex (i.e., d(v, x)) plus the weight of
link (x, y) (i.e., w(x, y)). More formally:

Φ
x

t−→y
= {v : v ∈ T x

t \I
y(T x

t ) andd(v, y) < d(v, x)+w(x, y)}.

(4)
In the previous example,Φ

0
t−→1

= {3, 5}.

A. Cost Reduction and Tentative Facility Movements

Lemma 2:For a single facility in a network and facility
movementx

t
−→ y, Ct+1 < Ct is satisfied iff:

(

Λ
(

Iy(T x
t )

)

− Λ
(

Ix(T y
t+1)

)

)

w(x, y)

>
∑

∀v∈Φ
x

t−→y

λv

(

d(v, y) − d(v, x)
)

. (5)

The proof of Lemma 2 is similar to the proof of Lemma 1.
Based on the paradigm of Migration PolicyS that was

proposed after Theorem 1, another policy could be proposed
based on Lemma 2, requiring knowledge ofΛ

(

Iy(T x
t )

)

,
Λ

(

Ix(T y
t+1)

)

, w(x, y) and
∑

∀v∈Φ
x

t−→y

λv

(

d(v, y)− d(v, x)
)

.

Λ
(

Iy(T x
t )

)

and w(x, y) are available at timet at nodex.
On the other hand,Λ

(

Ix(T y
t+1)

)

, which is available at node
y at time t + 1, could be made available after a tentative
facility movement to nodey and then moving back to the
previous facility nodex before deciding if a (permanent)
facility movementx

t+2
−−→ y should take place. However,

∑

∀v∈Φ
x

t−→y

λv

(

d(v, y)−d(v, x)
)

is not known either at node

x or nodey at any time. Eventually, the condition of Lemma
2 requires information that is not locally available.

B. Service Migration in Topologies of Equal Link Weights

The main objective of the analysis next is to simplify the
right term of Lemma 2 using information that is available
at least one hop away from the facility node (i.e., term
∑

∀v∈Φ
x

t−→y

λv

(

d(v, y) − d(v, x)
)

). The objective is not to

determineΦ
x

t−→y
or

(

d(v, y) − d(v, x)
)

, which are based on

non-local information, but rather to exploit the aforementioned
tentative facility movements in such a way that the right term
of Lemma 2 becomes obsolete (i.e.,0). This is possible in
topologies with equal link weights (normalized to1 here), as
shown analytically next.

Topologies with equal link weights (e.g.,w(u, v) = 1,
∀(u, v) ∈ E) may be considered as a worst case scenario
with respect to shortcuts (provided that the topology is nota
tree). In particular, equal link weights allow for an increased
number of alternative paths in the network, which on the event
of a facility movement are likely to be utilized (i.e., shortcuts),
resulting inΦ

x
t
−→y

6= ∅, for some facility movementx
t
−→ y.

In these topologies,Φ
x

t−→y
can be analyzed further as follows.

Lemma 3:For a single facility in a network of link weights
equal to1 and a facility movementx

t
−→ y, for some nodey ∈
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Sx, then for any nodev ∈ Φ
x

t−→y
, eitherd(v, y)−d(v, x) = 0

or d(v, y) − d(v, x) = −1.
The proof of Lemma 3 can be found in Appendix E.

Let Φ0

x
t−→y

denote the subset of nodesv ∈ Φ
x

t−→y
for which

d(v, y) − d(v, x) = 0, andΦ−1

x
t−→y

denote the subset of nodes

v ∈ Φ
x

t−→y
for which d(v, y) − d(v, x) = −1. Φ

x
t−→y

=

Φ0

x
t
−→y

∪ Φ−1

x
t−→y

and Φ0

x
t
−→y

∩ Φ−1

x
t−→y

= ∅. In the example

presented in Figure 1.a and the facility movement0
t
−→ 1,

as depicted in Figure 1.c,Φ0

0
t−→1

= {5} (d(5, 0) = 2 and

d(5, 1) = 2) andΦ−1

0
t−→1

= {3} (d(3, 0) = 2 andd(3, 1) = 1).

It is possible to simplify the right term of Lemma 2 since
by definition, for anyv ∈ Φ0

x
t−→y

, d(v, y) − d(v, x) = 0. The

following lemma exploits tentative facility movements to allow
for further simplification.

Lemma 4:For a single facility in a network of link weights
equal to1 located at nodex at time t and tentative facility
movementsx

t
−→ y and y

t+1
−−→ x, for some nodey ∈ Sx, if

x
t+2
−−→ y takes place, thenΦ−1

x
t+2

−−→y
= ∅.

The proof of Lemma 4 can be found in Appendix F.
Theorem 4:For a single facility in a network of link

weights equal to1 located at nodex at timet, cost reduction
is achieved for facility movementx

t+2
−−→ y, y ∈ Sx iff

Λ
(

Ix(T y
t+1)

)

< Λ
(

Iy(T x
t+2)

)

, after tentative facility move-

mentsx
t
−→ y andy

t+1
−−→ x.

The proof of Theorem 4 is based on Lemmas 2 and 4 and
the fact that shortest path treeT y

t+3 is identical toT y
t+1, since

there is a single facility.
Motivated by Theorem 4, the following migration policy

is proposed for topologies of equal link weights, referred to
hereafter asMigration Policy E.

Definition of Migration PolicyE: For a facility located at
nodex at time t, the facility is moved from nodex to the
neighbor nodey at timet+2, if Λ

(

Ix(T y
t+1)

)

< Λ
(

Iy(T x
t+2)

)

,

after tentative facility movementsx
t
−→ y andy

t+1
−−→ x.

Migration Policy E is capable of moving a single facility
repeatedly until the end of a monotonically cost decreasing
path for topologies of equal link weights, as ensured by
Theorem 4 (cost reduction is achieved iffΛ

(

Ix(T y
t+1)

)

<
Λ

(

Iy(T x
t+2)

)

is satisfied, or, according to the definition of
Migration PolicyE, iff a facility movement takes place under
Migration Policy E). The previous inequality is based on
aggregate service demands information that is locally available
at the candidate new facility nodey after a tentative facility
movement to nodey from the current facility nodex (i.e.,
Λ

(

Ix(T y
t+1)

)

) and locally available at nodex after the tentative
facility movement back to nodex (i.e., Λ

(

Iy(T x
t+2)

)

).

C. Hybrid Policy

As the tentative movements associated with Migration
Policy E introduce overhead (two facility movements per
neighbor node), a hybrid policy is proposed here that combines
Migration Policy S and E so that tentative movements are
avoided whenever possible.

Lemma 5: In topologies of a unique shortest path tree and
a single facility, Migration PoliciesS andE permit the same
facility movements. For any other topology of equal link
weights, if a facility movement is permitted under Migration
Policy S, then it is also permitted under Migration PolicyE.
The reverse is not always true.
The proof of Lemma 5 can be found in Appendix G.

This lemma motivates the following proposed (hybrid)
Migration PolicyH .

Definition of Migration PolicyH : A facility moves in the
network under Migration PolicyS as far as possible, then it
is moved under Migration PolicyE. The facility stops if it
cannot move under any of the aforementioned policies.

It should be mentioned that the end of a monotonically
cost decreasing path is not necessarily the optimal position
except for unique shortest path tree topologies and a single
facility. In all other cases, a facility may stop away from the
optimal position simply because there is a local minimum of
the overall cost at that facility node. If the optimal position is at
the end of the monotonically cost decreasing path, the facility
will arrive at the optimal position and remain there (under
Migration Policy S, E or H) as long as network conditions
do not change.

VI. SIMULATION RESULTS

A simulation tool was written in programming language
C for creating network topologies (trees, grids, geometric
random graphs [41], Erdős-Rényi random graphs [42], and
Albert-Barabási graphs [43]) and implementing the migration
policies. The goal of the simulations presented here is twofold:
(a) to illustrate the behavior of the migration policies andshow
their accordance with the analytical study; (b) to capture cases
not analytically studied (e.g., response to dynamic changes).
For this reason, these results are not averaged over many
experiments but rather the outcome of individual simulation
experiments. Averaging would have given a macroscopic view
(which is already covered by the analysis) but it would have
missed the idiosyncrasies of the migration policies.

In all the results presented in this section, the initial position
for the facilities is randomly chosen (and remains the same
for all experiments concerning the same topology). Timet
corresponds to facility movements and starts at timet = 1 in
each case.

Figure 2 presents simulation results under Migration Policy
S. In Figure 2.a (tree topology of100 nodes and equal link
weights), all three curves ofat are monotonically decreasing.
This is consistent with Theorem 1 and Theorem 2 (facilities
are moving to neighbor nodes of smaller overall cost). When
the cost cannot be further reduced, the facility stops moving.
For a single facility, the approximation ratio becomes1 (i.e.,
optimal position, also captured by Theorem 3) at time6 (i.e.,
after 6 movements of the facility). For two facilities, facility
movements stop at time6; at this last movementa6 > 1,
implying that they did not arrive at the optimal positions (the
analysis did not provide any guarantee for that). For three
facilities, facility movements stop at time9 where a9 = 1,
implying that the facilities arrived (and remained) at their op-
timal positions. Note that according to the analysis (Theorem
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Fig. 2. Migration PolicyS in tree and grid topologies of100 nodes.

2), under Migration PolicyS, if facilities do move, overall cost
reduction is always achieved while they may or may not finally
arrive at the optimal positions. In Figure 2.b (grid topologies
of 100 nodes and equal link weights), as before, all facilities
move along a monotonically cost decreasing path. However,
they fail to arrive at the optimal positions (at > 1 in all cases).
It is possible to arrive at the optimal positions but this is not
guaranteed, as indicated by the analytical results.

Figure 3 presents simulation results under Migration Poli-
cies E and H . In Figure 3.a (Migration PolicyE), for a
single facility, a30 = 1. Note thata24 = 1, which means
that the facility has moved to the optimal position as soon
as time24. However, it takes6 more time units (i.e., time
t = 30) for the facility to stop moving due to tentative
movements under Migration PolicyE. This overhead due to
tentative facility movements is more obvious when compared
to Migration PolicyS (e.g., in Figure 2.b, facility movements
stop at time7 instead of30). For two or three facilities, it is
interesting to note that under Migration PolicyE, the overall
cost does not necessarily decrease (e.g., around time28, the
approximation ratio increases and decreases in both cases).
Recall that according to the analysis, a monotonically cost
decreasing path is followed under Migration PolicyE for a
single facility and topologies of equal link weights.

Figure 3.b presents results under Migration PolicyH for a
single facility. This case is better suited for Migration Policy E
and, consequently, Migration PolicyH . Note thata7 ≈ 1.1 is
achieved as a result of Migration PolicyS (see the resemblance
of the curve depicted in Figure 2.b for a single facility). After
some additional time, tentative movements to neighbor nodes
take place under Migration PolicyE (which is resumed after
the facility stopped moving under Migration PolicyS) and the
facility stops at the optimal position, which in this run occurred
at t = 20. It is interesting to see that under Migration Policy
H (Figure 3.b), the facility moves to the optimal position in
less time (a20 = 1) than under Migration PolicyE (a30 = 1).
This considerable saving in time (or number of movements)
is due to the initial employment of Migration PolicyS, which
requires no tentative facility movements. Therefore, under
Migration Policy H , both time and facility movements are
saved when compared to Migration PolicyE.

Tree and grid topolgies served well so far the purposes
of demonstrating the particulars of the proposed migration
policies and confirming the analytical results. In the sequel,

migration is studied considering morerealistic topologieslike
geometric random graphs (suitable for studying mobile ad
hoc networks [41]), Erdős-Rényi random graphs (suitablefor
comparison reasons [42]), and Albert-Barabási graphs (power-
law graphs that model many modern networks including the
Internet [43]), in dynamically changing environments. More
specifically, geometric random graphs are created considering
a connectivity radiousrc = 0.21 around each node in the
square plane[0, 1] × [0, 1], Erdős-Rényi random graphs con-
sidering connectivity probabilitypc = 0.1 and Albert-Barabási
based on preferential attachment [43].

Figure 4.a presents simulation results under Migration Pol-
icy S for various network sizes. Link weights are equal,
which is a worst-case scenario under Migration PolicyS. Let
T denote termination timeand let aT correspond toat at
termination time. Based on Figure 4.a, it is observed that the
approximation ratio is not affected as the network size in-
creases. It is also interesting to observe that the approximation
ratio remains below1.5, which is small considering the fact
that equal link topologies do not allow for significant improve-
ments under Migration PolicyS. When Migration PolicyE
is employed for topologies such as those depicted in Figure
4.a, the approximation ratio is improved. However, the price
to pay is the increased number of tentative facility movements
and eventually the increased time delay (as depicted in Figure
4.b). It is obvious that termination timeT increases asN
increases for the realistic network topologies consideredhere,
and therefore, prohibitive for the use of either Migration Policy
E or H for large values ofN .

The response to dynamically changing network environ-
ments is also investigated. In order to capture this effect
using simulations, the previously described topologies are once
again considered in an environment in which service demands
change every time unit for a fraction of the network nodes,
thus forcing changes in the optimal facility positions. Letβ be
the fraction of the network nodes that at each time unit keep
unchanged their service demands. The rest (i.e.,(1 − β)N )
of the nodes set their own service demands to 1.0 (i.e., heavy
service demands).

Figure 5 presents simulation results under Migration Policy
S (the approximation ratio as a function ofβ). at is the
averaged value of the approximation ratioat over time,
without taking into account the values corresponding to the
initial convergence period in each case. Figure 5.a and Figure
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5.b illustrate thatat does not dramatically change despiteβ.
This is basically attributed to the fact that under Migration
Policy S, facilities move immediately (i.e., without the need
for any tentative facility movement) to more effective posi-
tions. If Migration PolicyE (or H) was used, the need for
tentative movements would have been prohibitive because by
construction, this policy assumes that the network environment
remains static as long as tentative facility movements take
place. Given that Migration PolicyE (and H) can be used
only for one service facility and topologies of equal link
weights, it is obvious that this policy is applicable to a narrow
range of network environments, whereas Migration PolicyS
is applicable to all of network environments.

By comparing the results depicted in Figure 5.a and Figure
5.b, it is also interesting to observe that for two facilities:
(a) for geometric random graphs,at slightly increases; (b)
for Erdős-Rényi random graphs,at remains about the same;
and (c) for Albert-Barabási random graphs,at decreases. The
obvious conclusion is that depending on the topology, an
increment of the number of facilities may eventually resultin
different values for the approximation ratio under migration.

In summary, in any (connected) topology and for any
number of facilities moving under Migration PolicyS, cost
reduction is achieved. For topologies with equal link weights
yielding multiple shortest path trees, a single facility and a
static environment, Migration PolicyH is capable of improv-
ing on the performance of Migration PolicyS, by invoking
Migration PolicyE when the former cannot yield any further
improvement. In addition, Migration PolicyH is faster than
Migration PolicyE. In realistic topologies, it becomes obvious
that as the network size increases, the overhead due to the
tentative facility movements under Migration PoliciesE and

H becomes prohibitive and Migration PolicyS becomes the
obvious choice. Moreover, in response to dynamic network
changes, Migration PolicyS is more effective due to its
capability to move facilities to more effective positions almost
immediately.

VII. C ONCLUSIONS

Service migration was explored in this paper as a way
of addressing the service placement problem in large scale
and dynamic (autonomic) networking environments. Unlike
classical approaches that require the knowledge of global
network topology and detailed service demands, the proposed
approach requires only local topology information (neighbors
of the service hosting node) and aggregate service demands
that become readily available to the service hosting node.
Furthermore, as the network conditions change, one of the
three migration policies presented here (Migration Policy
S) inherently incorporates these changes in determining the
migration path to follow in each step, as opposed to requiring
to take a snapshot of the environment (network topology and
service demands) at a certain time and to solve the correspond-
ing large optimization problem (classical approach).

Regarding future work, as new network environments ap-
pear (e.g., social networking) and more services emerge,
numerous facilities belonging to different services may even-
tually reside in a small number of (cost-effective) nodes
resulting in problems like denial of service, single point of
failure, energy consumption and fairness. In order to deal
with these emerging environments, service migration should
be further enhanced with the appropriate mechanisms to avoid
concentration of numerous facilities of different services at the
same nodes. Furthermore, future work should focus on real
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topology and service demands scenarios (e.g., input from real
traces) and on the implementation of a testbed to be able to
evaluate further on the applicability of the proposed policies.
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APPENDIX

A. Proof of Lemma 1

With respect to some nodey, the distance from any
node v over any shortest path ofT y

t+1, is smaller than
or equal to the distance over a shortest path of any other
shortest path tree of different root (e.g.,T x

t ). Therefore,
d(v, y) ≤ dT x

t (v, y), ∀v ∈ V , and based on Equation (1),
Ct+1(y) ≤ C

T x
t

t+1(y). The equality holds for the particular
case thatT y

t+1 = T x
t , as it is the case for unique shortest

path tree topologies. For any nodev ∈ Iy(T x
t ), dT x

t (v, y) =
d(v, x) − w(x, y), while for any nodev ∈ T x

t \ Iy(T x
t ),

dT x
t (v, y) = d(v, x)+w(x, y). From the above and in view of

Equations (1) and (2), it is derived that,C
T x

t

t+1(y) − Ct(x) =
−

∑

∀v∈Iy(T x
t ) λvw(x, y) +

∑

∀v∈T x
t \Iy(T x

t ) λvw(x, y) =

(Λ(T x
t \ Iy(T x

t )) − Λ(Iy(T x
t )))w(x, y).

B. Proof of Theorem 1

Based on Lemma 1 and the fact thatw(x, y) > 0, when
Λ(T x

t \ Iy(T x
t )) < Λ(Iy(T x

t ), it is ensured thatCT x
t

t+1(y) <

Ct(x). SinceC
T x

t

t+1(y) ≥ Ct+1(y), Ct+1(y) < Ct(x) is also
satisfied. Given that there is a single facility in the network,
Ct+1 < Ct is also satisfied.

C. Proof of Theorem 2

Let ft(v) denote the facility node corresponding to some
network nodev at time t. Let Z be a set of nodes such
that, Z = {z : ∀z ∈ V and ft+1(v) 6= ft(v)}. The
case of Z = ∅ is trivial to prove based on Theorem 1.
For the case thatZ 6= ∅, let C′

t+1 represent ahypothetical
overall costat time t + 1, assuming all nodesv ∈ Z forced
to continue to be served by the same facilities as it was
the case at timet (i.e., Kt instead of Kt+1). Based on
the definition of the hypothetical costCT x

t

t+1(y) in Section

IV, C′
t+1 =

∑

∀x∈Kt
C

T x
t

t+1(y). For all facility movements

x
t
−→ y, x ∈ Kt and y ∈ Kt+1, under Migration Policy

S, Ct(x) > C
T x

t

t+1(y) is satisfied, or, by summing up for

all facility nodes,Ct >
∑

∀x∈Kt
C

T x
t

t+1(y) = C′
t+1. Then,

Ct+1 = C′
t+1 +∆, where∆ is the cost difference contributed

by those nodesv ∈ Z (cost contributed using the new facilities

minus the cost contributed using the previous facilities),or,
∆ =

∑

∀v∈Z λvd(v, ft+1(v)) −
∑

∀v∈Z λvd(v, ft(v)). How-
ever, d(v, ft+1(v)) < d(v, ft(v)), (smaller distances force
nodesv ∈ Z to utilize new facilities). Therefore,∆ < 0,
and consequently,Ct+1 < C′

t+1. Eventually,Ct+1 < Ct.

D. Proof of Theorem 3

The cost corresponding to the facility located at some node
v and the facility located at the optimal position (e.g., nodeu),
can be shown as monotonically increasing by the number of
hops away from the optimal position in a topology of a unique
shortest path tree, [3]. This is due to the fact that the aggregate
service demands – corresponding to the particular neighbor
(of the facility) node that is towards the optimal position –
monotonically increase. Since there is a unique shortest path
tree, the facility will always move to nodes of lower overall
cost (Theorem 1).

E. Proof of Lemma 3

Sincew(x, y) = 1, it appears that for any nodev ∈ Φ
x

t−→y
,

d(v, y)−d(v, x) < 1. Note that when the service is located at
nodex at time t, d(v, y) − d(v, x) ≥ −1. Given thatd(v, y)
andd(v, x) take discrete values, both previous inequalities are
satisfied for,d(v, y) − d(v, x) = 0, or, d(v, y) − d(v, x) = 1.

F. Proof of Lemma 4

Based on the migration rule,Φ
y

t+1

−−→x
∩ Φ−1

x
t−→y

= ∅. The

next step is to show that there is no nodev ∈ Φ
x

t+2

−−→y
, such

thatd(v, y)−d(v, x) = −1. Assume that there is a nodev such
that v ∈ Φ

x
t+2

−−→y
, andd(v, y) − d(v, x) = −1. Since this is

valid for the facility movementx
t+2
−−→ y, it should have been

valid for x
t
−→ y as well. Given that,Φ

y
t+1

−−→x
∩ Φ−1

x
t−→y

= ∅,

when the facility returns to nodex, v ∈ Iy(T x
t+2). Sincev /∈

T x
t+2 \ Iy(T x

t+2), thenv /∈ Φ
x

t+2

−−→y
, which is a contradiction.

Eventually,Φ−1

x
t+2

−−→y
= ∅.

G. Proof of Lemma 5

For a facility movementx
t
−→ y under Migration Policy

S, it is enough to prove that under Migration PolicyE, the
facility will also move to nodey at time t + 3 (taking into
account the tentative movements). Under Migration PolicyS,
Λ

(

T x
t \I

y(T x
t )

)

< Λ
(

Iy(T x
t )

)

is satisfied. It is enough to show
that the condition of Migration PolicyE (i.e.,Λ

(

Ix(T y
t+1)

)

<
Λ

(

Iy(T x
t+2)

)

) is also satisfied. Due to the migration rule,
Iy(T x

t ) ⊂ Iy(T x
t+2), or, Λ

(

Iy(T x
t )

)

< Λ
(

Iy(T x
t+2)

)

. Given
that T x

t \ Iy(T x
t ) = Ix(T y

t+1) ∪ Φ
x

t−→y
, Ix(T y

t+1) ⊆ T x
t \

Iy(T x
t ) (the equality holds for those cases thatΦ

x
t−→y

= ∅).

Therefore,Λ
(

Ix(T y
t+1)

)

≤ Λ
(

T x
t \Iy(T x

t )
)

, is satisfied. Since
Λ

(

T x
t \ Iy(T x

t )
)

< Λ
(

Iy(T x
t )

)

, Λ
(

Ix(T y
t+1)

)

< Λ
(

Iy(T x
t+2)

)

is also satisfied. The reverse of the lemma’s hypothesis is true
for those cases thatΦ

x
t−→y

6= ∅.


