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ABSTRACT
Random walk-based approaches are suitable for informa-
tion dissemination in mobile and opportunistic environments
that are inherently dynamic and typically large-scale. Mul-
tiple random walkers have been proposed in the recent past
as a suitable mechanism to significantly reduce termina-
tion time when covering a network topology. In this paper,
the multiple random walkers mechanism is studied and ana-
lyzed under a different and novel perspective that allows for
further understanding of network coverage when employing
multiple random walkers in a network. Given that under
this mechanism the number of movements is significantly
increased (proportional to the number of random walkers) –
and sometimes not as effective as expected due to frequent
revisits that do not improve coverage as shown in this pa-
per – a replication mechanism is introduced that is capable
of reducing the number of movements by reducing initial
revisits. Simulation results considering geometric random
graph topologies – which are suitable for modeling mobile
environments – are also presented supporting the analytical
findings and shedding more light on various aspects of both
the aforementioned mechanisms.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscella-
neous

General Terms
Algorithms, Performance, Theory

Keywords
Dissemination and Replication Techniques, Multiple Ran-
dom Walkers, Coverage
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Information dissemination is a challenging problem in net-
working environments like mobile and opportunistic net-
works. These networks, inherently dynamic and typically
large-scale, suffer from scalability problems if traditional ap-
proaches are followed (e.g., spanning tree formation, flooding-
based approaches). For example, traditional flooding [11],
under which information is deterministically disseminated
to all network nodes, is known to require a large number
of messages. In a mobile environment this corresponds to
an increased amount of consumed energy that may severely
affect vital aspects of the network operation (e.g., network
lifetime). On the other hand, traditional flooding is efficient
in terms of termination time (i.e., time until all network
nodes are visited) known to be upper bounded by the net-
work diameter.

Under a different prespective, random walks [8], [5] have
been proposed for disseminating information to deal with
the idiosyncrasies of these network environments. A ran-
dom walker, carrying a piece of information to be dissem-
inated, probabilistically chooses the next neighbor node to
visit independently of any previous visit. This mechanism is
expected to probabilistically cover a network (i.e., reach all
network nodes) using significantly less messages (one ran-
dom walker movement corresponds to one message) than
under traditional flooding at the expense of increased ter-
mination time.

In order to fill the gap between random walks and tradi-
tional flooding, several ideas have recently emerged attempt-
ing to exploit the good properties of random walks (i.e.,
relatively small number of messages) and trying to reduce
termination time. These approaches among others include
random walkers with jumps [14], random walkers replica-
tion [7], multiple random walkers [3], hybrid approaches [5].
Further information about various dissemination informa-
tion approaches is given in Section 2.

The work presented in this paper is motivated by the work
presented in [3] and [7]. In particular, it is shown in [3] that
multiple random walkers, starting from the same network
node, are capable of accelerating the information dissemina-
tion process and reduce termination time by a factor equal to
the number of random walkers, for a wide range of topolo-
gies. On the other hand, as the number of random walk-
ers increases, the number of messages sent increases propor-
tionally to the number of random walkers. Moreover, since
random walkers start from the same network node, it is ex-



pected for some initial movements to partially overlap (thus,
not improving coverage) due to visits to already visited net-
work nodes (i.e., revisits). This motivates the adoption of a
replication approach – under which replicas of random walk-
ers are probabilistically created after each movement – so as
to avoid initiating all of them at the same time as under
the multiple case [7]. A simple replication mechanism is
proposed here capable of covering larger network areas than
multiple random walkers for the same number of random
walkers and allowed number of messages.

The main contribution of this paper is the study of multi-
ple random walkers from a different prespective than the one
presented in [3]. The analytical part in this paper initially
assumes a fully connected network topology which allows for
the derivation of an analytical expression that confirms the
results presented in [3] allowing also for further understand-
ing of various aspects of information dissemination under
multiple random walkers. To the best of the authors’ knowl-
edge this is the first time that such an analysis is carried out
for multiple random walkers. The analysis continues cap-
turing coverage in less dense topologies and an analytical
expression is derived showing how coverage is affected by
frequent random walk revisits.

Simulation results, derived considering geometric random
graph topologies that are suitable for modelling mobile en-
vironments [10], are shown to be in accordance with the
analytical findings. In addition, the proposed replication
mechanism is compared against the multiple random walk-
ers mechanism and it is shown that the former is capable of
covering larger network areas than the latter under certain
conditions also explored in this paper.

Section 2 briefly covers recent works related to informa-
tion dissemination. In Section 3 the multiple random walk-
ers mechanism is studied analytically and in Section 4 the
replication mechanism is presented. Section 5 includes the
simulation results and the conclusions are drawn in Section
6.

2. PAST RELATED WORK
Many variations of traditional flooding have been pro-

posed in the past for information dissemination purposes
attempting to reduce the (increased) number of messages.
One such approach is probabilistic flooding [4], [13], [9], [12]
that probabilistically ensures global network outreach with
high probability (meaning that some nodes may not receive
the particular message) and significantly reduces the number
of messages (when compared against traditional flooding),
even though termination time slightly increases (again com-
pared against traditional flooding). Other flooding-based
variations have been proposed like controlled flooding (in-
formation is disseminated only a few hops away). This ap-
proach is used, among others, in the Gnutella Peer-to-Peer
system [1]. Obviously, under controlled-flooding, a small
number of hops allow for both reduced number of messages
and termination time. On the other hand, an inappropri-
ately small number of hops may result in information being
locally disseminated and consequently, in an ineffective in-
formation dissemination scheme.

Random walks, on the other hand, may achieve global
network outreach after a significant amount of time depend-
ing on the topology characteristics (e.g., density, bottleneck
links). Given that movements are random, the network is
eventually probabilistically covered (any guarantee is given

with high probability and not certainty). In order to deal
with the main drawback of random walkers (i.e., revisits),
various approaches like random walks with jumps [14] (al-
lows for random walkers to move to different network ar-
eas increasing the probability to visit not previously visited
nodes) and random walks replication [7] have been proposed.
Hybrid probabilistic schemes (e.g., a controlled flooding pro-
cess initiated after a random walk) have also been proposed
[5]. Other modifications like the one in [6], allow for network
nodes to forward messages to their neighbors in a random
manner, thus significantly reducing the number of messages
in the network.

As already mentioned, the most related work to this paper
is [3]. Alon et. al analyze termination time until certain
network topologies are covered by multiple random walkers
starting from the same network node. They show that this
approach is faster than the single random walker case and
proportional to the number of multiple random walkers for a
wide range of topologies. The work presented in this paper
is different from the one in [3] since: i) the analytical part is
different even though the basic results are in accordance; ii)
the analytical expressions have a rather tractable form that
can be used for further understanding and exploring multiple
random walkers; iii) a replication mechanism is proposed
and studied in order to reduce initial revisits and improve
coverage.

3. MULTIPLE RANDOM WALKERS
Assume that a network is represented by a bidirectional

graph G(V, E), where V is the set of network nodes and E
the set of (bidirectional) links among nodes. For the rest N
denotes the number of network nodes, or N = |V |, where | · |
denotes the number of elements of a certain set.

A random walker may be seen as an agent moving in the
network disseminating (or collecting) information. Assum-
ing time t to take discrete values starting from 0, each time
unit corresponds to one movement for all random walkers.
For the case of m multiple random walkers, each time unit
corresponds to m movements (or messages). A basic as-
sumption is that all m random walkers are initially placed
at the same node [3], referred to hereafter as the initiator
node.

The multiple random walkers mechanism: Having started
with m random walkers from the same initiator node, each
random walker moves to one of its neighbor nodes being se-
lected randomly and independently among the set of neigh-
bor nodes, provided that the chosen node is not the previ-
ously visited node unless this is the only neighbor node.

Let us Cm(t) denote coverage or the fraction of the net-
work nodes visited by any of the m random walkers at time
t. Cm(t) is an increasing function of t taking values between
1/N (i.e., the case when only one node is visited) and 1 (i.e.,
all nodes are visited). It is easy to derive that Cm(0) = 1/N ,
which corresponds to the case that all m random walkers
are located at the initiator node. Note that for the typically
large-scale network environments considered in this work, N
is significantly large such that Cm(0) = 1/N → 0. As time
increases, the random walkers start moving, visiting network
nodes and increasing coverage. Under the assumption that
the network is connected, after some time all network nodes
will be visited by (at least) one of the m random walkers.
For the rest termination time, denoted by Tm, is defined as
the smallest value of t such that Cm(t) = 1.



Depending on the case (for example sparse topologies of
many bottleneck links), Tm may become significantly large,
thus, sometimes, failing to provide a satisfactory insight on
the dissemination information characteristics. Alternatively,
it is frequently convenient to consider the asymptotic termi-
nation time T̂m which is defined as the smallest value of t
such that limN→+∞ Cm(t) = 1.

Assume that the underlying topology is fully connected
(i.e., all nodes are connected to all other nodes and thus,
|E| = N N−1

2
). Even though this is not a realistic topology

scenario it is useful for providing insight on the behavior
of multiple random walkers (less dense topologies are also
considered later in this work).

Theorem 1. In a fully connected network topology of N
nodes and m random walkers, coverage Cm(t) as a function
of time t is given by:

Cm(t) = 1 − e−
m
N

t. (1)

The proof can be found in Appendix A.
Figure 1 depicts coverage Cm(t) as given by Equation (1)

as a function of t, for N = 1000 (zoom in different ranges
of t). It is clear that as t → +∞, Cm(t) → 1. It is evident
that as m increases, coverage increases as well.
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Figure 1: Coverage Cm(t) as a function of t for a
network of N = 1000 nodes and various values of m
(zoom in different ranges of t).

Based on Equation (1) an analytical expression with re-

spect to the asymptotic termination time T̂m can be derived.
It is enough to satisfy that limN→+∞ Cm(T̂m) = 1. This is
satisfied by the following:

T̂m =
N

m
ln(N). (2)

From Equation (2) it is evident that for the case of a com-
plete graph, the (asymptotic) termination time decreases
proportionally by the number of multiple random walkers
m which is in accordance with [3]. In the following section,
the fully connected topology assumption is relaxed and in
the simulations section presented later, simulation results
are shown to be in accordance with the analytical findings
of this section.

4. A REPLICATION MECHANISM

In topologies less dense than fully connected ones, it is
expected that random walkers originating from a common
initiator node to frequently revisit network nodes not only
due to the probabilistic nature of the random walk mecha-
nism (as it is the case for a fully connected topology), but
also due to the topology characteristics. For example, in
networks where bottleneck links are common, random walk-
ers are expected to revisit certain network nodes more fre-
quently than in topologies of no bottleneck links. There-
fore, in such a network it is expected m random walkers to
cover an almost overlapping network area (frequent revis-
its) at the beginning, before moving to distant (and likely
not previously visited) areas. Therefore, instead of m dis-
tinct movements corresponding to the m random walkers, a
macroscopic observer (most likely) would observe a number
of distinct movements less than m, increasing (on average)
as time increases.

In order to exploit this observation and proceed with a
qualitative analysis, it is assumed that the underlying topol-
ogy is a fully connected network (as before), in which ran-
dom walkers move (and overlap) as it would have been the
case if the underlying topology was not a fully connected
one. The fully connected topology assumption is useful in
order to simplify the analysis reusing results derived when
proving Theorem 1. For the rest, f(t) denotes the (average)
fraction of random walkers seen by the macroscopic observer
at time t. mf(t) corresponds to the (average) number of
distinct movements of random walkers in the network. In
general, f(0) is expected to be rather small and f(t) to be
close to 1 for large values of t,. Assume that f(t) = 1−e−αt,
where α is a constant that varies depending on the charac-
teristics of each environment (e.g., number of nodes, density,
bottleneck links).

Lemma 1. In a fully connected network topology of N
nodes and mf(t) random walkers, coverage as a function
of time t is given by:

Cm(t) = 1 − e−
m
N (t− 1

α (1−e−αt)). (3)

The proof can be found in Appendix B.
Figure 2 depicts Cm(t) as given by Equation (3) and the

first derivative of Cm(t), dCm(t)
dt

(derived in Appendix B). It
is interesting to observe from Figure 2.a that Cm(t) increases
as time increases (as expected) but not that quickly. In par-
ticular, for small values of t, Cm(t) increases slowly, then
it reaches an inflection point at some point t = t0. This
is more clearly seen when observing Figure 2.b. It is ob-

vious that depending on the value of α, dCm(t)
dt

increases,
assumes a maximum (the inflection point of Cm(t)) and
then decreases. According to the analysis presented in Ap-
pendix B, the inflection point of Cm(t) is assumed at t0 =

− ln
2+ αN

m
−

√
(2+ αN

m )2−4

2
α

and limα→+∞
dĈm(t)

dt

∣∣∣
t=t0

= m
N

.

The existence of the inflection point (later also confirmed
by simulation results), is the basic motivation behind the in-
troduction of a simple replication mechanism in the sequel.
It is evident that due to revisits, a large number of ran-
dom walkers may not always allow for significant coverage
improvement, while at the same time an increased number
of network resources (i.e., random walker movements) are
wasted. Under replication, a small number of m0 � m ran-
dom walkers is initially released at the initiator node and
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Figure 2: Cm(t) and dCm(t)
dt

as a function of t for
m
N

= 0.01 and various values of α.

afterwards, more random walkers are created by replicat-
ing the existing ones [7]. Special care is taken for the total
number of random walkers in the network not to exceed m.
Note that values of m0 comparable to m eventually do not
make any difference with respect to the problem of revisits
since they reduce the replication mechanism to the multiple
random walkers mechanism.

The replication mechanism: Having started with m0 ran-
dom walkers, for each random walker a replica is created
with probability 1/q after each movement. All random walk-
ers move in the network according to the multiple random
walkers mechanism.

Parameter q ≥ 1 corresponds to the (average) number of
time units before a replica is created for each random walker.
If q is small then random walkers are replicated fast, while
large values of q permit random walkers to move further be-
fore replicated. The obvious gain of replication – as it will
also be demonstrated in the following section using simula-
tion results – is movement savings for as long as the number
of random walkers remains smaller than m. It is easy to
calculate that replication – taking place every (on average)
q time units – doubles the number of random walkers in the
network. Given that the total number should not exceed m
and m0 is the initial number of random walkers, at the n-th
replication there will be m02

n random walkers in the net-
work. Note that m02

n < m, or n < log2(m/m0). From the
previous it is concluded that replication will stop (on aver-
age) when t = q log2(m/m0). After this point, the number of
movements is equal to m. However, until t = q log2(m/m0)
there are fewer movements under replication than under the
multiple random walkers mechanism. In particular, under
the latter mechanism mq log2(m/m0), while under the for-

mer mechanism m0q
∑log2(m/m0)

i=0 2i movements take place,
assuming that m/m0 is an integer power of 2. For the rest,
let R (m/m0) be the ratio of the previously mentioned num-

ber of movements, or, R (m/m0) =
m0q

∑ log2(m/m0)
i=0 2i

mq log2(m/m0)
,

R

(
m

m0

)
=

∑log2
m

m0
i=0 2i

m
m0

log2
m
m0

. (4)

Figure 3 depicts numerical results with respect to R (m/m0)
as a function of m/m0. If m/m0 = 1 there is no gain
(R (m/m0) = 1). Note that R (m/m0) ≤ 1 for m/m0 ≥ 1.

It is interesting to observe from Equation (4) that R (m/m0)
does not depend on q. This indicates that movement sav-
ings of the replication mechanism over the multiple random
walkers mechanism depend only on how smaller is m0 than
m.
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Figure 3: R (m/m0) as a function of m/m0.

5. SIMULATION RESULTS
A simulation program exploiting the capabilities of the

Omnet++ simulation platform [2] was created for the simu-
lation purposes. The aim of the simulation results presented
in this section is threefold: (i) to confirm the analytical find-
ings of the previous sections; (ii) to shed more light on the
specifics of the replication mechanism; and (iii) to compare
it against the multiple random walkers mechanism for cases
not covered by the analysis. The results derived in the se-
quel are averaged values of ten independent runs for network
topologies of 1000 nodes unless otherwise mentioned.

The underlying topology considered during simulations is
modelled as a geometric random graph [10]. It is constructed
by uniformly scattering N nodes in the area [0, 1] × [0, 1]
creating a link among two nodes if the euclidean distance
among them is smaller than or equal to a certain constant
rc. Depending on the particular value of rc, the resulting
geometric random graph may be a connected one or not.
For example, for rc ≥ √

2, the resulting graph is the com-
plete graph (all nodes connected to all other nodes). As
rc decreases, the number of links decreases until a certain
threshold value rc,0 such that if rc < rc,0, the geometric
random graph is not connected anymore (even though for
rc = rc,0, it is connected).

5.1 Multiple Random Walkers Mechanism
In order to evaluate the analytical results with respect to

the multiple random walkers mechanism studied in Section
3 and particularly Theorem 1, rc is set to 1.5 >

√
2 in order

to ensure that the underlying topology is fully connected.
Figure 4 presents simulation results with respect to cover-
age Cm(t) for various values of m. Note that the numerical
results (based on the analysis) depicted in Figure 1 are al-
most identical to the simulation results depicted in Figure 4
(almost impossible to identify differences despite the zoom).

Figure 5 illustrates both simulation and numerical re-
sults (the latter after Equation (1)) regarding coverage for
m = 100 and various network sizes. As before, it is obvi-
ous that the analysis captures the behavior observed by the
simulations (lines correspond to numerical results based on
the analysis and points to simulation results).

Figure 6.a depicts both simulation and numerical results
with respect to the asymptotic termination time T̂m as a
function of m. The numerical results (depicted as a line) are
derived based on Equation (2). Simulation results (depicted
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Figure 4: Simulation results for coverage (Cm(t)) as
a function of t (zoom in different ranges of t) for a
network of N = 1000 nodes and various values of m.
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Figure 5: Simulation and numerical results for cov-
erage as a function of t for m = 100 and various values
of N .

as a line with points) are derived when Cm(t) = 1 − 1
N

(all
but one nodes covered). It is easy to see in the zoom area
that both curves are significantly close. This is also the
case with respect to both numerical and simulation results
presented in Figure 6.b, where T̂m is depicted as a function of
N for various values of m. As before, it is clearly illustrated
that the analytical findings capture the behavior observed
by the simulations.

Figure 7 depicts simulation results with respect to cover-
age for a single random walker in the network for various
values of rc. It is interesting to observe that there exists a
wide range of values of rc for which the depicted curves are
very close to the fully connected topology (i.e., rc = 1.5).
For example, the curve corresponding to rc = 1.0 is diffi-
cult to be distinguished from the one for which rc = 1.5.
As rc decreases further, it is evident that coverage increases
slowly, thus resulting in larger termination times. This is
expected since for small values of rc topologies contain bot-
tleneck links that force random walkers to increased revisits.

Figure 8 illustrates the same scenario as in Figure 7 for
m = 10, 100, 1000 and 10000. The interesting part is that
as m increases, Cm(t) has an inflection point some time af-
ter the beginning after which random walkers are capable of
moving in the network covering network nodes with increas-
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Figure 6: T̂m as a function of (a) m and (b) rc.
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Figure 7: C1(t) as a function of t for various values
of rc.

ing rate. This is in accordance with the analysis presented
in Section 4 and particularly Equation (3), especially after
observing the resemblance of the curves between Figure 8
and Figure 2.a. A direct comparison of the aforementioned
figures does allow for further conclusions since Equation (3)
has been derived under different approximations (e.g., no ge-
ometric random graph topologies). Future work will focus
further on this aspect.

5.2 Replication Mechanism
The existence of the inflection point has been the mo-

tivation behind the introduction of replication in Section
4. In the sequel, assume random walkers move until a cer-
tain predefined number of movements is exhausted. This
number of movements will be referred to hereafter as bud-
get, denoted by H . For simplicity, assume H to be equal
to N ln(N) for the rest of this work. Recall from Section
3 that N ln(N) corresponds to the asymptotic termination
time for the case of one random walker in a fully connected
topology. Given that multiple random walkers require less
time to cover a fully connected topology, N ln(N) amounts
to a significantly large budget for covering purposes. Un-
der the multiple random walkers mechanism, this budget is
divided equally among the m initial random walkers. Un-
der the replication mechanism, it is divided equally among
the m0 initial random walkers and every time a replication
occurs for a certain random walker its budget is equally di-
vided among itself and the new one. For the rest q = 1 and
m0 = 1. That means that replication takes place too fast;
on average after each random walker movement. Further
investigation on various values of H , q and m0 will be the
focus of future work.
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Figure 8: Cm(t) (m = 10, 102, 103 and 104) as a function of t for various values of rc.
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Figure 9: Cm(t) as a function of t for (a) m = 50 and
(b) m = 100, when H = 7000 ≈ N ln(N) for N = 1000
and rc = 0.055.

In Figure 9, Cm(t) is depicted for H = 7000 ≈ N ln(N)
(N = 1000), rc = 0.055 and (a) m = 50 and (b) m = 100.
These simulation results correspond to a single run (not av-
eraged as before). It is interesting to see that for m = 50
(Figure 9.a), coverage under the replication mechanism is
smaller than that under the multiple random walkers mecha-
nism. The case depicted for m = 100 (Figure 9.b) is different
since coverage under the replication mechanism eventually
becomes larger than that under the multiple random walkers
mechanism.

This behavior is more clearly depicted in Figure 10. Ob-
viously, rather small values of m (e.g., m = 1) reduce repli-
cation to the multiple random walkers mechanism. As m
increases (for rc = 0.055 and rc = 0.100) coverage under
the replication mechanism becomes smaller that than un-
der the multiple random walkers mechanism. However, as
m increases further, the latter observation is reversed and
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Figure 10: Cm(t) as a function of m when H = 7000 ≈
N ln(N) for N = 1000 and various values of rc.

coverage under the replication mechanism becomes larger.
This cannot be observed for rc = 0.500 (or larger values of
rc) since coverage is close to 1. For these cases, the selected
value of H is significantly large allowing for global network
outreach under both mechanism.

6. CONCLUSIONS
In this paper information dissemination under multiple

random walkers mechanisms has been studied and analyzed
aiming at movements reduction thus preserving valuable
network resources in mobile and opportunistic environments.
The multiple random walkers mechanism [3] was studied and



analyzed from a novel perspective showing that multiple ran-
dom walkers reduce termination time by a factor equal to
their number in fully connected topologies. The derived an-
alytical expressions were shown to be in accordance to the
results presented in [3] and at the same time to provide for
a more tractable form for further investigation.

For topologies less dense than fully connected ones, the
topology characteristics (e.g., bottleneck links) force ran-
dom walkers to increased revisits in addition to those due
to the probabilistic nature of their movement. This effect is
more obvious at the beginning of their movements and be-
fore random walkers are moved to different (and most likely
not covered) network areas. The analytical results derived in
this paper capture these observations revealing a certain in-
flation point after which coverage increment increases more
rapidly due to reduced revisits. In order to reduce initial
revisits, a simple replication mechanism was introduced al-
lowing for movement savings.

Simulation results were also presented in order to evalu-
ate the analytical findings. In addition, it was shown that
under certain conditions studied here, coverage under the
replication mechanism may become higher than that under
the multiple random walkers mechanism.

Further study on the replication mechanism and its var-
ious parameters will be considered in future work in the
area. Furthermore, a derivation of an analytical expression
with respect to coverage under the multiple random walkers
mechanism in geometric random graphs is expected to shed
additional light on coverage with respect to topologies less
dense than fully connected ones.
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APPENDIX

A.
In order to prove Theorem 1, let us consider two con-

secutive time instances t1 and t2 such that t2 = t1 + 1.
Note that Cm(t2) ≥ Cm(t1) is satisfied. Between t1 and
t2 all m random walkers have moved from one node to an-
other neighbor node. Without loss of generality, let us name
each random walker after a unique integer i within range
i ∈ [1, m]. Let us now assume that the previously men-
tioned m individual random walker movements take place
one by one within the [t1, t2] interval and particularly at
time t1,1, . . . , t1,i, . . . , t1,m (t1 = t1,1 < · · · < t1,m = t2),

for each random walker i ∈ [1, m]. Let us C̃m(t) denote
coverage within [t1, t2], under the previous assumption that
random walkers move in sequence. Given that any random
walker movement is independent of any other one, eventu-
ally C̃m(t1,m) = Cm(t1,m) = Cm(t2).

Under the previous assumption, at time t1,1 random walker
1 moves from some node u to some neighbor node v. This
movement takes place instantaneously at time t1,1 such that
at −t1,1 (i.e., just before t1,1) random walker 1 is still at node
u, while at +t1,1 it has moved at node v. Before moving at
t1,1, random walker 1 has N − 2 equivalent options: to visit



all network nodes minus the one that is currently located
at and the one that it came from. Some of these N − 2
nodes may have already been visited by another random
walker. The number of these (already visited) nodes is on
average (N − 2)(Cm(t1)− 2/N) (2/N corresponds to cover-
age regarding the current node and the one that the random
walker came from). If random walker 1 moves to any one
of these nodes, coverage will not increase. If, on the other
hand, it moves to one of the rest (N −2)(1−Cm(t1)) nodes,
the coverage will increase by 1/N . Therefore, on average
random walker 1 will move to a previously not visited node
with probability (N −2)/(N −2)(1−Cm(t1)) = 1−Cm(t1).

Eventually, C̃m(t1,1)−Cm(t1) = 1/N(1−Cm(t1)). For ran-

dom walker 2, C̃m(t1,2) − C̃m(t1,1) = 1/N(1 − C̃m(t1,1)). It
is easy to derive that for random walker i ∈ [1, m]:

C̃m(t1,i) − C̃m(t1,i−1) =
1

N

(
1 − C̃m(t1,i−1)

)
.

Recall that C̃m(t1,1) = Cm(t1) and C̃m(t1,m) = Cm(t2). By
summing up for all values i ∈ [1, m]:

Cm(t2) − Cm(t1) =
1

N

m∑
i=1

(
1 − C̃m(t1,i−1)

)
.

The next step is to move from the discrete world to the
continuous world, as it is common practice in the literature
with respect to such problems. Note that Cm(t2) − Cm(t1)

can be written as Cm(t + ∆t) − Cm(t) = Cm(t+∆t)−Cm(t)
∆t

,
where ∆t = t2 − t1 = 1. By definition, the first derivative

of Cm(t), dCm(t)
dt

= lim∆t→0
Cm(t+∆t)−Cm(t)

∆t
. Therefore,

dCm(t)
dt

= 1
N

lim∆t→0

∑m
i=1

(
1 − C̃m(t1,i−1)

)
, or, dCm(t)

dt
=

1
N

∑m
i=1 lim∆t→0

(
1 − C̃m(t1,i−1)

)
. Given that ∆t → 0,

t1,i − t1,i−1 → 0. For such small time intervals that tend to
be close to zero (i.e., ∆t → 0), it is reasonable to assume that

lim∆t→0 C̃m(t1,i−1) does not change (remains constant) for

all i ∈ [1, m] and eventually, lim∆t→0 C̃m(t1,i−1) = Cm(t),
for any i ∈ [1, m]. Eventually,

dCm(t)

dt
=

m

N
(1 − Cm(t)) .

Given that it is required Cm(0) = 0 to be satisfied and
limt→+∞ Cm(t) = 1, coverage Cm(t) is given by Cm(t) =

1 − e−
m
N

t, and the theorem is proved.

B.
In order to prove Lemma 1, certain elements of the proof

of Theorem 1 presented in Appendix A, are reused. In par-
ticular, with respect to the first derivative of coverage it can
be shown that:

dCm(t)

dt
=

m

N

(
1 − e−αt) (1 − Cm(t)) .

The solution of this first order differential equation, given
that Cm(0) = 0 and limt→+∞ Cm(t) = 1, is

Cm(t) = 1 − e−
m
N (t− 1

α (1−e−αt)).

In order to analyze further Cm(t), the second derivative is

derived and studied in the sequel. In particular, d2Cm(t)

d2t
=

m
N

(
αe−αt − m

N

(
1 − e−αt

)2
)

e−
m
N (t− 1

α (1−e−αt)), which be-

comes zero, when αe−αt− m
N

(
1 − e−αt

)2
= 0. The latter ex-

pression is equivalent to solving the following trinomial (with

respect to e−αt),
(
e−αt

)2 − (
2 + αN

m

)
e−αt + 1 = 0. There

are two solution for this trinomial:
2+ αN

m
+

√
(2+ αN

m )2−4

2
and

2+ αN
m

−
√

(2+ αN
m )2−4

2
. Given that t ≥ 0 and α > 0, −αt ≤ 0

and therefore, e−αt ≤ e0 = 1. It is easy to show that

the first solution (i.e.,
2+ αN

m
+

√
(2+ αN

m )2−4

2
) does not sat-

isfy this inequality. In particular, it is enough to show that
2+ αN

m
+

√
(2+ αN

m )2−4

2
> 1, or 2 + αN

m
+

√(
2 + αN

m

)2 − 4 > 2,

or αN
m

+
√(

2 + αN
m

)2 − 4 > 0, that is always satisfied. In

a similar manner it is easy to show that the second solu-

tion (i.e.,
2+ αN

m
−

√
(2+ αN

m )2−4

2
) does satisfy e−αt ≤ 1. It is

enough to show that
2+ αN

m
−

√
(2+ αN

m )2−4

2
> 1, is never satis-

fied, or αN
m

−
√(

2 + αN
m

)2 − 4 > 0, or
(

αN
m

)2
>

(
2 + αN

m

)2−
4, or

(
αN
m

)2
> 4 +

(
αN
m

)2
+ 4αN

m
− 4, or 0 > 4αN

m
, which

is not satisfied. Eventually, d2Cm(t)

d2t
= 0 when t = t0 =

− ln
2+ αN

m
−

√
(2+ αN

m )2−4

2
α

. Note that lim
t→t−0

d2Cm(t)

d2t
> 0 and

lim
t→t+0

d2Cm(t)

d2t
< 0, therefore, at t = t0,

dCm(t)
dt

assumes

a maximum. dCm(t)
dt

|t=t0 is a function of α and it can be

derived that limα→+∞
dCm(t)

dt

∣∣∣∣∣
t=t0

= m
N

.
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