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Abstract— The effectiveness of service provisioning in large-
scale networks is highly dependent on the number and location
of service facilities deployed at various hosts. The classical,
centralized approach to determining the latter would amount
to formulating and solving the uncapacitated k-median (UKM)
problem (if the requested number of facilities is fixed), or the
uncapacitated facility location (UFL) problem (if the number
of facilities is also to be optimized). Clearly, such centralized
approaches require knowledge of global topological and demand
information, and thus do not scale and are not practical for large
networks. The key question posed and answered in this paper
is the following: “How can we determine in a distributed and
scalable manner thenumber and location of service facilities?”
We propose an innovative approach in which topology and
demand information is limited to neighborhoods, or balls of small
radius around selected facilities, whereas demand information is
captured implicitly for the remaining (remote) clients outside
these neighborhoods, by mapping them to clients on the edge of
the neighborhood; the ball radius regulates the trade-off between
scalability and performance. We develop a scalable, distributed
approach that answers our key question through an iterative re-
optimization of the location and the number of facilities within
such balls. We show that even for small values of the radius
(1 or 2), our distributed approach achieves performance under
various synthetic and real Internet topologies and workloads
that is comparable to that of optimal, centralized approaches
requiring full topology and demand information.

I. I NTRODUCTION

Motivation: Imagine a large-scale bandwidth/processing-
intensive service such as the real-time distribution of software
updates and patches [2], a distributed data-center [3], a cloud
computing platform [4], [5],etc. Such services must cope
with the typically voluminousand bursty demand — both
in terms of overall load and geographical distribution of the
sources of demand — due to recently observed flash-crowd
phenomena. To deploy such services, decisions must be made
on: (1) the location, and optionally, (2) the number of nodes(or
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hosting infrastructures) used to deliver the service. Two well-
known formulations of classicFacility Location Theory[6]
can be used as starting points for addressing decisions (1) and
(2), respectively: Theuncapacitatedk-median (UKM)problem
prescribes the locations for instantiating a fixed number of
service facilities so as to minimize the distance between users
and the closest facility capable of delivering the service.In
theuncapacitated facility location (UFL)problem, the number
of facilities is not fixed, butjointly derived along with the
locations as part of a solution that minimizes the combined
service hosting and access costs.
Limitations of existing approaches:Even though it provides
a solid basis for analyzing the fundamental issues involvedin
the deployment of network services, facility location theory
is not without its limitations. First and foremost, proposed
solutions for UKM and UFL are centralized, so they require
the gathering and the transmission of the entire topological and
demand information to a central point, which is not possible
(not to mention practical) for large networks. Second, such
solutions are not adaptive in the sense that they do not allow
for easy reconfiguration in response to changes in the topology
and the intensity of the demand for service. To address these
limitations we propose distributed versions of UKM and UFL,
which we use as means of constructing an automatic service
deployment scheme.
A scalable approach to automatic service deployment:
We develop a scheme in which an initial set of service
facilities are allowed to migrate adaptively to the best network
locations, and optionally to increase/decrease in number so
as to best service the current demand. Our scheme is based
on developing distributed versions of the UKM problem (for
the case in which the total number of facilities must remain
fixed) and the UFL problem (when additional facilities can
be acquired at a price or some of them be closed down).
Both problems are combined under a common framework with
the following characteristics: An existing facility gathers the
topology of its immediate surrounding area, which is defined
by anr-ball of neighbors – nodes that are within aradiusof r
hops from the facility. The facility also monitors the demand
that it receives from the nodes that have it as closest facility.
It keeps an exact representation of demand from within itsr-
ball, and an approximate representation for all the nodes on
the ring of its r-ball (nodes outside ther-ball that receive
service from it). In the latter case, the demand of nodes on
the “skin” of the r-ball is increased proportionally to account
for the aggregate demand that flows in from outside ther-ball
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through that node. When multipler-balls intersect, they join
to form more complexr-shapes. The observed topology and
demand information is then used to re-optimize the current
location (and optionally the number of) facilities by solving
the UKM (or the UFL) problem in the vicinity of ther-shape.
The trade-off between scalability and performance:Reduc-
ing the radiusr decreases the amount of topological informa-
tion that needs to be gathered and processed centrally at any
point (i.e., at facilities that re-optimize their positions). This is
a plus for scalability. On the other hand, reducingr harms the
overall performance as compared to centralized solutions that
consider the entire topological information. This is a minus
for performance. We examine this trade-off experimentally
using synthetic (Erd̈os-Ŕenyi [7] and Barab́asi-Albert [8]) and
real (AS-level [9]) topologies. We show that even for very
small radii,e.g., r = 1 (i.e., facility migration is allowed only
to first-hop neighbors), orr = 2 (i.e., facility migration is
allowed only up to second-hop neighbors), the performance of
the distributed approach tracks closely that of the centralized
one. Thus, increasingr much more is not necessary for perfor-
mance, and might also be infeasible since even for relatively
smallr, the number of nodes contained in anr-shape increases
very fast (owing to the small, typicallyO(log n), diameter of
most networks, including the aforementioned ones).
A case study — large-scale timely distribution of cus-
tomized software:Consider a large scale software update sys-
tem, similar to that used forMicrosoft Windows Update[10].
Such a system not only delivers terabytes of data to millionsof
users, but also it has to incorporate complex decision processes
for customizing the delivered updates to the peculiaritiesof
different clients [2] with respect to localization, previously-
installed updates, compatibilities, and optional components,
among others. This complex process goes beyond the dissem-
ination of a single large file, where a peer-to-peer approachis
an obvious solution [11]. Moreover, it is unlikely that software
providers will be willing to trust intermediaries with such
processes. Rather, we believe that such applications are likely
to rely on dedicated or virtual hosts,e.g., servers offered for
lease through third-party overlay networks –a la Akamai or
Planet Lab, or the newest breed of Cloud Computing platforms
(e.g., Amazon EC21 ). To that end, we believe that the use of
our distributed facility location approach presents significant
advantages in terms of optimizing the cost and efficiency of
deploying such applications.2 In the remainder of this section,
we provide a mapping from the aforementioned software
distribution service to our abstract UKM and UFL problems.
Service providers, hosts, and clients:We envision the
availability of a set of network hosts upon which specific
functionalities may be installed and instantiated on demand.
We use the term “Generic Service Host” (GSH) to refer to
the software and hardware infrastructure necessary to host
a service. For instance, a GSH could be a well-provisioned
Linux server, a virtual machine (VM) slice similar to that used

1 http://aws.amazon.com/ec2.
2 It is important to note that the large-scale timely distribution of customized

content is hardly unique to the dissemination of software updates, as it could
be equally instrumental for “Virtual Product Placement” in live content as
well as in video-on-demand services, to mention two examples.

in Planet Lab [12] or that envisioned in GENI [13], or a set
of resources in a Cloud Computing platform (e.g., an Amazon
Machine Image (AMI) in the context of EC2).

A GSH may be in Working (W) or Stand-By (SB) mode.
In W mode, the GSH constitutes a service facility that is able
to respond to client requests for service, whereas in SB mode,
the GSH does not offer the actual service, but is ready to
switch to W if it is so directed.3 Thus the set of facilities
used to deliver a service is precisely the set of GSHs in W
mode. By switching back and forth between W mode and SB
mode, thenumberas well as thelocation of facilities used to
deliver the service could be controlled in a distributed fashion.
In particular, a GSH in W mode (i.e., a facility) monitors the
topology and the corresponding demand in its vicinity and is
thus capable of re-optimizing the location of the facility.

Third-party Autonomous Systems (AS) may host the GSHs
of service providers, possibly for a fee.4 In particular, the
hosting AS may charge the service provider for the assets
it dedicates to the GSHs, including the software/hardware
infrastructure supporting the GSHs as well as the bandwidth
used to carry the traffic to/from GSHs in W mode.

The implementation of the above-sketched scenarios re-
quires each GSH to be able to construct its surrounding AS-
level topology up to a radiusr. This can be achieved through
standard topology discovery protocols [14]. Also, it requires
a client to be able to locate the facility closest to it, and it
requires a GSH to be able to inform potential clients of the
service regarding its W or SB status. Both of these could be
achieved through standard resource discovery mechanisms like
DNS re-direction [15], [16] (appropriate for application-level
realizations of our distributed facility location approach) or
proximity-based anycast routing [17] (appropriate for network
layer realizations). Furthermore, we show in Section VII-C
that the performance of our scheme degrades gracefully as
re-direction becomes more imprecise.
Outline: The remainder of this paper is structured as follows.
Section II provides a brief background on facility location.
Section III presents our distributed facility location approach
to automatic service deployment. Section IV examines analyt-
ically issues of convergence and accuracy due to approximate
representation of the demand of nodes outsider-shapes. Sec-
tion V evaluates the performance of our schemes on synthetic
topologies. Section VI presents results on real-world (AS-
level) topologies. Section VII looks at the effects of non-
stationary demand and imperfect redirection. Section VIII
presents previous related work. Section IX concludes the paper
with a summary of findings and on-going work.

II. BACKGROUND ON FACILITY LOCATION

Let G = (V,E) represent a network defined by a node
set V = {v1, v2, . . . , vn} and an undirected edge setE. Let
d(vi, vj) denote the length of a shortest path betweenvi and

3 Switching to W might involve the transfer of executable and configuration
files for the service from other GSHs or from the service provider.

4 Notice that each AS (or a smaller organizational unit therein) is also a
client of the service, with demand proportional to the aggregate number of
requests originating from its end-users (e.g., number of downloads of a service
pack).
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vj , ands(vj) the (user) service demand originating from node
vj . Let F ⊆ V denote a set of facility nodes –i.e., nodes on
which the service is instantiated. If the number of available
facilities k = |F | is given, then the specification of their exact
locations amounts to solving the following uncapacitatedk-
median problem:

Definition 1: (UKM) Given a node setV with pair-wise
distance functiond and service demandss(vj), ∀vj ∈ V ,
select up tok nodes to act as medians (facilities) so as to
minimize the service costC(V, s, k):

C(V, s, k) =
∑

∀vj∈V

s(vj)d(vj ,m(vj)), (1)

wherem(vj) ∈ F is the median that is closer tovj .
On the other hand, if instead ofk, one is given the costs

f(vj) for setting up a facility at nodevj , then the specifi-
cation of the facility setF amounts to solving the following
uncapacitated facility location problem:

Definition 2: (UFL) Given a node setV with pair-wise
distance functiond and service demandss(vj) and facility
costsf(vj), ∀vj ∈ V , select a set of nodes to act as facilities
so as to minimize the joint costC(V, s, f) of acquiring the
facilities and servicing the demand:

C(V, s, f) =
∑

∀vj∈F

f(vj) +
∑

∀vj∈V

s(vj)d(vj ,m(vj)), (2)

wherem(vj) ∈ F is the facility that is closer tovj .
For general graphs, both UKM and UFL are NP-hard

problems [18]. A variety of approximation algorithms have
been developed under metric distance using a plethora of
techniques, including rounding of linear programs [19], local
search [20], [21], and primal-dual methods [22].

III. A L IMITED HORIZON APPROACH TODISTRIBUTED

FACILITY LOCATION

In this section we develop distributed versions of UKM
and UFL by utilizing a natural limited horizon approach in
which facilities have exact knowledge of the topology of their
r-ball (surrounding topology up tor-hop neighbors), exact
knowledge of the demand of each node in theirr-ball and
approximate knowledge of the aggregate demand from nodes
on the ring surrounding theirr-ball. Our distributed approach
will be based on an iterative method in which the location and
the number of facilities (in the case of UFL only) may change
between iterations.

A. Definitions

We make use of the following definitions, most of which are
superscripted bym, the ordinal number of the current iteration.
Let F (m) ⊆ V denote the set of facility nodes at themth
iteration. LetV (m)

i denote ther-ball of facility node vi, i.e.,
the set of nodes within radiusr from vi. Let U

(m)
i denote the

ring of facility node vi, i.e., the set of nodes not contained
in V

(m)
i , but are being served by facilityvi, or equivalently,

the nodes that havevi as their closest facility. Thedomain
W

(m)
i = V

(m)
i

⋃

U
(m)
i of a facility node consists of itsr-ball

and the surrounding ring.

From the previous definitions it is easy to see thatV =

V (m)
⋃

U (m), where V (m) =
⋃

vi∈F (m) V
(m)
i , U (m) =

⋃

vi∈F (m) U
(m)
i .

B. The Distributed Algorithm

Our distributed algorithm starts with an arbitrary initial
batch of facilities, which are then refined iteratively through
relocation and duplication until a (locally) optimal solution is
reached. It includes the following steps:

Initialization: Pick randomly an initial setF (0) ⊆ V of
k0 = |F (0)| nodes to act as facilities. LetF = F (0) denote
a temporary variable containing the “unprocessed” facilities
from the current batch. Also, letF− = F (0) denote a variable
containing this current batch of facilities.
Iteration m: Pick a facilityvi ∈ F and process it by executing
the following steps:

1) Construct the topology of its surroundingr-ball by
using an appropriate neighborhood discovery protocol
(see [23] for such an example).

2) Test whether itsr-ball can be merged with ther-balls of
other nearby facilities. We say that two or more facilities
can be merged (to actually mean that theirr-balls can
be merged), when theirr-balls intersect,i.e., when there
exists at least one node that is within distancer from all
the facilities . LetJ ⊆ F (m) denote a set composed ofvi

and the facilities that can be merged with it.5 J induces
an r-shapeGJ = (VJ , EJ ), defined as the sub-graph of
G composed of the facilities ofJ , their neighbors up to
distancer, and the edges between them. We can place
constraints on the maximal size ofr-shapes to guarantee
that it is always much smaller thanO(n).

3) Re-optimize ther-shapeGJ . If the original problem
is UKM, solve the |J |-median within ther-shape —
this can produce new locations for the|J | facilities. If
the original problem is UFL, solve the UFL within the
r-shape — this can produce new locations as well as
change the number of facilities (make it smaller or larger
than|J |). In both cases the re-optimization is conducted
by using a centralized algorithm.6 The details regarding
the optimization ofr-shapes are given in Section III-C.

4) Remove processed facilities, both the originalvi and
the ones merged with it, from the set of unprocessed
facilities of the latest batch,i.e., setF = F\ (J

⋂

F−).
Also updateF (m) with the new locations of the facilities
after the re-optimization.

5) Test for convergence. IfF 6= ∅ then some facilities
from the latest batch have not yet been processed, so
perform another iteration. Otherwise, if the configuration
of facilities changed with respect to the initial one for
the latest batch,i.e., F (m) 6= F−, then form a new

5 The merging operation is recursive. When an initialr-ball merges with
a second one, then additional facilities that can merge with the second one
merge as well, and so on.

6 The numerical results presented in Sections V and VI are obtained by
using Integer Linear Programming (ILP) formulations [6] and local-search
heuristics [21] for solving UKM and UFL withinr-shapes. Since both perform
very closely in all our experiments, we don’t discriminate between the two.
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batch by settingF = F (m) and F− = F (m), and
perform another iteration. Else (ifF (m) = F−), then
no beneficial relocation or elimination is possible, so
terminate by returning the (locally) optimal solution
F (m).

C. Optimizingr-shapes

As discussed in Section II, the input of a UKM problem
is defined completely by a tuple〈V, s, k〉, containing the
topology, the demand, and the number of allowed medians.
A UFL problem is defined by a tuple〈V, s, f〉, similar to
the previous one, but with facility creation costs instead of
a fixed constraint on the number of allowed facilities. For the
optimization of anr-shape, we set:

• V = VJ , and
• k = |J |, for the case of UKM, orf = {f(vj) : ∀vj ∈

VJ}, for the case of UFL.

Regarding service demand, a straightforward approach
would be to sets = {s(vj) : ∀vj ∈ VJ}, i.e., retain in
the re-optimization of ther-shape the original demand of the
nodes of ther-shape. Such an approach would, nonetheless,
be inaccurate since the facilities within anr-shape service the
demand of the nodes of ther-shape,as well as those in the
corresponding ring of the r-shape. Since there are typically
a few facilities, each one has to service a potentially large
number of nodes (e.g., of order O(n)), and thus the rings
are typically much larger than the correspondingr-shapes.7

Re-optimizing the arrangement of facilities within anr-shape
without considering the demand that flows-in from the ring
would, therefore, amount to disregarding too much information
(as compared to the information considered by a centralized
solution). Including the nodes of the ring into the optimization
is, of course, not an option, as the ring can be arbitrarily
large (O(n)) and, therefore, considering its topology would
contradict our prime objective — to perform facility location
in a scalable, distributed manner.

Our solution for this issue is toconsider the demand of
the ring implicitly by mapping it into the local demand of
the nodes that constitute theskin of the r-shape. The skin
consists of nodes on the border (or edge) of ther-shape,
i.e., nodes of ther-shape that have direct links to nodes of
the ring. This intermediate approach bridges the gap between
absolute disregard for the ring, and full consideration of its
exact topology. The details of the mapping are as follows. Let
vi denote a facility inside anr-shapeGJ . Let vj ∈ U denote
a node in the corresponding ring, having the property thatvi

is vj ’s closest facility. Letvk denote a node on the skin of
GJ , having the property thatvk is included in a shortest path
from vj to vi. To take into consideration the demand fromvj

while optimizing ther-shapeGJ , we map that demand onto
the demand ofvk, i.e., we set:s(vk) = s(vk) + s(vj).

7 Notice thatr is intentionally kept small to limit the size of the individual
re-optimizations.

IV. A M ORE DETAILED EXAMINATION OF DISTRIBUTED

FACILITY LOCATION

The previous section has provided an overview of the basic
characteristics of the proposed distributed facility location
approach. The section goes beyond that to look closer at some
important albeit more complex properties of the proposed
solution.

A. Convergence of the Iterative Method

We start with the issue of convergence. First we show
that the iterative algorithm of Section III-B converges in a
finite number of iterations. Then we show how to control the
convergence speed so as to adapt it to the requirements of
practical systems.

Proposition 1: The iterative local search approach for dis-
tributed facility location converges in a finite number of
iterations.

Proof: Since the solution space is finite, it suffices to
show that there cannot be loops,i.e., repeated visits to the
same configuration of facilities. A sufficient condition forthis
is that the cost (either Eq. (1) or (2) depending on whether we
are considering distributed UKM or UFL) be monotonically
decreasing between successive iterations,i.e., c(m) ≥ c(m+1).
Below, we show that this is the case for the UKM applied
to r-shapes with a single facility. The cases of UKM applied
to r-shapes with multiple facilities, and of UFL follow from
straightforward generalizations of the same proof.

Suppose that during iterationm+1 facility vθ is processed
and that between iterationm andm+1, vθ is located at node
x, whereas after iterationm + 1, vθ is located at nodey. If
x ≡ y, thenc(m) = c(m+1). For the case thatx 6= y, we need
to prove thatc(m) > c(m+1).

For the case in whichW (m)
θ ≡ W

(m+1)
θ , it is easy to show

that c(m) > c(m+1). Indeed, since the facility moves from
x to y it must have been that this reduces the cost of the
domain of vθ, i.e., c(W

(m)
θ ) > c(W

(m+1)
θ ), which implies

c(m) > c(m+1), since no other domain is affected.
The case in whichW (m)

θ 6= W
(m+1)
θ is somewhat more

involved. It implies that there exist sets of nodesA, B: A ∪
B 6= ∅, A = {z ∈ V : z /∈ W

(m)
θ , z ∈ W

(m+1)
θ } and B =

{z ∈ V : z ∈ W
(m)
θ , z /∈ W

(m+1)
θ }. A is actually the set of

nodes that were not served by facilityvθ before them + 1
iteration and are served after them+1 iteration. Similarly,B
is the set of nodes that were served by facilityvθ before the
m + 1 iteration and are not served after them + 1 iteration.
Let C = {z ∈ V : z ∈ W

(m)
θ , z ∈ W

(m+1)
θ } be the set

of nodes that remained in the domain ofvθ after its move
from x to y (Fig. 1 depicts the aforementioned sets). Since
W

(m)
θ = B ∪ C (B,C disjoint) and the re-optimization of

W
(m)
θ moved the facilityvθ from x to y, it must be that:

c(B, x) + c(C, x) > c(B, y) + c(C, y) (3)

where c(B, x) denotes the cost of servicing the nodes ofB
from x (similar definitions forc(C, x), c(C, y)).

Let Φ denote the set of facilities that used to service the
nodes ofA before they entered the domain ofvθ at m + 1.
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vθ

W
(m)
θ

W
(m+1)
θ

C

B

A

γ

hereΦ = Ψ = γ

Fig. 1. Depiction of the move of a facility from X to Y and of the sets A, B, and C.

Similarly, let Ψ denote the set of facilities that get to service
the nodes ofB after they leave the domain ofvθ at m + 1.
From the previous definitions it follows that:

c(A, y) < c(A,Φ) (4)

c(B, y) > c(B,Ψ) (5)

Using Eq. (5) in Eq. (3) we obtain:

c(B, x) + c(C, x) > c(B,Ψ) + c(C, y) (6)

Applying Eqs (6) and (4) to the differencec(m) − c(m+1), we
can now show the following:

c
(m)

− c
(m+1) =

„

c(B, x) + c(C, x) + c(A, Φ)

«

−

„

c(A, y) + c(C, y) + c(B, Ψ)

«

=

„

c(B, x) + c(C, x) − c(B, Ψ) − c(C, y)

«

+

„

c(A, Φ) − c(A, y)

«

> 0

which proves the claim also for theW (m)
θ 6= W

(m+1)
θ case,

thus completing the proof.
We can control the convergence speed by requiring each turn

to reduce the cost by a factor ofα, in order for the turn to
be accepted and continue the optimizing process;i.e., accept
the outcome from the re-optimization of anr-shape at the
mth iteration, only ifc(m) ≥ (1 + α)c(m+1). In this case, the
following proposition describes the convergence speed.

Proposition 2: The iterative local search approach for dis-
tributed facility location converges inO(log1+α n) steps.

Proof: Let c(0), c(M), c∗ denote the initial cost, a locally
minimum cost obtained at the last (M th) iteration, and the
minimum cost of a (globally) optimal solution, respectively.
Here we considerM to be the number of “effective” iterations,
i.e., ones that reduce the cost by the required factor. The total
number of iterations can be a multiple ofM up to a constant
given by the number of facilities. Since we are interested in
asymptotic complexity we can disregard this and focus onM .

For m < M we have required thatc(m) ≥ (1 + α)c(m+1),
or equivalently,c(0) ≥ (1+α)mc(m). Thus when the iteration
converges we have:

c(0) ≥ (1 + α)Mc(M) ⇒ M ≤ log1+α

c(0)

c(M)
≤ log1+α

c(0)

c∗
(7)

D

C

A

B
E x

r

y .

.
.
.

.
U

(m)
i

V
(m)
i

φvj

vi

u

Fig. 2. Example of a possible facility movement from nodevi to nodevj

with respect to a particular nodeu ∈ Ui.

Given the definition of the cost and the fact that node service
demands (s(v)’s) are constants with respect to the size of the
input (n), it is easy to see thatc(0) can be upper bounded by
O(n2) and c∗ be lower bounded byΩ(n). This leads to an
O(n) upper bound forc

(0)

c∗ . Substituting in Eq. (7) gives the
claimed upper bound for the number of iterations.

B. The Mapping Error and its Effect on Local Re-
Optimizations

In this section we discuss an important difference between
solving a centralized version of UKM or UFL (Defs 1, 2)
applied to the entire network and our case where these
problems are solved within anr-shape based on the demand
that results from a fixed mapping of the ring demand onto the
skin. In the centralized case, the amount of demand generated
by a node is not affected by the particular configuration of the
facilities within the graph, since all nodes in the network are
included and considered with their original service demand.
In our case, however, the amount of demand generated by
a skin node can be affected by the particular configuration
of facilities within the r-shape. In Fig. 2 we illustrate why
this is the case. Nodeu on the ring has a shortest path to
facility nodevi that intersects the skin ofvi’s r-ball at point
B, thereby increasing the demand of a local node atB by s(u).
As the locations of the facilities may change during the various
steps of the local optimizing process (e.g. the facility moves
from C to D, Fig. 2), the skin node along the shortest path
betweenu and the new location of the facility may change
(node/pointE in Fig. 2). Consequently, a demandmapping
error is introduced by keeping the mapping fixed (as initially
determined) throughout the location optimization process. Let
∆i(r, j, u) denote the amount of mapping error attributed to
ring nodeu with respect to a move of the facility fromvi

to vj under the aforementioned fixed mapping and radiusr.
Then thetotal mapping errorintroduced in domainWi under
radiusr is given by:

∆i(r) =
∑

vj∈Vi
vj 6=vi

∑

u∈Uivj 6=vi

∆i(r, j, u). (8)

The mapping error in Eq. (8) could be eliminated by re-
computing the skin mapping at each stage of the optimizing
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process (i.e., for each new intermediate facility configuration).
Such an approach not only would add to the computational
cost but – most important – would be practically extremely
difficult to implement as it would require the collection of
demand statistics under each new facility placement, delaying
the optimization process and inducing substantial overhead.
Instead of trying to eliminate the mapping error one could
try to assess its magnitude (and potential impact) on the
effectiveness of the distributed UKM/UFL. This is explored
next.

The example depicted in Fig. 2 helps derive an expression
for the mapping error∆i(r, j, u), assuming a two-dimensional
plane where nodes are scattered in a uniform and continuous
manner over the depicted domain.∆i(r, j, u) corresponds to
the length difference of the two different routes between node
u (point A) and nodevj (point D). Therefore,

∆i(r, j, u) = |AB| + |BD| − |AD|. (9)

Note that for those cases in which the angleφ̂ betweenAC
and CD, is 0 or π, |AB| + |BD| = |AD|, and therefore,
∆i(r, j, u) = 0. For any other value of̂φ, AB, BD andAD
correspond to the edges of the same triangle and therefore,
|AB| + |BD| − |AD| > 0 or ∆i(r, j, u) > 0.

Based on Eq. (9), it is possible to derive an upper bound
regarding the total mapping error∆i(r) for this particular
environment. In Appendix I, we prove that,

∆i(r) ≤ 2π2r3(R2 − r2), (10)

where R is the radius of the particular domainWi (for
simplicity we assume that the domain is also a circle).

According to Eq. (10), the upper bound for∆i(r) is close
to 0, whenr → 0 or r → R. We are interested in those cases
where ther-ball is small. This corresponds to small values ofr
for the particular (two-dimensional continuous) environment.
Therefore, a small radiusr in addition to being preferable for
scalability reasons has the added advantage of facilitating the
use of a simple and practical mapping with small error and
expected performance penalty.

V. SYNTHETIC RESULTS ONER AND BA GRAPHS

In this section we evaluate our distributed facility location
approach on synthetic Erdös-Ŕenyi (ER) [7] and Barab́asi-
Albert (BA) [8] graphs generated using the BRITE genera-
tor [24]. For ER graphs, BRITE uses the Waxman model [25]
in which the probability that two nodes have a direct link is
P (u, v) = α · e−d/(βL), where d is the Euclidean distance
betweenu and v, and L is the maximum distance between
any two nodes. We maintain the default values of BRITE
α = 0.15, β = 0.2 combined with an incremental model
in which each node connects tom = 2 other nodes. For
BA graphs we also use incremental growth withm = 2.
This parameterization creates graphs in which the number of
(undirected) links is almost double the number of vertices (as
also observed in real AS traces that we use later in the paper).
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Fig. 3. Average coverage of a node for different size of ER and BA graphs.

A. Node Coverage with Radiusr

Fig. 3 depicts the fraction of the total node population that
can be reached inr hops starting from a certain node in ER
and BA graphs, respectively. We plot the mean and the95%
confidence interval of each node under different network sizes
n = 400, 600, 800, 1000, representing typical populations
of core ASes on the Internet as argued later on. The figures
show that a node can reach a substantial fraction of the total
node population by using a relatively smallr. In ER graphs,
r = 2 covers2%−10% of the nodes, whereasr = 3 increases
the coverage to10%− 32%, depending on network size. The
coverage is even higher in BA graphs, wherer = 2 covers
4%−15%, whereasr = 3 covers20%−50%, depending again
on network size. These observations are explained by the fact
that larger networks exhibit longer shortest paths and diameters
and also because BA graphs, owing to their highly skewed
(power-law) degree distribution, possess shorter shortest paths
and diameters than corresponding ER graphs of the same link
density.

B. Performance of distributed UKM

In this section we examine the performance of our dis-
tributed UKM of radiusr, hereafter referred to as dUKM(r),
when compared to the centralized UKM utilizing full knowl-
edge. We fix the network size ton = 400 (matching
measurement data on core Internet ASes that we use later
on) and assume that all nodes generate the same amount of
service demands(v) = 1,∀v ∈ V . To ensure scalability, we
don’t want our distributed solution to encounterr-shapes that
involve more that10% of the total nodes, and for this we
limit the radius tor = 1 andr = 2, as suggested by the node
coverage results of the previous section. We let the fraction
of nodes that are able to act as facilities (i.e., service hosts)
take valuesk/n = 0.1%, 0.5%, 1%, 2%, and5%. We perform
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Fig. 4. The relative performance between dUKM(r) and UKM, and the number of
iterations for the convergence of the former, forr = 1 andr = 2, and different facility
densitiesk/n = 0.1%, 0.5%, 1%, 2%, and5% under ER and BA graphs.

each experiment 10 times to reduce the uncertainty due to the
initial random placement of thek facilities.

The plots on the left-hand-side of Fig. 4 depict the cost of
our dUKM(r) approach normalized over that of the centralized
UKM, with the plot on top for ER graphs and the plot on
the bottom for BA graphs. For both ER and BA graphs, the
performance of our distributed solution tracks closely that of
the centralized one, with the difference diminishing fast as
r and k are increased. The normalized performance for BA
graphs converges faster (i.e., at smallerk for a given r) to
ratios that approach 1. This owes to the existence of highly-
connected nodes (the so call “hubs”) in BA graphs — building
facilities in few of the hubs is sufficient for approximating
closely the performance of the centralized UKM. The two
plots on the right-hand-side of Fig. 4 depict the number of
iterations needed for dUKM(r) to converge. A smaller value
of r requires more iterations as it leads to the creation of a
large number of small sub-problems (re-optimizations of many
smallr-shapes). BA graphs converge in fewer iterations, since
for the same value ofr BA graphs induce largerr-shapes8

and, thus, fewer re-optimizations.

C. Performance of distributed UFL

In order to evaluate the performance of dUFL(r), we need
to decide how to set the facility acquisition costsf(vj),
which constitute part of the input of a UFL problem (see
Definition 2). This is a non-trivial task, essentially a pricing
problem for network services. Although pricing is clearly out
of scope for this paper, we need to use some form off(vj)’s
to demonstrate our point that, as with UKM, the performance
of the distributed version of UFL tracks closely that of the
centralized one. To that end, we use two types of facility costs:
uniform, where all facilities cost the same independently of

8 Again it is the hubs that create larger-shapes. Even under a smallr, a
hub will be close to the facility that re-optimizes its location, and this will
bring many of the hub’s immediate neighbors into ther-shape.
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location (i.e., f(vj) = f , ∀vj ∈ V ) and,non-uniform, where
the cost of a facility at a given node depends on the location
of that node. The uniform cost model is more relevant when
the dominant cost is that of setting up the service on the host,
whereas the non-uniform cost model is more relevant when
the dominant cost is that of operating the facility (implying
that this operating cost is proportional to the desirability of
the host, which depends on topological location).

For the non-uniform case we will use the following rule:
we will make the cost of acquiring a facility proportional to
its degree,i.e., proportional to the number of direct links it
has to other nodes. The intuition behind this is that a highly
connected node will most likely attract more demand from
clients, as more shortest-paths will go through it and, thus,
building a facility there will create a bigger hot-spot, and
therefore the node should charge more for hosting a service.9

In [26],[27] the authors showed that the “coverage” of a node
increases super-linearly with its degree (or alternatively, the
number of shortest paths that go through it). We, therefore,
use as facility costf(vj) = d(vj)

1+αG , whered(vj) is the
degree of nodevj ∈ V andαG is the skewness of the degree
distribution of the graphG. In order to estimate the value
of αG, we use the Hill estimator:̂α(Hill)

k,m = 1/γ̂k,m, where:

γ̂k,m = 1
k

∑k
i=1 log

X(i)

X(k+1)
, X(i) denotes thei-th largest value

in the sampleX1, ...,Xn. We prefer the Hill estimator since
it is less biased than linear regression.

In Fig. 5 we plot the cost of dUFL(1), dUFL(2), and cen-
tralized UFL, in ER and BA graphs under the aforementioned
degree-based facility cost. For dUFL, we present three lines
for each radiusr, corresponding to different initial number
of facilities used in the iterative algorithm of Section III-B.
We usek0 = 0.5 · F , F , and 2 · F , where F denotes the

9 As sketched in the introduction, a node may correspond to an ASthat
charges for allowing network services to be installed on itslocal GSH.
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number of facilities opened by the corresponding centralized
UFL. As evident from the results, the cost of dUFL is close
to that of UFL (around 5-15% for both types of graphs). As
with dUKM, the performance improves withr and is slightly
better for BA graphs (see the explanation in Section V-B).
Also we observe a tendency for lower costs when starting the
distributed algorithm with a higher number of initial facilities.
Under the non-uniform (degree-based) cost model, both dUFL
and UFL open facilities in 2-8% of the total nodes, depending
on the example.

We also evaluate the performance of dUFL under uniform
facility cost f ; the cost is set at a value that leads to building
the same number of facilities as the corresponding degree-
based example. Both the distributed and centralized UFL build
the same number of facilities, and the performance of dUFL
is very close to the centralized one, as is illustrated in Fig. 6.

Again, we emphasize that our goal here is not to evaluate
performance under different pricing scheme, but rather to show
that the performance of distributed UFL tracks well that of the
centralized, optimal approach.

VI. RESULTS FORREAL AS-LEVEL TOPOLOGIES

To further investigate the performance of our distributed
approach, as well as better support our sketched application
scenario described in the introduction, we include in this
section performance results on real AS-level maps under non-
uniform service demand from different clients.

A. Description of the AS-level Dataset

We use the relation-based AS map of the Internet from
December 2001 (data available from [28]) obtained using
the measurement methodology described in [9]. The dataset
includes two kinds of relationships between ASes.

• Costumer-Provider: The costumer is typically a smaller
AS that pays a larger AS for providing it with access
to the rest of the Internet. The provider may, in turn, be
a costumer of an even larger AS. A costumer-provider
relationship is modeled using a directed link from the
provider to the costumer.

• Peer-Peer: Peer ASes are typically of comparable sizes
and have mutual agreements for carrying each other’s
traffic. Peer-peer relationships are modeled using undi-
rected links.

Overall the dataset includes 12,779 unique ASes, 1,076
peers and 11,703 costumers, connected through 26,387 di-
rected and 1,336 undirected links. Since this AS graph is
not connected, we chose to present results based on its
largest connected component10 , which we found to include
a substantial part of the total AS topology at the peer level:
497 peer ASes connected with 1,012 undirected links; we
verified that this component contains all the 20 largest peer
ASes reported in [9]. Since it would be very difficult to obtain
the real complex routing policies of all these networks, we
did not consider policy-based routing, but rather asssumed

10 There are smaller connected components (2-8 ASes) that are formed by
small regional ISPs with peering relationships.
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shortest-path routing based on the aforementioned connected
component. For comparison purposes, we plot in Fig. 7 the
node coverage of AS next to the ones corresponding to the ER
and BA models withn = 497 and around the same number of
links (1, 000). The fraction of covered nodes increases more
smoothly with r in the AS graph as compared to both ER
and BA. This is because the AS graph includes longer shortest
paths and has larger diameter than the corresponding synthetic
ER and BA graphs of similar size and link density.

We exploit the relationships between ASes in order to derive
a more realistic (non-uniform) service demand for the peer
ASes that we consider. Our approach is to count for each peer
AS the number of costumer ASes that have it as provider,
either directly or through other intermediary ASes. We then
set the service demand of a peer AS to be proportional to
this number. In Fig. 8 we plot the demand profile of peer
ASes (in decreasing order using Log-Log scale). As evident
from this plot, the profile is power-law like (with slight
deviation towards the tail), meaning that few core ASes carry
the majority of the demand that flows from client ASes. In
the sequel we present performance results in which nodes
correspond to peer ASs that generate demand that follows the
aforementioned power-law like profile. We seek to identify the
peer ASes for building service facilities.

B. Distributed UKM on the AS-level Dataset

The plots on the left-hand-side of Fig. 9 show the cost
of dUKM(1), dUKM(2), and the centralized UKM, under
the AS-level graph. Clearly, even for small values ofr,
the performance of our distributed approaches track closely
that of the centralized approach. Regarding the number of
iterations needed for convergence, the same observations apply
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cost ratio dUFL(1)/UFL cost ratio dUFL(2)/UFL
mean median mean median

degree-based 1.22 1.20 1.04 1.03
uniform 1.01 1.01 1.01 1.01

TABLE I

COST RATIO BETWEEN DUFL(r) AND UFL IN THE AS-LEVEL TOPOLOGY.

as with the synthetic topologies,i.e., they increase with smaller
radii. The substantial benefit from knowledge of only local
neighborhood topologies (“neighbors of neighbor”) has been
observed for a number of applications, including [23] which
has also investigated and quantified implementation overhead
in an Internet setting.

C. Distributed UFL on the AS-level Dataset

Table I presents the performance of dUFL on the AS-
level dataset. Again, it is verified that dUFL is very close
in performance to UFL, even for small values ofr (within 4%
for r = 2, under both examined facility cost models).

VII. N ON-STATIONARY DEMAND AND IMPERFECT

REDIRECTION

Up to now, the performance study has been based on (1)
stationary demand, and (2) perfect redirection of each client
to its closest facility node. In this section we look at the
performance of distributed facility location when dropping
these assumptions. First, we present a measurement study for
obtaining the non-stationary demand corresponding to a multi-
player on-line game and then use this workload to derive
a performance comparison between dUFL and UFL. Then,
we assume that mapping a client to its closest facility node
has to incur some time hysteresis and study the performance
implications of such an imperfect redirection scheme.

A. Measuring the demand of a popular multi-player game

We used the Mininova web-site to track all requests for
joining a torrent corresponding to a popular on-line multi-
player game. Our assumption is that all these users that
downloaded the game, would then use it by firing up their
client and connecting to one of many game servers. Therefore,
by tracking the downloads of the game client, which is possible
to do due to the use of BitTorrent, we can have a rough idea
about the demographics of the actual game load put on the
actual game servers, to which we do not have direct access. We
then use this workload to quantify the benefits of instantiating
game servers dynamically according to dUFL.

More specifically, we connected periodically at 30-minute
intervals to the tracker serving this torrent, over a total
duration of 42 hours (obtaining a total of 84 samples). At
each 30-minute interval, we got all the IP’s of participating
downloaders by issuing to the tracker multiple requests for
neighbors until we got all distinct downloaders at this point
in time. In Fig. 10 (left) we plot the number of concurrent
downloads at each measurement point. In total,we saw 34669
unique users, and a peak population of approximately 8000
concurrent users. Overall, we were able to capture a sufficient
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view of the activity of the torrent and detect expected profiles,
e.g., diurnal variation over the course of a day. Moving on,
we used Routeviews [29] to map each logged IP address to
an AS. Fig. 10 (right) illustrates the number of ASes with at
least one participating user in the torrent at each measurement
point. A diurnal variation is again clear, with a peak of more
than 1000 ASes at a given point in time.

Last, we looked at churn at the AS level by counting the
number of new ASes joining and existing ASes leaving the
torrent over time [30]. Formally, we definedchurn(t) =

Ut−1⊖Ut

max{|Ut−1|,|Ut|}
, whereUt is the set of ASes at timet, and⊖

is the set difference operator. In Fig. 11, we plot the evolution
of churn. One can observe that AS-level churn is quite high,
ranging from 6% to 11%, with no specific pattern. This serves
right our purpose which is to study the performance of dUFL
under non-stationary demand.

B. Distributed UFL under non-stationary demand

We consider a game server migration scheme given by
dUFL with radiusr = 1. The pricing model for starting a
server at an AS is the aforementioned degree-based one of
Section V-C. The evaluation assumes an AS-level topology
obtained from Routeviews. The demand originating from each
AS at each particular point in time is set equal to the value
we obtained from measuring the downloads going to the
torrent of the game client. We compare the cost of UFL,
dUFL(1), static-min, and static-max. Static-min is a simple
heuristic that maintains the same placement across time. The
number of maintained facilities is equal to the minimum
number of facilities that UFL opened in the duration of the
experiment. This is used as a baseline for the performance
of an under-provisioned static placement of servers according
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to minimum load. Static-max captures the cost of an over-
provisioned placement according to peek load. Obviously,
static-max suffers from a high purchase cost of buying a
maximum number of servers (in this case 100), whereas static-
min suffers from high communication cost to reach the few
bought servers (in this case 70).

We report the average cost in the duration of the experiment
(42 hours) for each one of the aforementioned policies. For
each policy we repeated the experiment 100 times to remove
the effect of the initial random opening of facilities. Fig.13
plots the resulting average costs along with95th percentile
confidence intervals. One can see that dUFL(1) achieves 4
to 7 times lower cost compared to static-min and static-max.
Looking at the inlined magnification, it can also be seen
that dUFL(1) is actually pretty close, within 10-20%, of the
performance of the centralized UFL computed at each point
in time. Taken together, these results indicate that dUFL(1)
yields a high performance also under non-stationary demand.

Next, we quantify the number of server migrations re-
quired by dUFL(1) to track the offered non-stationary demand.
Fig. 12 plots the percentage of servers that are migrated,
henceforth referred as migration ratio, along with95th per-
centile confidence intervals based on 100 runs. Evidently,
migrations are rather rare, typically 0%-3%, after the servers
stabilize from their initial random positions, to where dUFL(1)
will have them at each point in time. These results suggest
that dUFL(1) is relatively robust to demand changes and can
typically address them without massive numbers of migrations
that are of course costly in terms of bandwidth, etc. Of course,
the number of migrations can be reduced further by trading
performance with laziness in triggering a migration.

C. The Effect of Imperfect Redirection

We now move on to dropping the assumption that clients are
always redirected to their closest facility, which pretty much
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implies that there are no performance penalties for them dueto
server migrations. In many cases it has been shown that perfect
redirection is indeed feasible using route triangulation and
DNS [16]. In this section, however, we relax this assumption,
and study the effects of imperfect redirection. We do so to
cover cases in which perfect redirection is either too costly to
implement, or exists, but performs sub-optimally due to faults
or excessive load.

To this end, we assume that there exists a certain amount
of hysteresisbetween the time a server migrates to a new
node and the time that the migration is communicated to the
affected clients. During this time interval, a client mightbe
receiving service from its previously closest facility which,
however, may have ceased to be optimal due to one or several
migrations. Since we assume that migrations occur at fixed
time intervals, we measure the hysteresis in terms of number
of such intervals (1 facility migration at each interval). Notice
that under non-zero hysteresis, even with stationary demand,
the optimization is no longer guaranteed to be loop-free (as
in Section IV-A). We solve this be stopping the iterative re-
optimization if it reaches a certain high number of iterations.

In Fig. 14 we plot the cost ratio between dUFL(1) and dUFL
and the95th percentile confidence interval under various levels
of hysteresis that range from 0 up to 20 (which means that
clients of facility i hear abouti’s migration afteri+hysteresis
has completed its migration). As expected, hysteresis putsa
performance penalty on dUFL. The degradation, however, is
quite smooth, while the performance always remains superior
to static-min and static-max.

VIII. R ELATED WORK

There is a huge literature on facility location theory. Initial
results are surveyed in the book by Mirchandani and Francis
[6]. A large number of subsequent works focused on develop-
ing centralized approximation algorithms [19], [20], [21], [22].
The authors of [31] have proposed an alternative approach for
approximating facility location problems based on a contin-
uous “high-density” model. Recently, generalizations of the
classical centralized facility location problem have appeared
in [32], [33]. The first mention of distributed facility location
seems to have been from Jain and Vazirani [22] while com-
menting on their primal-dual approximation method, but they
do not pursue the matter further. To the best of our knowledge,
the only work in which distributed facility location has been
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the focal point seems to be the recent work of Moscibroda
and Wattenhofer [34]. This work, however, is mostly focused
on deriving worst-case performance bounds for distributed
facility location. It is based on primal-dual techniques that
are amenable to such analysis, but which are too complicated
for practical implementation purposes, as compared to our
work. Furthermore, [34] does not include any experimental
results or implementation guidelines of practical purposes. The
online version of facility location, in which request arrive
one at a time according to an arbitrary pattern, has been
studied by Meyerson [35] that gave a randomized online
O(1)-competitive algorithm for the case that requests arrive
randomly and aO(log n)-competitive algorithm for the case
that arrival order is selected by an adversary. Oikonomou and
Stavrakakis [36] have proposed a fully distributed approach
for service migration — their results, however, are limited
to a single facility (representing a unique service point) and
assume tree topologies.

Several application-oriented approaches to distributed ser-
vice deployment have appeared in the literature,e.g., Ya-
mamoto and Leduc [37] (deployment of multicast reflectors),
Rabinovich and Aggarwal [38] (deployment of mirrored web-
content), Chambers et al. [39] (on-line multi-player network
games), Cronin et al. [40] (constrained mirror placement),and
Krishnan et al. [41] (cache placement). The aforementioned
works are strongly tied to their specific applications and do
not have the underlying generality offered by the distributed
facility location approach adopted in our work. Relevant to
our work are also the works of Oppenheimer et al. [42] on
systems aspects of a distributed shared platform for service
deployment, and Loukopoulos et al. [43] on the overheads of
updating replica placements under non-stationary demand.

IX. CONCLUSIONS

We have described a distributed approach for the problem of
placing service facilities in large-scale networks. We overcome
the scalability limitations of classic centralized approaches
by re-optimizing the locations and the number of facilities
through local optimizations which are refined in several iter-
ations. Re-optimizations are based on exact topological and
demand information from nodes in the immediate vicinity
of a facility, assisted by concise approximate representation
of demand information from neighboring nodes in the wider
domain of the facility. Using extensive synthetic and trace-
driven simulations we demonstrate that our distributed ap-
proach is able to scale by utilization limited local information
without making serious performance sacrifices as compared
to centralized optimal solutions. We also demonstrate thatour
distributed approach yields a high performance under non-
stationary demand and imperfect redirection.
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APPENDIX I
DERIVATION OF AN UPPERBOUND FOR∆i(r)

For the rest, a two-dimensional space is considered over
which nodes are scattered in a uniform and continuous manner.
Ther-ball is considered as a circle with radiusr and the entire
domain also as a circle with radiusR (see Fig. 2).

Suppose that a nodeu ∈ Ui is served by its closest facility
nodevi. This case is depicted in Fig. 2 whereu is located at
point A and the corresponding facility nodevi is located at
point C. Note that lineAC intersects with the periphery (skin)
of the r-ball at a particular point denoted byB. Clearly, line
AC corresponds to the shortest distance between pointsA and
C (nodesu andvi, respectively). Denoting asx the length of
AB, |AB| (the distance of nodeu from the skin of ther-ball)
we can writeAC = x + r. Line AC may be regarded as
the path over which nodeu uses the resources of the facility
located at nodevi.

Suppose that a nodeuj ∈ Vi is considered as a possible
alternative facility location. LetD be the point denoting the
location ofvj and lety denote the distance between nodevi

and nodevj (i.e., the length ofCD, |CD|). The mapping
error, ∆i(r, j, u) = |AB| + |BD| − |AD|, is always positive
since|AB|+ |BD| > |AD| (AB, BD andAD correspond to
edges of the same triangle) whenAB̂D 6= 0 andAB̂D 6= π.
The mapping error becomes zero only in the exceptional cases
where AB̂D = 0 and AB̂D = π (corresponding tôφ = π
and φ̂ = 0, respectively, as concluded from Fig. 2).

Let ∆i(r, j) be the summation of∆i(r, j, u), ∀u ∈ Ui.
Since we have assumed the network area as a two-dimension
continuous space, all nodesu ∈ Ui correspond to the ring area
Ui, depicted in Fig. 2. Consequently,∆i(r, j) is given by the
following integral,

∆i(r, j) =

∫

Ui

∆i(r, j, u)du. (11)

Let ∆i(r) denote the total mapping error, or the summation
of ∆i(r, j) for all nodesj ∈ Vi. Therefore,

∆i(r) =

∫

Vi

∆i(r, j)dj. (12)

In Appendix II we derive the following analytical expression
for ∆i(r, j, u) as a function of parametersx, y, r and φ̂:

∆i(r, j, u) = x +

√

r2 + y2 − 2yr cos φ̂

−
√

(x + r)2 + y2 − 2y(x + r) cos φ̂.
(13)

∆i(r, j, u) as it is given by Eq. (13) is difficult to be
analyzed. In addition, an analytical expression regarding∆i(r)
is not easy to be derived since it is hard to obtain the
corresponding integrals. Therefore, in the sequel we obtain
an upper bound∆i(r) by using a simple upper bound for
∆i(r, j, u) as explained below.

It is easy to see thatr2 +y2 −2yr cos φ̂ ≤ r2 +y2 +2yr =
(r + y)2, since−1 ≤ cos φ̂ ≤ 1. Also, (x+ r)2 + y2 − 2y(x+
r) cos φ̂ ≥ (x + r)2 + y2 − 2y(x + r) = (x + r − y)2 (note
that y ≤ r).

Based on Eq. (13), it is concluded that∆i(r, j, u) ≤ x +
√

(r + y)2−
√

(x + r − y)2 = x+r+y−x−r+y. Therefore,
∆i(r, j, u) ≤ 2y. Given thaty ≤ r,

∆i(r, j, u) ≤ 2r. (14)

In order to derive ∆i(r, j), according to Eq. (11),
an analytical expression has to be derived for the inte-
gral

∫

Ui
∆i(r, j, u)du. Note that 0 ≤ ∆i(r, j, u) ≤ 2r,

∫

Ui
∆i(r, j, u)du ≤

∫

Ui
2rdu andR corresponds to the radius

of the Ui ∪ Vi area (note thatR ≥ r). Eventually,

∆i(r, j) ≤ 2πr(R2 − r2), (15)

since the area of the ringUi is π(R2 − r2).
In order to derive∆i(r), according to Eq. (12), an analytical

expression has to be derived for the integral
∫

Vi
∆i(r, j)dj.

Note that0 ≤ ∆i(r, j) ≤ 2πr(R2 − r2) and
∫

Vi
∆i(r, j)dj ≤

∫

Vi
2πr(R2 − r2)dj. Eventually,

∆i(r) ≤ 2π2r3(R2 − r2), (16)

since ther-ball area isπr2.

APPENDIX II
DERIVATION OF AN ANALYTICAL EXPRESSION FOR

∆i(r, j, u)

When one of the angles of a triangle (φ̂) is known as well
as the length of both adjacent edges (r andy), then the length
of the third edge is possible to be derived as a function of
φ̂, r, y. Two different cases may be distinguished with respect
to the triangle’s particular form, as depicted in Fig. 15.

For the case depicted in Fig. 15.a,cos φ̂ = y1

r . Since
y = y1 + y2, y2 = y − y1 = y − r cos φ̂. Further-
more, sin φ̂ = |AD|

r and |AD| = r sin φ̂. It holds that
|AC|2 = |AD|2 + y2

2 , or |AC| =
√

|AD|2 + y2
2 , or |AC| =

√

r2 sin2 φ̂ + y2 + r2 cos2 φ̂ − 2yr cos φ̂. Eventually,

|AC| =

√

r2 + y2 − 2yr cos φ̂. (17)
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Fig. 15. The two distinguished cases studied to derive the analytical
expression for∆i(r, j, u).

The same result is also derived for the case depicted
in Fig. 15.b, whereθ̂ = π − φ̂. For this case,|AC| =
√

|AD|2 + (y + y′)2. However, |AD| = r sin θ̂ and y′ =

r cos θ̂. Since, sin θ̂ = sin φ̂ and cos θ̂ = − cos φ̂, |AD| =
r sin φ̂ andy′ = −r cos φ̂. Eventually, Eq. (17) holds for this
case as well.
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