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Abstract— The effectiveness of service provisioning in large- hosting infrastructures) used to deliver the service. Tvedl-w
scale networks is highly dependent on the number and location known formulations of classi€acility Location Theory[6]
of service facilities deployed at various hosts. The classical, can be used as starting points for addressing decisionsi() a
centralized approach to determining the latter would amount > tivelv: Th itateds-medi UKM bl
to formulating and solving the uncapacitated k-median (UKM) 2, respectively: Theincapacitated:-mec ian ( . Yoroblem
problem (if the requested number of facilities is fixed), or the Prescribes the locations for instantiating a fixed number of
uncapacitated facility location (UFL) problem (if the number service facilities so as to minimize the distance betweeamnsus
of facilities is also to be optimized). Clearly, such centralized and the closest facility capable of delivering the service.
approaches require knowledge of global topological and demand o yncapacitated facility location (UFLproblem, the number
information, and thus do not scale and are not practical for large f facilities i t fixed. butiointly derived al ’ ith th
networks. The key question posed and answered in this paper 0 a_C” IeS IS not Tixed, u_JO'n y e”,V(_:" _aong wi ?
is the following: “How can we determine in a distributed and locations as part of a solution that minimizes the combined
scalable manner thenumber and location of service facilities?” service hosting and access costs.
We propose an innovative approach in which topology and [imitations of existing approaches:Even though it provides
demand information is limited to neighborhoods, or balls of small a solid basis for analyzing the fundamental issues involaed

radius around selected facilities, whereas demand information is the deol t of network . facility location t
captured implicitly for the remaining (remote) clients outside e deployment of network services, facility location theo

these neighborhoods, by mapping them to clients on the edge ofiS Not without its limitations. First and foremost, propdse
the neighborhood; the ball radius regulates the trade-off betwen  solutions for UKM and UFL are centralized, so they require
scalability and performance. We develop a scalable, distributed the gathering and the transmission of the entire topoldgicd
approach that answers our key question through an iterative re. 4amang information to a central point, which is not possible
optimization of the location and the number of facilities within - -
such balls. We show that even for small values of the radius (not .to mention pracucgl) for large networks. Second, such
(1 or 2), our distributed approach achieves performance under Solutions are not adaptive in the sense that they do not allow
various synthetic and real Internet topologies and workloads for easy reconfiguration in response to changes in the tggolo
that is comparable to that of optimal, centralized approaches and the intensity of the demand for service. To address these
requiring full topology and demand information. limitations we propose distributed versions of UKM and UFL,
which we use as means of constructing an automatic service
deployment scheme.
A scalable approach to automatic service deployment:
Motivation: Imagine a large-scale bandwidth/processingile develop a scheme in which an initial set of service
intensive service such as the real-time distribution ofveafe facilities are allowed to migrate adaptively to the besioek
updates and patches [2], a distributed data-center [3Jpwdcl |ocations, and optionally to increase/decrease in number s
computing platform [4], [5],etc. Such services must copeas to best service the current demand. Our scheme is based
with the typically voluminousand bursty demand — both on developing distributed versions of the UKM problem (for
in terms of overall load and geographical distribution o¢ ththe case in which the total number of faciliies must remain
sources of demand — due to recently observed flash-crotiged) and the UFL problem (when additional facilities can
phenomena. To deploy such services, decisions must be mpgeacquired at a price or some of them be closed down).
on: (1) the location, and optionally, (2) the number of noigs Both problems are combined under a common framework with
the following characteristics: An existing facility gatisethe
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through that node. When multipteballs intersect, they join in Planet Lab [12] or that envisioned in GENI [13], or a set
to form more complex-shapes The observed topology andof resources in a Cloud Computing platforead, an Amazon
demand information is then used to re-optimize the currektachine Image (AMI) in the context of EC2).

location (and optionally the number of) facilities by saolgi A GSH may be in Working (W) or Stand-By (SB) mode.
the UKM (or the UFL) problem in the vicinity of the-shape. In W mode, the GSH constitutes a service facility that is able
The trade-off between scalability and performance:Reduc- to respond to client requests for service, whereas in SB mode
ing the radius- decreases the amount of topological informahe GSH does not offer the actual service, but is ready to
tion that needs to be gathered and processed centrally at awjtch to W if it is so directed. Thus the set of facilities
point (i.e., at facilities that re-optimize their posit®)n This is used to deliver a service is precisely the set of GSHs in W
a plus for scalability. On the other hand, reducingarms the mode. By switching back and forth between W mode and SB
overall performance as compared to centralized solutibas t mode, thenumberas well as thdocation of facilities used to
consider the entire topological information. This is a nsinudeliver the service could be controlled in a distributechfas.

for performance. We examine this trade-off experimentally particular, a GSH in W mode.é., a facility) monitors the
using synthetic (Erdls-Renyi [7] and Barahbsi-Albert [8]) and topology and the corresponding demand in its vicinity and is
real (AS-level [9]) topologies. We show that even for veryhus capable of re-optimizing the location of the facility.
small radii,e.g, r = 1 (i.e, facility migration is allowed only ~ Third-party Autonomous Systems (AS) may host the GSHs
to first-hop neighbors), or = 2 (i.e., facility migration is of service providers, possibly for a féeln particular, the
allowed only up to second-hop neighbors), the performarficelwosting AS may charge the service provider for the assets
the distributed approach tracks closely that of the cemedl it dedicates to the GSHs, including the software/hardware
one. Thus, increasingmuch more is not necessary for perforinfrastructure supporting the GSHs as well as the bandwidth
mance, and might also be infeasible since even for relgtivaised to carry the traffic to/from GSHs in W mode.

smallr, the number of nodes contained inashape increases The implementation of the above-sketched scenarios re-
very fast (owing to the small, typicall® (log n), diameter of quires each GSH to be able to construct its surrounding AS-
most networks, including the aforementioned ones). level topology up to a radius. This can be achieved through
A case study — large-scale timely distribution of cus- standard topology discovery protocols [14]. Also, it ragsi
tomized software: Consider a large scale software update sys- client to be able to locate the facility closest to it, and it
tem, similar to that used favlicrosoft Windows Updatfl0]. requires a GSH to be able to inform potential clients of the
Such a system not only delivers terabytes of data to millafns service regarding its W or SB status. Both of these could be
users, but also it has to incorporate complex decision gs®E= achieved through standard resource discovery mechanisens |
for customizing the delivered updates to the peculiaribés DNS re-direction [15], [16] (appropriate for applicatidvewel
different clients [2] with respect to localization, preuily- realizations of our distributed facility location apprdgcor
installed updates, compatibilities, and optional compise proximity-based anycast routing [17] (appropriate forwatk
among others. This complex process goes beyond the disséayer realizations). Furthermore, we show in Section VII-C
ination of a single large file, where a peer-to-peer appraachthat the performance of our scheme degrades gracefully as
an obvious solution [11]. Moreover, it is unlikely that seétre re-direction becomes more imprecise.

providers will be willing to trust intermediaries with suchOutline: The remainder of this paper is structured as follows.
processes. Rather, we believe that such applicationskaly li Section Il provides a brief background on facility location
to rely on dedicated or virtual hosts,g, servers offered for Section Ill presents our distributed facility location apgach
lease through third-party overlay networksa-a Akamai or to automatic service deployment. Section IV examines @naly
Planet Lab, or the newest breed of Cloud Computing platforrigally issues of convergence and accuracy due to approgimat
(e.g, Amazon EC2). To that end, we believe that the use ofepresentation of the demand of nodes outsidapes. Sec-
our distributed facility location approach presents digant tion V evaluates the performance of our schemes on synthetic
advantages in terms of optimizing the cost and efficiency tdpologies. Section VI presents results on real-world (AS-
deploying such applicatiorfs.In the remainder of this section, level) topologies. Section VII looks at the effects of non-
we provide a mapping from the aforementioned softwamtationary demand and imperfect redirection. Section VIII
distribution service to our abstract UKM and UFL problemspresents previous related work. Section IX concludes tipepa
Service providers, hosts, and clients:We envision the with a summary of findings and on-going work.

availability of a set of network hosts upon which specific

functionalities may be installed and instantiated on dedman [I. BACKGROUND ONFACILITY LOCATION

We use the term “Generic Service Host” (GSH) to refer to | ot ¢ — (V,E) represent a network defined by a node
the software and hardware infrastructure necessary to hggty — {0 1127 ...,u,} and an undirected edge st Let

a service. For iqstance, a .GSH coulq be_a_well—provision%%vj) denote the length of a shortest path betwegand
Linux server, a virtual machine (VM) slice similar to thataas

3 Switching to W might involve the transfer of executable andfiguration
1 http://aws.amazon.com/ec2. files for the service from other GSHs or from the service pievi
2t is important to note that the large-scale timely distribatbf customized 4 Notice that each AS (or a smaller organizational unit therésnalso a
content is hardly unique to the dissemination of softwareatgsl as it could client of the service, with demand proportional to the aggteghumber of
be equally instrumental for “Virtual Product Placement” imelicontent as requests originating from its end-useesq, number of downloads of a service
well as in video-on-demand services, to mention two examples. pack).
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v;, ands(v;) the (user) service demand originating from node From the previous definitions it is easy to see that=
v;. Let F C V denote a set of facility nodesi-e, nodes on v (U™, where V™ = (J, o V™, UM
which the service is instantiated. If the number of avagab
facilities k = |F'| is given, then the specification of their exact
locations amounts to solving the following uncapacitated
median problem: B. The Distributed Algorithm

Definition 1: (UKM) Given a node set/ with pair-wise  Our distributed algorithm starts with an arbitrary initial
distance functiond and service demands(v;), Vv; € V, batch of facilities, which are then refined iteratively thgh
select up tok nodes to act as medians (facilities) so as tlocation and duplication until a (locally) optimal sdbrt is

(m)
viepem) Up 7.

minimize the service cost'(V, s, k): reached. It includes the following steps:
C(V,s,k) = Z s(v;)d(v;, m(v;)), (1) [Initialization: Pick randomly an initial set"(®) C V of
VoV ko = |F©] nodes to act as facilities. LefF = F(°) denote

a temporary variable containing the “unprocessed” faesit

wherem(v;) € F is the median that is closer tg. from the current batch. Also, I~ = () denote a variable

On ]Ehe othgr hand, '; |n.?tead o, gne |shg|ve2 the CO,?_tS containing this current batch of facilities.

f(v.j) or setting up a facility at node;, then the specifi- o qii0n . Pick a facilityv; € F and process it by executing
cation of the facility setF’ amounts to solving the following ; .

: 2 . the following steps:
uncapacitated facility location problem:

Definition 2: (UFL) Given a node sel/ with pair-wise
distance functiond and service demands(v,;) and facility
costsf(v;), Yv; € V, select a set of nodes to act as facilities
so as to minimize the joint cost'(V, s, f) of acquiring the
facilities and servicing the demand:

1) Construct the topology of its surroundingball by
using an appropriate neighborhood discovery protocol
(see [23] for such an example).

2) Test whether itg-ball can be merged with theballs of
other nearby facilities. We say that two or more facilities
can be merged (to actually mean that theipalls can
C\V,s, f) = Z flv;) + Z s(vj)d(vj, m(vy)), (2) be merged), when their-balls intersecti.e., when there

Vo, €F Vo, €V exists at least one node that is within distandeom all
wherem(v;) € F is the facility that is closer tw;. the facilities . Let/ C F(") denote a set composeduf

For general graphs, both UKM and UFL are NP-hard and the facilities that can be merged witR it/ induces
problems [18]. A variety of approximation algorithms have anr-shapet; = (VJ’E_J_)’, defined as th? sub-graph of
been developed under metric distance using a plethora of G composed of the facilities of, their neighbors up to

techniques, including rounding of linear programs [19kdb distancer, and the edges between them. We can place
search [20], [21], and primal-dual methods [22]. constraints on the maximal size ofshapes to guarantee

that it is always much smaller thabi(n).

3) Re-optimize ther-shapeG . If the original problem
is UKM, solve the|.J|-median within ther-shape —
this can produce new locations for thé| facilities. If
the original problem is UFL, solve the UFL within the
r-shape — this can produce new locations as well as
change the number of facilities (make it smaller or larger
than|.J]). In both cases the re-optimization is conducted

Il. ALIMITED HORIZON APPROACH TODISTRIBUTED
FACILITY LOCATION

In this section we develop distributed versions of UKM
and UFL by utilizing a natural limited horizon approach in
which facilities have exact knowledge of the topology ofithe
r-ball (surrounding topology up te-hop neighbors), exact
knowledge of the demand of each node in theiall and by using a centralized algorithfn The details regarding
approximate knowledge of the aggregate demand from nodes e ontimization of-shapes are given in Section I11-C.
on the ring surrounding their-ball. Our distributed approach 4) Remove processed facilities, both the origimaland
will be based on an iterative method in which the location and ~ 14 ones merged with it, from the set of unprocessed
the number of facilities (in the case of UFL only) may change (. .ijities of the latest batchie, setF = F\ (J(F).

between iterations. Also updateF("™) with the new locations of the facilities
after the re-optimization.

A. Definitions 5) Test for convergence. Iff #  then some facilities
We make use of the following definitions, most of which are ~ from the latest batch have not yet been processed, so
superscripted byn, the ordinal number of the current iteration. perform another iteration. Otherwise, if the configuration
Let F(™) C V denote the set of facility nodes at theth of facilities changed with respect to the initial one for
iteration. LetV,"™ denote ther-ball of facility nodev;, i.e. the latest batchj.e, F(™) # F~, then form a new

the set of nodes within radiusfrom v;. Let Ui(m) denote the ) o ) L )
5The merging operation is recursive. When an initiaball merges with

.”ng (?i)facmty nOdelvi* i.e, the set OT_nOdeS nOt_Comameda second one, then additional facilities that can merge wi¢hsecond one
in V™, but are being served by facility;, or equivalently, merge as well, and so on.

the nodes that have; as their closest facility. Thelomain 6 The numerical results presented in Sections V and VI are mbtaby
using Integer Linear Programming (ILP) formulations [6] anddbsearch

(m) _ ,(m) (m) . . .
Wi - VL U Uz pf a facility node consists of its-ball heuristics [21] for solving UKM and UFL withim-shapes. Since both perform
and the surrounding ring. very closely in all our experiments, we don't discriminatevbetn the two.
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batch by settingF = F("™) and #~ = F(™, and V. AMOREDETAILED EXAMINATION OF DISTRIBUTED
perform another iteration. Else (iF(™) = F~), then FACILITY LOCATION

no beneficial relocation or elimination is possible, SO The previous section has provided an overview of the basic

terminate by returning the (locally) optimal solutioncharacteristics of the proposed distributed facility kima

Fm). approach. The section goes beyond that to look closer at some
important albeit more complex properties of the proposed
solution.

C. Optimizingr-shapes

. _ . ' A. Convergence of the lterative Method
. As (_1||scussed in Section |l, the input of a UKM problem We start with the issue of convergence. First we show
ItS d(lafmedthcogwpletelg by dathtupléV, ‘;’ k), fco|r|1ta|n|(;19 ﬂ:f that the iterative algorithm of Section IlI-B converges in a
opology, the demand, an € number of allowed MediaRZ;ie nymber of iterations. Then we show how to control the

A UFL problem IS deflngd by.a IUPIQVJS’” smﬂar to convergence speed so as to adapt it to the requirements of
the previous one, but with facility creation costs instedd %ractical systems

a fixed constraint on the number of allowed facilities. Far th Proposition 1: The iterative local search approach for dis-

optimization of anr-shape, we set: tributed facility location converges in a finite number of

« V=V, and iterations.
o k =|J|, for the case of UKM, orf = {f(v;) : Yv; € Proof: Since the solution space is finite, it suffices to
V;}, for the case of UFL. show that there cannot be loopse., repeated visits to the

R di ice d d traiahtf q same configuration of facilities. A sufficient condition fibris
egarding service demand, a straightiorward approafdiy, i ihe cost (either Eq. (1) or (2) depending on whether we

would be to sets = {s(v;) : Yv; € V;}, i.e, retain in . - .
the re-optimization of the-shape the original demand of thealre considering distributed UKM or UFL) be monotonically

“es of thersh Such H d hel decreasing between successive iteratiogs, c(™ > ¢(m+1),
nodes of ther-shape. such an approach would, none ee?elow, we show that this is the case for the UKM applied
be inaccurate since the facilities within arshape service the

demand of the nodes of theshape.as well as those in the to r-shapes with a single facility. The cases of UKM applied

. . X ; to r-shapes with multiple facilities, and of UFL follow from
corresponqmg ring of the r-shapé;mce' there are typlcally straightforward generalizations of the same proof.
a few facilities, each one has to service a potentlally IargeSuppose that during iteration -+ 1 facility v, is processed
number_ of nodese(g, of order O(n)), and thu_s the rings and that between iteratiom andm + 1, vy is located at node
are typically much larger than the correspondinghapes. x, whereas after iteratiom + 1, vy is located at nodey. If
Re-optimizing the arrangement of facilities within aishape =~ ' (m) _ (m+1) X '
without considering the demand that flows-in from the ring. 7" thenc ™) = ¢  Forthe case that 7y, we need

. . . . R) prove thatc("”) > C("H_l)_
would, therefore, amount to disregarding too much infoiiprat For the case in whicm/e(m) _ We(m“), s easy 1o show

(as compared to the information considered by a centraliz%gllat M) > m+1) Indeed, since the facility moves from

;oluuon) Including the noc!es of the rlng_lnto the 0pt|m|zgt|onir to y it must have been that this reduces the cost of the
is, of course, not an option, as the ring can be arb'tra”(ﬁomain of vg, ie, (W™ (WD) which implies
large ©O(n)) and, therefore, considering its topology woul Ve, 18 ATy > AWy ’ P

. \ o o - em) > o(m+1) " since no other domain is affected.
contradict our prime objective — to perform facility locati S : (m) (m+1)
in a scalable. distributed manner. The case in whichiV,™ # W, is somewhat more

. . . . involved. It implies that there exist sets of nodds B: A U
Our solution for this issue is t@onsider the demand of

_ . (m) (m+1) _
the ring implicitly by mapping it into the local demand ofB O A={zeV:zg Wy zc W }andB =

. (m) (m+1) ;
the nodes that constitute thekin of the r-shape The skin {z€V:zeWy ¢ Wy 7} Als actually the set of
consists of nodes on the border (or edge) of thshape, nodes that were not served by facility before them + 1

i.e, nodes of ther-shape that have direct links to nodes Okteration and are served after the+ 1 iteration. Similarly, 1

the ring. This intermediate approach bridges the gap betwed the set of nodes that were served by facitifybefore the

absolute disregard for the ring, and full consideration tef jim L iteration and are not (sg)rved afte[wm%#r 1 lteration.

: : %et(,’:{zev'zeW z €W, } be the set
exact topology. The details of the mapping are as follows. L . e 0 0 .
v; denote a facility inside an-shapeG ;. Let v; € U denote Of nodes that _remalned_ in the domain @f. after its move
a node in the corresponding ring, having the property that fro(rpn)x_toé/ (Fé?' 113 (jcgep(;f:t's .the af%reLnenUoneq §et§). Slr:cce
is v;'s closest facility. Letv, denote a node on the skin ofWG(m) =BUC( e isjoint) and t ? re-optimization o
G, having the property that, is included in a shortest path Vs =~ moved the facilityvy from x to y, it must be that:
from v; to v;. To take into consideration the demand frem
while optimizing ther-shapeG,;, we map that demand onto o(B,x) +c(C,z) > c(B,y) +c(C,y) 3)

the demand ob, i.e, we setis(vx) = s(vk) + s(v;)- where ¢(B, z) denotes the cost of servicing the nodesif

from x (similar definitions forc(C, x), ¢(C,y)).
7 Notice thatr is intentionally kept small to limit the size of the individual Let & denote the set of facilities that u_sed to service the
re-optimizations. nodes ofA before they entered the domain of at m + 1.



DISTRIBUTED SERVER MIGRATION FOR SCALABLE INTERNET SERVIE DEPLOYMENT 5

B here® =¥ =~

C M\/\‘g(nz-&-l)

Fig. 1. Depiction of the move of a facility from X to Y and of the sets A, B, and C.Fig. 2. Example of a possible facility movement from nageto nodew;
with respect to a particular node € U;.

Similarly, let U denote the set of facilities that get to servic&iven the definition of the cost and the fact that node service
the nodes ofB3 after they leave the domain aof atm + 1. demands4(v)’s) are constants with respect to the size of the
From the previous definitions it follows that: input (n), it is easy to see that®) can be upper bounded by
O(n?) and c¢* be lower bounded by2(n). This leads to an
o(4,y) < (4, 2) ) O(n) upper bound forc((j). Substituting in Eqg. (7) gives the
«(B,y) > ¢(B,¥) ®)  claimed upper bound for the number of iterations. [ |

Using Eq. (5) in Eqg. (3) we obtain:

B. The Mapping Error and its Effect on Local Re-
e(B,x) +¢(C,x) > ¢(B,¥) 4+ ¢(C,y) (6) Optimizations
Applying Egs (6) and (4) to the differeneé™ — c(m+1), we In this section we discus; an important difference between
can now show the following: solving a centralized version of UKM or UFL (Defs 1, 2)
applied to the entire network and our case where these
problems are solved within arrshape based on the demand
<c(B,x) +¢(C, ) + ¢(A, @)) — (C(A,y) +¢(C,y) + (B, q;)) — that results from a fixed mapping of the ring demand onto the
skin. In the centralized case, the amount of demand gemerate
(C(B,x) +e(Coz) — (B, W) — ¢(C, y)> n (c(A, ) — c(A,y)> - o by anode is not affected by the particular configuration ef th
facilities within the graph, since all nodes in the network a
included and considered with their original service demand
which proves the claim also for the’\™ # W ™*" case, In our case, however, the amount of demand generated by
thus completing the proof. m a skin node can be affected by the particular configuration
We can control the convergence speed by requiring each t@nfacilities within the r-shape. In Fig. 2 we illustrate why
to reduce the cost by a factor of, in order for the turn to this is the case. Node on the ring has a shortest path to
be accepted and continue the optimizing procéss;accept facility node v; that intersects the skin af;’s r-ball at point
the outcome from the re-optimization of anshape at the B, thereby increasing the demand of a local nodB &ty s(u).
mth iteration, only ifc("™) > (1+ a)c(mﬂ)_ In this case, the As the locations of the facilities may change during theoasi
following proposition describes the convergence speed.  steps of the local optimizing process (e.g. the facility ewv
Proposition 2: The iterative local search approach for disfrom C to D, Fig. 2), the skin node along the shortest path
tributed facility location converges i®(log;_, n) steps. betweenu and the new location of the facility may change
Proof: Let ¢(®, ¢(M), ¢* denote the initial cost, a locally (node/pointE in Fig. 2). Consequently, a demamdapping
minimum cost obtained at the lasb/th) iteration, and the error is introduced by keeping the mapping fixed (as initially
minimum cost of a (globally) optimal solution, respectixel determined) throughout the location optimization procéss
Here we consided to be the number of “effective” iterations, A:(r, j, u) denote the amount of mapping error attributed to
i.e., ones that reduce the cost by the required factor. Ttaé tding nodeu with respect to a move of the facility from;
number of iterations can be a multiple 8f up to a constant to v; under the aforementioned fixed mapping and radius
given by the number of facilities. Since we are interested ithen thetotal mapping errorintroduced in domaiV; under
asymptotic complexity we can disregard this and focus\én radiusr is given by:

om) _ (m+1)

For m < M we have required that™ > (1 + a)c™+1) _
. - i J Az — Az .7, ) e}
or equivalently,c(®) > (1+a)™c(™). Thus when the iteration (r) UZEV eUZ » (r, 4, u) (8)
converges we have: e u€U v, #v;

©) M._(M) (0) (0 The mapping error in Eq. (8) could be eliminated by re-
V2 (1+a) M = M <log, () <logiiq o Y computing the skin mapping at each stage of the optimizing
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process (i.e., for each new intermediate facility configjorg. ER
Such an approach not only would add to the computational ‘ ‘ ‘
cost but — most important — would be practically extremely 08 |
difficult to implement as it would require the collection of
demand statistics under each new facility placement, deay
the optimization process and inducing substantial ovethea
Instead of trying to eliminate the mapping error one could
try to assess its magnitude (and potential impact) on the CE
effectiveness of the distributed UKM/UFL. This is explored i =— Gl

0.6

coverage

04

0.2

1 2 8
next. radius r
The example depicted in Fig. 2 helps derive an expression BA
for the mapping erron\;(r, j,u), assuming a two-dimensional ! ‘ ‘ "
plane where nodes are scattered in a uniform and continuous 08 |

manner over the depicted domaif\,(r, j,u) corresponds to
the length difference of the two different routes betweedeno
u (point A) and nodev; (point D). Therefore,

0.6

coverage

0.4

Ai(r,j,u) = |AB| +|BD[ - [AD|. ©) 2

Note that for those cases in which the angldetweenAC
and CD, is 0 or w, |AB| + |BD| = |AD|, and therefore
A;(r,j,u) = 0. For any other value op, AB, BD and AD
correspond to the edges of the same triangle and therefose,Node Coverage with Radius
|AB| + |BD| —|AD| > 0 or A(r,j,u) > 0. : ) ) )

Based on Eq. (9), it is possible to derive an upper bound Fig. 3 depicts the fraction of the total node population that

regarding the total mapping errak,(r) for this particular can be reached in hops starting from a certain node in ER
environment. In Appendix I, we prove that, and BA graphs, respectively. We plot the mean and%5&

confidence interval of each node under different networkssiz
n = 400, 600, 800, 1000, representing typical populations
of core ASes on the Internet as argued later on. The figures
where R is the radius of the particular domaifi’; (for show that a r_10de can _reach a SL_lbstantiaI fraction of the total
simplicity we assume that the domain is also a circle). node population by using a relatively smallin ER graphs,

r = 2 covers2% — 10% of the nodes, whereas= 3 increases

According to Eqg. (10), the upper bound fd;(r) is close a ; )
to 0, whenr — 0 or r — R. We are interested in those casetshe coverage td0% — 32%, depending on network size. The

) . Coverage is even higher in BA graphs, whete= 2 covers
where ther-ball is small. This corresponds to small values:of . .
) . ) ) . 4% —15%, whereas = 3 covers20% —50%, depending again
for the particular (two-dimensional continuous) enviramh

Therefore, a small radius in addition to being preferable for on network size. These observations are explained by thte fac

scalability reasons has the added advantage of faciatia that larger networks exhibit longer shortest paths and diars

. : . . and also because BA graphs, owing to their highly skewed
use of a simple and practical mapping with small error a Lo

power-law) degree distribution, possess shorter shop@ths
expected performance penalty.

and diameters than corresponding ER graphs of the same link
density.

radius r

’ Fig. 3. Average coverage of a node for different size of ER and BA graphs.

Ai(r) < 2mr3(R? —r?), (20)

V. SYNTHETIC RESULTS ONER AND BA GRAPHS

In this section we evaluate our distributed facility locati B. Performance of distributed UKM

approach on synthetic Eid-Renyi (ER) [7] and Barahsi- In this section we examine the performance of our dis-
Albert (BA) [8] graphs generated using the BRITE generdributed UKM of radiusr, hereafter referred to as dUKN,

tor [24]. For ER graphs, BRITE uses the Waxman model [25Jhen compared to the centralized UKM utilizing full knowl-

in which the probability that two nodes have a direct link igdge. We fix the network size ta = 400 (matching
P(u,v) = a-e 4L whered is the Euclidean distance measurement data on core Internet ASes that we use later
betweenu and v, and L is the maximum distance betweeron) and assume that all nodes generate the same amount of
any two nodes. We maintain the default values of BRITEervice demand(v) = 1,Vv € V. To ensure scalability, we

a = 0.15, 8 = 0.2 combined with an incremental modeldon’t want our distributed solution to encounteshapes that

in which each node connects t@ = 2 other nodes. For involve more that10% of the total nodes, and for this we
BA graphs we also use incremental growth with = 2. limit the radius tor = 1 andr = 2, as suggested by the node
This parameterization creates graphs in which the numbercaverage results of the previous section. We let the fractio
(undirected) links is almost double the number of vertis (of nodes that are able to act as facilitie®.( service hosts)
also observed in real AS traces that we use later in the papésake values:/n = 0.1%, 0.5%, 1%, 2%, and5%. We perform
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dUKM - ER n=400 dUKM, iterations - ER n=400 dUFL - ER dUFL - BA
14 80 4000 3000
C(dUKM(L))/c(UKM) —m-— dUKM(L) —m-— dUFL(1), 0.5F dUFL(1), 0.5F
S 135) C(dUKM(2))/c(UKM) - 70 L dUKM(2) —2 dUFL(1), F % dUFL(1), F
¥ 3500 - dUFL(1), 2F —& dUFL(1), 2F .
o 13|11 260 dUFL(2), 0.5F & 2500 dUFL(2), 0.5F --m-- X
bt i S 3000 L dUFL(2), F --©-- dUFL(2), F --&-- .
8 125 T 50 | dUFL(2), 2F --® dUFL(2), 2F
2 £ T 7 UFL 3 2000 UFL
e 12} Sa0t H 3 2500 | 2
s 2 E ° °
kS | 50|
g A e 1 g 30 2000 - 1500
F B N w 220¢f )
g L ! L [ A 1500
g 105 » N 10 - . : 1000
1 oLm 1000
0 5 10 15 20 0 5 10 15 20 400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
k k n n
dUKM - BA n=400 dUKM, iterations - BA n=400 Fig. 5. Cost comparison between dUR)(and UFL, forr = 1 andr = 2, and
14 c(dUKM(1))/c(UKM) -—m--- g dUKM(1) —m-— different network sizes under ER and BA graphs and degree-based facility osf =
135 | C(dUKM(2))/c(UKM) - 70 | dUKM(2) & i d(v;)ttec
J .
13+ 60 |

dUFL, uniform facility cost - ER dUFL, uniform facility cost - BA
T T 2000 T T

1.25 -

o

dUFL(1) -
dUFL(2) ~-&
UFL —+—

2800 —
dUFL(1) -
2600 [ dUFL(2) &
2400 p URL ——
2200
2000

12

1800

S

1600 [

number of iterations
n w g a

cost ratio with respect to UKM
o

i . 4 1400
10 P ] g 1800 1 8
nA s s 1600 |- 1200 -
0 5 10 15 20 1400 - 1000 |
k k 1200 | .-
i " 1000 & 8008
Fig. 4. The relative performance between dUKM(and UKM, and the number of 800 ‘ ‘ ‘ ‘ ‘ 600 ) ) ) ) )
iterations for the convergence of the former, fo= 1 andr = 2, and different facility 400 500 600 700 800 900 1000 400 500 600 700 800 900 1000
densitiesk /n = 0.1%, 0.5%, 1%, 2%, and5% under ER and BA graphs. n n

: . . Fig. 6. Cost comparison between dUFRL(and UFL, forr = 1 andr = 2, and
each experiment 10 times to reduce the uncertainty due to #irent network sizes under ER and BA graphs and uniform facility cost.

initial random placement of thg facilities.
The plots on the left-hand-side of Fig. 4 depict the cost #@cation {.e., f(v;) = f, Yv; € V) and, non-uniform where
our dUKM(r) approach normalized over that of the centralizethe cost of a facility at a given node depends on the location
UKM, with the plot on top for ER graphs and the plot orPf that node. The uniform cost model is more relevant when
the bottom for BA graphs. For both ER and BA graphs, thé&@e dominant cost is that of setting up the service on the, host
performance of our distributed solution tracks C|05e|ytthh whereas the non-uniform cost model is more relevant when
the centralized one, with the difference diminishing fast ghe dominant cost is that of operating the facility (implyin
r and k are increased. The normalized performance for Bat this operating cost is proportional to the desirapitf
graphs converges fastere(, at smallerk for a givenr) to the host, which depends on topological location).
ratios that approach 1. This owes to the existence of highly-For the non-uniform case we will use the following rule:
connected nodes (the so call “hubs”) in BA graphs — buildinge will make the cost of acquiring a facility proportional to
facilities in few of the hubs is sufficient for approximatingits degree,i.e., proportional to the number of direct links it
closely the performance of the centralized UKM. The twbas to other nodes. The intuition behind this is that a highly
plots on the right-hand-side of Fig. 4 depict the number ¢onnected node will most likely attract more demand from
iterations needed for dUKM] to converge. A smaller value clients, as more shortest-paths will go through it and, thus
of r requires more iterations as it leads to the creation oflwilding a facility there will create a bigger hot-spot, and
large number of small sub-problems (re-optimizations ohynathel’efore the node should charge more for hosting a sefvice.
smallr-shapes). BA graphs converge in fewer iterations, sind@ [26],[27] the authors showed that the “coverage” of a node
for the same value of BA graphs induce larger-shape% increases super-linearly with its degree (or alternajivétie
and, thus, fewer re-optimizations. number of shortest paths that go through it). We, therefore,
use as facility costf(v;) = d(vj)'*ec, whered(v;) is the
. degree of node,; € V andag is the skewness of the degree
C. Performance of distributed UFL distribution of t?1e graphG. In order to estimate the value
In order to evaluate the performance of dUF).(we need of o, we use the Hill estimator&,gHTfL”) = 1/4.m,» Where:
to decide how to set the facility acquisition cosfgv;), ’
which constitute part of the input of a UFL problem (se
Definition 2). This is a non-trivial task, essentially a jpnig
problem for network services. Although pricing is clearlyto
of scope for this paper, we need to use some fornf(@f)'s
to demonstrate our point that, as with UKM, the performan
of the distributed version of UFL tracks closely that of th
centralized one. To that end, we use two types of facilitysos
uniform where all facilities cost the same independently

Vieom = %Ele log Xi(i)l) , X(;) denotes the-th largest value
in the sampleX1, ..., X,,. We prefer the Hill estimator since
it is less biased than linear regression.

In Fig. 5 we plot the cost of dUFL(1), dUFL(2), and cen-
é alized UFL, in ER and BA graphs under the aforementioned
egree-based facility cost. For dUFL, we present threesline
or each radiusr, corresponding to different initial number
f facilities used in the iterative algorithm of Section-Bl

e useky = 0.5- F, F', and2 - F', where F' denotes the

8 Again it is the hubs that create largeshapes. Even under a small a
hub will be close to the facility that re-optimizes its locatj and this will 9 As sketched in the introduction, a node may correspond to arthas
bring many of the hub’s immediate neighbors into thehape. charges for allowing network services to be installed ordtal GSH.
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number of facilities opened by the corresponding centgaliz = samarsiew toemsewinasinodes 1 feosumer ASes forapeerhs
UFL. As evident from the results, the cost of dUFL is close 1V

to that of UFL (around 5-15% for both types of graphs). As °®
with dUKM, the performance improves withand is slightly ¢ oe
better for BA graphs (see the explanation in Section V-B)g o4
Also we observe a tendency for lower costs when starting the

1000 ¢

100 ¢

# costumer ASes

10 ¢

distributed algorithm with a higher number of initial fati#s. — **| /¢ A

Under the non-uniform (degree-based) cost model, both dUFL o g R T Lt - - S
and UFL open facilities in 2-8% of the total nodes, depending radius © rank of peer-AS

on the example. Fig. 7. Node coverage in AS, ER, anffig. 8. Number of costumer ASes for

We also evaluate the performance of dUFL under unifor@ﬁl"tgfﬂlgr%iszrv;iftm:ks: 497 nodes and;aoatr:gnpkeer-AS in decreasing order according

facility cost f; the cost is set at a value that leads to building

the same number of facilities as the corresponding degree- dUKM - AS-level dUKM, iterations - AS-level

based example. Both the distributed and centralized UFldbui **° o) m 120 o ‘
g 40000 o o

the same number of facilities, and the performance of dUFL 1 UM —— | 100

35000 |4t

is very close to the centralized one, as is illustrated in Big - 000 |\

Again, we emphasize that our goal here is not to eVa|ua%25000—
performance under different pricing scheme, but rathehtams % 20000 -
that the performance of distributed UFL tracks well thatfoft ~ **°°F

80

60

40

number of iterations

i . 10000 F 20 '.'
centralized, optimal approach. <000 . N ‘
o 5 10 15 2 25 o 5 10 15 20 25
K K
VI. RESULTS FORREAL AS-LEVEL TOPOLOGIES Fig. 9. The cost of dUKM¢) and UKM, and the number of iterations for the

. . . . cpnvergence of the former, for = 1 andr = 2, and different facility densities
To further investigate the performance of our distributeg),, :go.1%,o.5%,1%,2%, and5% under the AS graph. Y

approach, as well as better support our sketched applicatio
scenario described in the introduction, we include in this
section performance results on real AS-level maps under nahortest-path routing based on the aforementioned coethect
uniform service demand from different clients. component. For comparison purposes, we plot in Fig. 7 the
node coverage of AS next to the ones corresponding to the ER
A. Description of the AS-level Dataset a_\nd BA models with = 497 and around the same number of
) links (1,000). The fraction of covered nodes increases more

We use the relatlon-base_zd AS map of the Int_ernet frpg’moothly with7 in the AS graph as compared to both ER
December 2001 (data available from [28]) obtained using,q ga This is because the AS graph includes longer shortest
the measurement methodology described in [9]. The dataggins and has larger diameter than the corresponding gimthe
includes two kinds of relationships between ASes. ER and BA graphs of similar size and link density.

« Costumer-Provider: The costumer is typically a smaller We exploit the relationships between ASes in order to derive
AS that pays a larger AS for providing it with access more realistic (non-uniform) service demand for the peer
to the rest of the Internet. The provider may, in turn, baSes that we consider. Our approach is to count for each peer
a costumer of an even larger AS. A costumer-providexS the number of costumer ASes that have it as provider,
relationship is modeled using a directed link from theither directly or through other intermediary ASes. We then
provider to the costumer. set the service demand of a peer AS to be proportional to

«» Peer-Peer: Peer ASes are typically of comparable sizé$s number. In Fig. 8 we plot the demand profile of peer
and have mutual agreements for carrying each othefSes (in decreasing order using Log-Log scale). As evident
traffic. Peer-peer relationships are modeled using undiom this plot, the profile is power-law like (with slight
rected links. deviation towards the tail), meaning that few core ASesycarr

Overall the dataset includes 12,779 unique ASes, 1,0%& majority of the demand that flows from client ASes. In

peers and 11,703 costumers, connected through 26,387 the sequel we present performance results in which nodes
rected and 1,336 undirected links. Since this AS graph ¢srrespond to peer ASs that generate demand that follows the
not connected, we chose to present results based on aifgsrementioned power-law like profile. We seek to identifg t
largest connected componé&ht which we found to include peer ASes for building service facilities.

a substantial part of the total AS topology at the peer level:

497 peer ASes connected with 1,012 undirected links; v Distributed UKM on the AS-level Dataset

verified that this component contains all the 20 largest Peer o plots on the left-hand-side of Fig. 9 show the cost

ASes reported in [9]. S_lnce it yvpuld be very difficult to olstai of dUKM(1), dUKM(2), and the centralized UKM, under
the real complex routing policies of all these networks, w,
ae AS-level graph. Clearly, even for small values af

did not consider policy-based routing, but rather asssumgd, performance of our distributed approaches track gosel

10There are smaller connected componefits ASes) that are formed by Fhat 9f the centralized approach. Regarding the m‘!mber of
small regional ISPs with peering relationships. iterations needed for convergence, the same observatiphs a
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cost ratio dUFL(l)/UFL cost ratio dUFL(z)/UFL Non-stationary demand, number of downloads Non-stationary demand, number of ASes
mean median mean median 8000
degree-based| 1.22 1.20 1.04 1.03
uniform 1.01 1.01 1.01 1.01 7500 o
TABLE | 7000 |

COST RATIO BETWEEN DUFL(r) AND UFL IN THE AS-LEVEL TOPOLOGY.

number of downloads
number of ASe:

o
o
=]
=3

as with the synthetic topologieisg., they increase with smaller  **fs0 2100 0500 1600 2000 0800 1600 2400 0800 1600 2400 0800

radii. The substantial benefit from knowledge of only local time (GMT) time (GMT)

neighborhood topologies (“neighbors of neighbor") hasrbed&ig- 10. The number of concurrent downloads and the number of ASes with at least
. . . . . IE)]ne user in the torrent of a popular on-line multi-player game at each measnirpoint.

observed for a number of applications, including [23] whic

has also investigated and quantified implementation oagrhe , , o

. . Non-stationary demand, churn Non-stationary demand, dUFL(1), migration of facilities

in an Internet setting. 0.12 0.06

01 r 0.05

C. Distributed UFL on the AS-level Dataset 0.08

0.06

0.04

Table | presents the performance of dUFL on the ASE 008

level dataset. Again, it is verified that dUFL is very close °%
in performance to UFL, even for small valuesrofwithin 4% 002 0.1
for » = 2, under both examined facility cost models).

migration ratio

Ty h | "
g W

0 . . . . . 0 o L
16:00 24:00 08:00 16:00 24:00 08:00 16:00 24:.00 08:00 16:00 24:00 08:00

time (GMT) time (GMT)
VIl. N ON-STATIONARY DEMAND AND IMPERFECT Fig. 11. Churn evolution in the AS-leveFig. 12. Migration ratio of dUFL(1) in
in the torrent of a popular on-line multithe torrent of a popular on-line multi-player
REDIRECTION player game at each measurement pointgame at each measurement point.

Up to now, the performance study has been based on (1)
stationary demand, and (2) perfect redirection of eacmtlie o i
to its closest facility node. In this section we look at th¥iew of the activity of the torrent and detect expected pesfil
performance of distributed facility location when dropgin 9. diurnal variation over the course of a day. Moving on,
these assumptions. First, we present a measurement study'fg Used Routeviews [29] to map each logged IP address to
obtaining the non-stationary demand corresponding to aimuf" AS. Fig. 10 (right) illustrates the number of ASes with at
player on-line game and then use this workload to deri}@@St one participating user in the torrent at each measamem
a performance comparison between dUFL and UFL. TheR0int. A diurnal variation is agz_im_cle_ar, with a peak of more
we assume that mapping a client to its closest facility nodan 1000 ASes at a given point in time. _
has to incur some time hysteresis and study the performancé-ast, we looked at churn at the AS level by counting the

implications of such an imperfect redirection scheme. number of new ASes joining and existing ASes leaving the

torrent over time [30]. Formally, we definedhurn(t) =

Ui 10U H H

. . —==—— whereU, is the set of ASes at timg ando

- max{[T:—1[,|T;]} ‘ ) ;
A. Measuring the q§mand of a popular multi-player game is the set difference operator. In Fig. 11, we plot the evofut

~ We used the Mininova web-site to track all requests f@f churn. One can observe that AS-level churn is quite high,
joining a torrent corresponding to a popular on-line multiranging from 6% to 11%, with no specific pattern. This serves

player game. Our assumption is that all these users thiht our purpose which is to study the performance of dUFL
downloaded the game, would then use it by firing up theinder non-stationary demand.
client and connecting to one of many game servers. Therefore
by tracking the downloads of the game client, which is pdssib .y )
to do due to the use of BitTorrent, we can have a rough id8a Distributed UFL under non-stationary demand
about the demographics of the actual game load put on théVe consider a game server migration scheme given by
actual game servers, to which we do not have direct access. 8WFL with radiusr = 1. The pricing model for starting a
then use this workload to quantify the benefits of instaintipt server at an AS is the aforementioned degree-based one of
game servers dynamically according to dUFL. Section V-C. The evaluation assumes an AS-level topology
More specifically, we connected periodically at 30-minutebtained from Routeviews. The demand originating from each
intervals to the tracker serving this torrent, over a totaS at each particular point in time is set equal to the value
duration of 42 hours (obtaining a total of 84 samples). Ate obtained from measuring the downloads going to the
each 30-minute interval, we got all the IP’s of participgtintorrent of the game client. We compare the cost of UFL,
downloaders by issuing to the tracker multiple requests fdiJFL(1), static-min, and static-max. Static-min is a siepl
neighbors until we got all distinct downloaders at this poirheuristic that maintains the same placement across time. Th
in time. In Fig. 10 (left) we plot the number of concurrennumber of maintained facilities is equal to the minimum
downloads at each measurement point. In total,we saw 346&8nber of facilities that UFL opened in the duration of the
unique users, and a peak population of approximately 8088periment. This is used as a baseline for the performance
concurrent users. Overall, we were able to capture a suffici®f an under-provisioned static placement of servers adegrd
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Non-stationary demand, effect of hysteresis

Non-stationary demand, performance comparison

140000 — o
2 8
120000 | Bop’
£ static-min —=—
S 4 |static-max ——
= dUFL(1) ——
100000 fi ,
| 0 5 10 15 20
— 80000 o hysteresis
8 oo Lt Fig. 14. Normalized cost of static-min, static-max and dUFL(1) with respect to the
© 60000 |static-min —-—-=—- 15000 f L cost of UFL in the torrent of a popular on-line multi-player game undaious levels
static-max -~ ¥ oo of hysteresis.
40000 | dFL(L) —— e P
U FL 00?6 :00 24:00 08:00 16: (;‘}F;AEB 00
20000 | / men | implies that there are no performance penalties for thenmtaue
T — S————==  gerver migrations. In many cases it has been shown thatgperfe
0 : : - - - redirection is indeed feasible using route triangulatiord a
16:00 24:00 08:00 16:00 24:00 08:00 DNS [16]. In this section, however, we relax this assumption
time (GMT) and study the effects of imperfect redirection. We do so to

cover cases in which perfect redirection is either too gost!
Fig. 13. Average cost of static-min, static-max, dUFL(1) and UFL in the torrent of implement, or exists, but performs sub-optimally due tdtfau
popular on-line multi-player game at each measurement point. ! !

or excessive load.

To this end, we assume that there exists a certain amount

to minimum load. Static-max captures the cost of an ove?! hysteresisbetween the time a server migrates to a new
provisioned piacement according to peek |0ad_ Obvious&pde and the time that the migration is communicated to the
static-max suffers from a high purchase cost of buying %ffected C|ientS. During thIS t|me interval, a Client m|gbﬁ
maximum number of servers (in this case 100), whereas stafigceiving service from its previously closest facility whi
min suffers from high communication cost to reach the felfowever, may have ceased to be optimal due to one or several
bought servers (in this case 70). migrations. Since we assume that migrations occur at fixed
We report the average cost in the duration of the experiméime intervals, we measure the hysteresis in terms of number
(42 hours) for each one of the aforementioned policies. F8f such intervals (1 facility migration at each interval)oti¢ce
each policy we repeated the experiment 100 times to remd¥i@t under non-zero hysteresis, even with stationary deman
the effect of the initial random opening of facilities. Figg the optimization is no longer guaranteed to be loop-free (as
plots the resulting average costs along witsi" percentile in Section 1V-A). We solve this be stopping the iterative re-
confidence intervals. One can see that dUFL(1) achievesPRtimization if it reaches a certain high number of iteratio
to 7 times lower cost compared to static-min and static-max. N Fig. 14 we plot the cost ratio between dUFL(1) and dUFL
Looking at the inlined magnification, it can also be seednd theg5" percentile confidence interval under various levels
that dUFL(1) is actually pretty close, within 10-20%, of thédf hysteresis that range from 0 up to 20 (which means that
performance of the centralized UFL computed at each poigltents of facility i hear about’s migration afteri+hysteresis
in time. Taken together, these results indicate that dUfL(llas completed its migration). As expected, hysteresis auts
yields a high performance also under non-stationary demam@rformance penalty on dUFL. The degradation, however, is
Next, we quantify the number of server migrations requite smooth, while the performance always remains superio
quired by dUFL(1) to track the offered non-stationary dethant0 static-min and static-max.
Fig. 12 plots the percentage of servers that are migrated,
henceforth referred as migration ratio, along witht" per- VIIl. RELATED WORK
centile confidence intervals based on 100 runs. Evidently,
migrations are rather rare, typically 0%-3%, after the sesv
stabilize from their initial random positions, to where dU)

There is a huge literature on facility location theory. ilit
results are surveyed in the book by Mirchandani and Francis

. PR . A large number of subsequent works focused on develop-
will have them at each point in time. These results suggég i S .
that dUFL(1) is relatively robust to demand changes and c!ﬂ? centralized approximation algorithms [19], [20], [2142].

typically address them without massive numbers of mignatio € au_thort_s of ]c[31_]|_:1a\|/e ptr_o posedb?n altebrnatlzj/e approacit'l_ fo
that are of course costly in terms of bandwidth, etc. Of Cewsapprm:lma ing a_C',', y location probléms based on a contin
us “high-density” model. Recently, generalizations loé t

the number of migrations can be reduced further by tradht{io . . " .
. . L : L assical centralized facility location problem have agpe
performance with laziness in triggering a migration. in [32], [33]. The first mention of distributed facility lotan

o seems to have been from Jain and Vazirani [22] while com-
C. The Effect of Imperfect Redirection menting on their primal-dual approximation method, butythe
We now move on to dropping the assumption that clients ade not pursue the matter further. To the best of our knowledge
always redirected to their closest facility, which prettyich the only work in which distributed facility location has ree
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the focal point seems to be the recent work of Moscibrodgg]
and Wattenhofer [34]. This work, however, is mostly focused
on deriving worst-case performance bounds for distribute
facility location. It is based on primal-dual techniquestth
are amenable to such analysis, but which are too complicaté®
for practical implementation purposes, as compared to our
work. Furthermore, [34] does not include any experimental
results or implementation guidelines of practical purpodde [6]
online version of facility location, in which request aeiv
one at a time according to an arbitrary pattern, has been
studied by Meyerson [35] that gave a randomized onlinés]
O(1)-competitive algorithm for the case that requests arriv?g]
randomly and aD(log n)-competitive algorithm for the case
that arrival order is selected by an adversary. Oikonomal an
Stavrakakis [36] have proposed a fully distributed apphoaﬁ%
for service migration — their results, however, are limite

to a single facility (representing a unigue service point)l a
assume tree topologies.

Several application-oriented approaches to distributed S[14]
vice deployment have appeared in the literatueey, Ya- [15]
mamoto and Leduc [37] (deployment of multicast reflectors),
Rabinovich and Aggarwal [38] (deployment of mirrored Web[-16]
content), Chambers et al. [39] (on-line multi-player netko
games), Cronin et al. [40] (constrained mirror placemesmy
Krishnan et al. [41] (cache placement). The aforemention&d!
works are strongly tied to their specific applications and do
not have the underlying generality offered by the distréolt [18]
facility location approach adopted in our work. Relevant to
our work are also the works of Oppenheimer et al. [42] ofg;
systems aspects of a distributed shared platform for servic
deployment, and Loukopoulos et al. [43] on the overheads [%]
updating replica placements under non-stationary demand.

(12]
(13]

IX. CONCLUSIONS [21]

We have described a distributed approach for the problem of
placing service facilities in large-scale networks. Wercoene [22]
the scalability limitations of classic centralized apprioes
by re-optimizing the locations and the number of facilitieg3]
through local optimizations which are refined in several-ite
ations. Re-optimizations are based on exact topologicel ada)
demand information from nodes in the immediate vicinity
of a facility, assisted by concise approximate represemtat

. . . X . idd?d!
of demand information from neighboring nodes in the wider
domain of the facility. Using extensive synthetic and tracees)
driven simulations we demonstrate that our distributed ap-
proach is able to scale by utilization limited local infortioa
without making serious performance sacrifices as compangd
to centralized optimal solutions. We also demonstrate dhat
distributed approach yields a high performance under nogg
stationary demand and imperfect redirection. [29]

(30]
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APPENDIX|
DERIVATION OF AN UPPERBOUND FORA;(r)

For the rest, a two-dimensional space is considered ove
which nodes are scattered in a uniform and continuous manne

Ther-ball is considered as a circle with radiusnd the entire
domain also as a circle with radiug (see Fig. 2).

Suppose that a node € U; is served by its closest facility

nodew;. This case is depicted in Fig. 2 wheteis located at
point A and the corresponding facility nodg is located at

point C'. Note that lineAC' intersects with the periphery (skin)

of the r-ball at a particular point denoted by. Clearly, line
AC corresponds to the shortest distance between pdirasd
C (nodesu andw;, respectively). Denoting as the length of
AB, |AB| (the distance of node from the skin of ther-ball)

we can write AC = z + r. Line AC may be regarded as-
the path over which node uses the resources of the facility

located at node;.

Suppose that a node; € V; is considered as a possibl
alternative facility location. LetD be the point denoting the

location ofv; and lety denote the distance between nage
and nodev; (i.e., the length ofCD, |CD|). The mapping
error, A;(r, j,u) = |AB| 4+ |BD| — |AD|, is always positive
since|AB|+ |BD| > |AD| (AB, BD and AD correspond to
edges of the same triangle) whet3D # 0 and ABD # .

A. Meyerson, “Online facility location,” inFOCS '01: Proceedings
of the 42nd IEEE symposium on Foundations of Computer Sgienc

SUBMITTED TO IEEE/ACM TRANSACTIONS ON NETWORKING MAY/XX/D08

Let A,(r) denote the total mapping error, or the summation
of A;(r,j) for all nodesj € V;. Therefore,

In Appendix Il we derive the following analytical expressio
for A;(r, j,u) as a function of parameters y, r and ¢:

12)

Ai(r,j,u) = z+ \/7“2 + 42 — 2yr cos ¢

—\/(x +7)2 442 — 2y(x + 1) cos ¢.
(13)
A;(r,j,u) as it is given by Eq. (13) is difficult to be
analyzed. In addition, an analytical expression regarding-)

E. Cronin, S. Jamin, C. Jin, A R. Kurc, D. Raz, and . Sttavi j5 not easy to be derived since it is hard to obtain the
“Constraint mirror placement on the internef?EE Journal on Selected

corresponding integrals. Therefore, in the sequel we obtai
an upper boundA;(r) by using a simple upper bound for
A;(r, j,u) as explained below.

It is easy to see that +y2 — 2yr cos ¢ < r2 + 12+ 2yr =
(r+y)2 since—1 < cos ¢ < 1. Also, (z +r)% +y2 — 2y(z +
rcosd > (x+7)2 492 — 2z +7) = (x +r —y)? (note
thaty <r).

Based on Eq. (13), it is concluded thAt(r, j,u) < x +
Vr+y)?2—+/(z+r—y)?=a+r+y—z—r+y. Therefore,
A(r, j,u) < 2y. Given thaty < r,

Ai(rmja U) S 2r.

(14)

n order to derive A;(r,j), according to Eg. (11),
Sl analytical expression has to be derived for the inte-
gral [, Ai(r,j,u)du. Note that0 < A;(r,j,u) < 2
fU,- A (r, jyu)du < fUi 2rdu and R corresponds to the radius
of the U; UV, area (note thaRk > r). Eventually,

Ai(r,7) < 2nr(R? —r?), (15)

since the area of the ring; is 7(R? — r?).

In order to deriveA, (r), according to Eq. (12), an analytical
expression has to be derived for the integf@,} Ai(r,5)dj.
Note that0 < A(r,j) < 2ar(R? —r?) and [, Ai(r, j)dj <
[y, 2mr(R? — r%)dj. Eventually,

Ai(r) < 27727“3(R2 — 7“2), (16)
since ther-ball area ismr2,
APPENDIXII
DERIVATION OF AN ANALYTICAL EXPRESSION FOR
Ai(Ta jv U’)

When one of the angles of a triangle) (is known as well
as the length of both adjacent edgesafdy), then the length

The mapping error becomes zero only in the exceptional cagdsthe third edge is possible to be derived as a function of

where ABD = 0 and ABD =  (corresponding tap =
and ¢ = 0, respectively, as concluded from Fig. 2).
Let A;(r,j) be the summation of\;(r, j,u), Vu € Us,.

Since we have assumed the network area as a two-dimensjor= Y1 + ¥2,

o, r,y. Two different cases may be distinguished with respect

to the triangle’s particular form, as depicted in Fig. 15.

For the case depicted in Fig. 15.a0s¢ = .. Since
o = y —y1 = y — rcos¢. Further-

continuous space, all nodesc U; correspond to the ring areamore, sing = “2. and [AD| = rsing. It holds that

U;, depicted in Fig. 2. Consequentls;(r, j) is given by the
following integral,

A(r, ) = /U Al wyd (11)

|AC|? = |ADJ? + y3, or |AC| = /|AD|2 + 43, or |AC| =
r2sin® ¢ + y2 + r2 cos? ¢ — 2yr cos ¢. Eventually,

|AC| = \/r2 + y2 — 2yr cos . a7)
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loannis Stavrakakis is

Fig. 15. The two distinguished cases studied to derive thalytical
expression forA; (r, j, u).

The same result is also derived for the case depicted
in Fig. 15.b, whered = 7 — ¢. For this case|AC| =
VIADP? + (y +y')2. However, |[AD| = rsind andy’ =

rcosf. Since,sinf = sin¢ and cosf = —cos, |AD| =
rsin¢ andy’ = —r cos ¢. Eventually, Eq. (17) holds for this
case as well.
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