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Abstract—This paper proposes a framework for node clus-
tering in computerized social networks according to common
interests. Communities in such networks are mainly formed by
user selection, which may be based on various factors such as
acquaintance, social status, educational background. However,
such selection may result in groups that have a low degree of
similarity. The proposed framework could improve the effective-
ness of these social networks by constructing clusters of nodes
with higher interest similarity, and thus maximize the benefit that
users extract from their participation. The framework is based on
methods for detecting communities over weighted graphs, where
graph edge weights are defined based on measures of similarity
between nodes’ interests in certain thematic areas. The capacity
of these measures to enhance the sensitivity and resolution
of community detection is evaluated with concrete benchmark
scenarios over synthetic networks. We also use the framework
to assess the level of common interests among sample users of
a popular online social application. Our results confirm that
clusters formed by user selection have low degrees of similarity;
our framework could, hence, be valuable in forming communities
with higher coherence of interests.

I. INTRODUCTION

The term community denotes a social group of people that
have one or more things in common. Whether this is residence,
geographical neighborhood, traditions, or interests and ideals,
communities have been long attracting the interest of sociolo-
gists and psychologists thanks to their potential to motivate and
shape human behavior. On the contrary, virtual communities
have emerged more recently and, almost always, transcend
distance barriers. Empowered by the Internet, these online
communities socialize in virtual spaces provided by social
networking sites. A major research question is then how could
the dynamics of these virtual worlds be exploited for more effi-
cient design of networked communication protocols and which
factors may shape the end-user (the network communication
subject) behavior. It has been reported, for example, that higher
similarity in the interests/preferences of online social group
members favors collaborative, and even altruistic, behavior in
content replication [10] and content dissemination [1] scenar-
ios. But is such similarity present in social networks, where
users tend to select their friends/followers with very different
criteria, including acquaintance, social status, educational and
family background? To answer this question, we need to devise
mechanisms and tools that can assess the similarity of interests
among social group members and leverage the structure this

similarity embeds in their social network.
Our work in this paper addresses this requirement by poring

over the interest-based community detection problem. We
propose a framework, which we call “ISCoDe”, for assessing
the similarity in online social communities (Fig. 1). Input to
ISCoDe are the interests of the communities’ member nodes in
certain thematic areas, hereafter called “interest classes”, such
as music, sports, art. Each interest class could further be split
into subcategories (tags). In section IV, we give an example of
how the end-user interests can be inferred out of a real social
network application. ISCoDe then proceeds in two steps. First,
it quantifies the interest similarity between node pairs through
the use of interest similarity metrics. Outcome of this step is
a weighted graph representation of the social network, with
edge weights corresponding to the similarity metric values.
In a second step, ISCoDe can invoke standard community
detection algorithms for weighted graphs (for example, [14]
[4]) to group nodes into disjoint clusters, connected internally
by high-weight edges and to other subsets’ nodes with small-
or zero-weight edges. These algorithms also assess, in the
same time, the quality of this grouping through the modularity
metric [16].

Similarity

metrics
Edge

weights

Weighted
community
detection

Clusters of

Input Output

User interest

distributions
users with

similar interest

Figure 1. The ISCoDe framework

We call ISCoDe a framework since there are more than
one options for its two main processing steps (namely, the
derivation of the weighted graph edges and the community
detection algorithm). Part of our work, hence, is devoted to the
analysis and assessment of these options. For the derivation of
graph edge weights, we consider two metrics: the Proportional
Similarity [20] and the inverse of the symmetrized Kullback-
Leibler divergence [12]. Effectively, each metric could be seen
as a different transformation from one data set (distribution
of user interests over interest classes) to another (graph edge
weights). Comparing the outcomes of ISCoDe under synthetic
user interest distributions, we show that the choice of the
similarity metric affects both the sensitivity and the resolution
properties of our framework. Note that the similarity metrics
we consider are different from the similarity indices that only
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capture structural equivalence, i.e., same profile of relations to
all other nodes in the network, such as the Pearson correlation
and the Jaccard coefficient [5].

Related work: In the literature, algorithms for detecting
community structure have largely been applied to a given
network structure, usually modeled as a graph. The most
prominent algorithm thereof is that of Girvan and Newman
[16], which is highly efficient and overcomes many short-
comings of previously proposed algorithms, such as graph
partitioning (e.g., spectral bisection [17], Kernighan-Lin algo-
rithm [11]) and hierarchical methods (e.g., Euclidean distance
single linkage clustering) [8]. These methods are not ideal for
analyzing general network data since usually it is not known
in advance in how many communities the network should be
split into and which is the best division. Newman further
proposed a simple mapping from a weighted network to an
unweighted multigraph and proposed an algorithm for detect-
ing communities in weighted networks [14]. The graph edge
weights introduce another set of variables in the community
detection process and it is shown in [7] that they can have big
influence on the resulting community structure, especially on
dense networks.

Contribution of this paper: As in Newman’s approach,
current practice in community detection consists in apply-
ing modularity-maximizing clustering algorithms over given
(weighted) graphs. Our work has a different starting point.
In our paper the network structure, e.g., edge weight set, is
not given beforehand. It is rather generated by ISCoDe out
of the distributions of user interests over different thematic
areas, the only information we assume known and given to
us. Since our framework uses the interest distributions as its
input for community detection, in the same time it becomes
a means of assessing the effectiveness of similarity metrics
that carry out the mapping of interest distribution differences.
This paper, hence, explores how effectively different mappings
facilitate the detection of the underlying interest similarity
structure when the “commodity” community detection algo-
rithms are applied on their images, i.e., the weighted edge
sets they generate. Through the application of the framework
and the presented results, the effectiveness of the proposed
framework that advocates projecting distributional differences
to a weighted graph and using commodity approaches for
identifying communities thereof, is assessed and established.

The paper proceeds as follows: Section II describes briefly
the scope and processing steps of the ISCoDe framework for
interest-based clustering. The evaluation methodology and ex-
perimental results are presented in Section III. An application
to a real network is described in Section IV. Finally, we
summarize the major conclusions of the paper in Section V
and point to interesting problems for future work.

II. THE ISCoDe FRAMEWORK FOR DETECTING
COMMUNITIES OF NODES WITH SIMILAR INTERESTS

In general, we want ISCoDe to satisfy three main require-
ments:

Correctness: The framework should be able to distinguish
correctly existing community structure. Whereas it may not
always be possible to conclude whether such structure really
exists, the outcome of the framework should at least agree
with our intuition in certain benchmark scenarios, where this
structure is evident.

Sensitivity: The framework should be able to adapt to
changes of the user interest distributions and reflect the
strength of the community structure.

Resolution: The framework should be able to identify
important community structure irrespective of its scale and
the overall network size.

We evaluate ISCoDe along these lines in section III. In the
rest of this section, we detail the two processing steps of the
framework and present baseline choices for populating them.

A. From interest distributions to the weighted graph

Let N = {1, 2, . . . , N} be the set of the network nodes
(online social network users) and M = {1, 2, . . . ,M} the set
of interest areas (classes). We assume that for each node n
we can have an estimate of Fn, the probability distribution of
its preferences over the M interest areas, which takes discrete
values Fn

1 , F
n
2 , . . . , F

n
M with

∑
m∈M

Fn
m = 1. Practically, Fn

m

could be measured through the normalized request rate of node
n for data objects (content) of type m or some other form of
interest expression in a certain area (e.g., subscription to this
category’s tags). In section IV, we describe this process for a
particular online social application.

From the node interest distributions, we can then compute
the pairwise similarity in the interests of two nodes drawing
on measures of distributional similarity. Hereafter, we describe
and focus on two of the possible choices: a) the Proportional
Similarity (PS) metric, which is shown in [20] to satisfy
11 criteria suggested as suitable for a measure of similarity
between distributions; and b) the inverse of Kullback-Leibler
symmetrized divergence (InvKL) [12]. InvKL projects the
difference between two interest distributions to a significantly
broader range of values compared to the PS metric, i.e.,
(0,+∞) vs. [0, 1], thus shaping the resolution properties of
the framework, as we will see later in Section III.

1) Proportional Similarity (PS) metric: With the PS metric,
the interest similarity PSF i,F j between two nodes i and j,
with interest distributions F i and F j , equals [20]:

PSF i,F j = 1− 1

2

M∑
m=1

∣∣F i
m − F j

m

∣∣ . (1)

2) Inverse KL (InvKL) symmetrized divergence: Our second
metric is the inverse of the Kullback-Leibler (KL) sym-
metrized divergence, a metric capturing the distance between
two distributions

InvKLF i,F j =
( M∑
m=1

F i
mlog

F i
m

F j
m

+ F j
mlog

F j
m

F i
m

)−1
. (2)

The InvKL metric takes values in (0,+∞). The KL diver-
gence goes to infinity in cases where there is no interest
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in one interest category from one node, whereas there is
non-zero interest in it from another. In order to avoid such
problems, smoothing methods (e.g., interpolation and backing-
off schemes) can be used. These have been studied in statistical
language modeling in order to estimate the distribution of
natural language as accurately as possible [13]. In our case
non-zero request rates for interest classes can be discounted
with different discounting methods (see [13]), whereas interest
classes for which there is no interest can be given a small ϵ > 0
probability.

B. From weighted graphs to communities

Out of the full population of clustering algorithms, relevant
to our objectives are those carrying out density-based graph
clustering [3]. Namely, they take as input a graph and partition
it in a way that some notion of density (in our case: the weights
of intra-cluster edges) is significantly higher within a partition
than across different partitions (inter-cluster edges). Within
the complex networking community the de-facto criterion for
assessing the quality of the partitioning is modularity [14],
[16]. Modularity sums across all partition clusters the fraction
of within-cluster edges minus the expected fraction of edges
that would fall within the same cluster were they selected at
random. For a given partition of a weighted graph G(V,E),
where V is the set of network nodes and E the edge set
capturing pairwise interest similarities, modularity Q equals
[14]

Q =

C∑
c=1

[
lc
L

−
(
dc
2L

)2
]
, (3)

where the sum is over the C communities of the partition, L is
the sum of the weights of all edges in the graph, lc is the sum
of weights over edges lying fully within community c, and dc
the respective sum over the full set of edges incident to nodes
in c. Modularity takes values in the interval [−1/2, 1] [2]. It
becomes zero for community structures that do not differ than
what one would get by random chance, whereas values above
0.3− 0.4 suggest strong community structure.

Our framework lends to the use of different modularity-
maximization algorithms. One example is the divisive cluster-
ing algorithm Newman proposed in [14] for weighted graphs.
The algorithm iteratively removes from the original graph the
edge with the highest “edge betweenness” (defined as the
number of shortest paths between pairs of nodes traversing
the edge) and recalculates modularity and edge betweenness
values till modularity does not increase any further. The
complexity of the algorithm is O(|E|2|V |), which for dense
graphs yields O(|V |5).

More generally, the problem of finding a partition that
maximizes modularity in general graphs has been formu-
lated as an Integer Linear Program (ILP) and shown to be
NP-hard [2]. Proposed heuristic algorithms for modularity
maximization draw on simulated annealing [19] or extremal
optimization [6]. More commonly used and computationally
friendlier, however, is the greedy agglomerative clustering
algorithm of Clauset et al. [4], [15]. We simply extend it to

weighted graphs by directly relating it with the definition of
modularity in weighted graphs in (3). Initially each vertex
is viewed as a discrete cluster of size one. The algorithm
then iteratively merges the two clusters that yield the largest
modularity increase. The algorithm completes in at most
|V |−1 steps and has an implementation cost of O(|V |2log|V |)
[2] permitting scalability for large graph sizes. We retain the
greedy algorithm as the baseline for the assessment of ISCoDe
in Section III-A.

III. ISCoDe EVALUATION

We work with synthetic networks of N member nodes
with controllably similar interests in order to evaluate the
correctness, sensitivity, and resolution properties of the frame-
work. With modularity as the fitness metric of the detected
community structure, structures featuring tighter communities
with cleaner separation from each other should see higher Q
values than equinumerous yet “looser" structures. Moreover,
with respect to ISCoDe’s resolution, we recall the remarks by
Fortunato and Barthèlemy in [9] that algorithms seeking to
maximize modularity may fail to identify important structures
smaller than a scale. In concluding whether the identification
of further distinct communities within a single one is mean-
ingful, we adopt the weak “community” condition by Radicchi
[18], i.e., a community c is correctly identified as one if

lc
L

−
(
dc
2L

)2

> 0. (4)

Note that in ISCoDe the resulting modularity values are
significantly affected by the choice of the similarity metric.
Contrary to other studies in literature, where community
detection algorithms maximizing modularity are studied on
given complex weighted graphs, ISCoDe adds the additional
transformation step of interests to graph edge weights. There-
fore, another requirement from the evaluation process is to
show how the two interest similarity metrics affect the three
framework requirements.

In the general setting, the network population is organized
into k groups. Each group is interested in M , generally
different, interest classes, which are the same for all member
nodes of a given group. We form k equal-size groups of
N/k users: nodes 1..N/k are assigned to group 1, nodes
N/k + 1..2N/k to group 2, and so on (for the sake of the
example, we take N/k to be an integer). We then control the
similarity within and across the k groups as follows:

Interest similarity across groups. This is controlled in
two ways. Firstly, through the number of common interest
areas between groups, which may take any value r in [0,M ].
Secondly, and this relates to the way the similarity within
a single group is controlled, through the way the interests
overlap. We consider two scenarios for the distribution of
common interests between two groups: a) the r common
interest areas are simultaneously the r least interesting for
group g and the r most interesting for group g+1, 0 < g < k
(L(ast)-F(irst), Table I(a)); b) the r common interest areas are
the r most interesting for the users of all k groups (F(irst)-
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F(irst), Table I(b)). These scenarios present two extreme cases
regarding the interest similarity across groups. Given that the
number of common interest areas and the distributions are
held fixed, the L-F(F-F) scenario yields the smallest(highest)
similarity.

Table I
EXAMPLE OF THE TWO INTEREST-OVERLAP SCENARIOS FOR k = 3,

M = 5. THE ORDER OF INTEREST CLASSES MARKS ALSO THE ORDER OF
NODES’ INTERESTS WITHIN A GROUP.

(a) L-F with a single overlap in-
terest class (r = 1)

Group 1 Group 2 Group 3
1 5 9
2 6 10
3 7 11
4 8 12
5 9 13

(b) F-F with two overlap interest
classes (r = 2)

Group 1 Group 2 Group 3
1 1 1
2 2 2
3 6 9
4 7 10
5 8 11

Interest similarity within groups. The interests of nodes
within a group are spread over the ordered M interest classes
inline with the Zipf distribution1. The skewness parameter s
of the distribution differs for each group node. The interest of
the first node of each group are uniformly distributed (s1 = 0)
and s increases with constant step p so that for node n,
sn = p(n− 1), p ∈ R. Higher p values increase the skewness
in the interest distribution and concentrate the node interests’
mass in the higher-order interest classes. Interestingly, changes
of p also affect the similarity of interests between nodes be-
longing to different groups depending on the overlap scenario
(Table I): higher p values result in weaker (stronger) inter-
group similarity in the L− F (F − F ) overlap scenario.

In summary, by calibrating p, the overlap scenario and the
number of common interest classes, we can produce networks
with community structures of variable discernibility.

A. Experimental results and discussion
We show and discuss representative results from our exper-

imentation with ISCoDe on synthetic networks that outline the
main behavior of the framework. All experiments are carried
out with the greedy agglomeration algorithm in [4] since it
yields significantly faster run times than its competitors2.

1) Correctness and sensitivity experiments: In this set of
experiments, N = 80 and k = 4. The impact of M was
found to be minimal, thus we present herein results only for
M = 20. We vary the interest overlap scenarios (as in Table
I), the number of common interest classes, one (Tables II(a),
II(c)) or half of them (Tables II(b), II(d)), and the skewness of
the interest distributions, smaller p values representing more
uniform distributions within a single group nodes.

The first remark is that both metrics produce the same
intuitive community partitions in the presence of strong com-
munity structure, as in Tables II(a) and II(c) for low p values.

1Zipf distributions have been used in the recent past to capture preferences
for web objects. Furthermore, they exhibit high modelling simplicity and
flexibility, in that proper manipulation of their single parameter s, gives rise
to a wide set of distributions ranging from uniform (s = 0) to highly skewed
ones with power-law characteristics (s >> 0).

2We run experiments also with the divisive clustering algorithm in [14] but
we had to restrict to small group sizes. In these cases, we obtained similar
results with respect to community structure and modularity values.

On the contrary, when such structure is not evident, the two
metrics result in considerably different partitions.

The second remark has to do with the higher sensitivity of
the framework when the PS metric is used in its first pro-
cessing step. The modularity of the resulting partitions under
the PS metric decreases when the interests of nodes are more
randomly diffused over the different interest classes and goes
down to zero when the similarity structure tends to disappear,
as in Table II(d). On the contrary, the resulting modularity
values under the InvKL metric are almost insensitive to the
changes in the input interest distributions. With InvKL the
modularity values are dominated by the edge weights between
individual node pairs; these tend to be very high (≫ 1) for
highly similar nodes and very low for highly dissimilar nodes.
Finally, as p increases, the interest distributions of most nodes
tend to be more concentrated on the first group objects, and
the interest distributions become less uniform. For cases shown
in Tables II(a) and II(b), this results in increasing modularity
under the PS metric, thanks to the decreasing weights of inter-
group edges, i.e., nodes initially assigned to different groups.
It has the opposite effect for cases shown in Tables II(c) and
II(d), where increasing p leads to stronger ties between nodes
in different groups. On the contrary, InvKL does not adapt to
any of these changes.

2) Resolution experiments: We run two additional exper-
iments focusing on the impact of the two similarity metrics
upon the overall framework resolution. The first experiment
involves nodes with highly similar interests. All nodes are
interested in the same M objects, in the same order. They
differentiate only slightly in how their interests are spread over
the M interest classes, modelled by Zipf(s) distributions with
s varying from 0 to its maximum value in steps of p = 0.01.
The second experiment involves nodes with highly dissimilar
interests; there is a single common interest class between
successively ordered nodes. The experiment resembles the L-F
overlap scenario shown in Table I(a), if each group contained
only one node. The results from the two experiments are
reported in Table III and clearly demonstrate the capacity
of the two metrics to illuminate better different parts of the
interest similarity range.

Mapping highly similar interest distributions to a much
broader edge weight value range (Figure 2(a)), InvKL can
resolve more communities than PS in the first experiment,
all of which satisfy Radicchi’s weak community condition of
(4). On the contrary, PS tends to group small communities
together. Notably, the communities produced by both metrics
do not satisfy the inequality

lc <
√
2L, (5)

which according to [9] suggests that community c may be
the combination of two or more smaller communities that
cannot simply be detected when pursuing the optimization of
modularity due to their small size.

The situation is reversed in the second experiment: it is
now PS that can recognize smaller communities, as shown
in Table III(b). Moreover, (5) is satisfied, implying that there
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Table II
CORRECTNESS AND SENSITIVITY EXPERIMENTS: MODULARITY AND COMMUNITIES FORMED FOR DIFFERENT VALUES OF p, N = 80, M = 20

(a) L-F, 1 common object
PS InvKL

Q C partition Q C partition
p = 0.02 0.6849 4 {1..20}...{61..80} 0.7498 4 {1..20}...{61..80}
p = 0.04 0.6925 4 {1..20}...{61..80} 0.7493 4 {1..20}...{61..80}
p = 0.06 0.6992 4 {1..20}...{61..80} 0.7483 4 {1..20}...{61..80}
p = 0.08 0.7048 4 {1..20}...{61..80} 0.7698 8 {1..10}...{71..80}
p = 0.10 0.7095 4 {1..20}...{61..80} 0.7745 8 {1..10}...{71..80}

(b) L-F, M/2 common objects
PS InvKL

Q C partition Q C partition
p = 0.02 0.3594 2 {1..40} {41..80} 0.7667 4 {1..20}...{61..80}
p = 0.04 0.3669 2 {1..40} {41..80} 0.7490 4 {1..20}...{61..80}
p = 0.06 0.3756 2 {1..40} {41..80} 0.7475 4 {1..20}...{61..80}
p = 0.08 0.3938 3 {1..20} {21..40} {41..80} 0.7687 8 {1..10}...{71..80}
p = 0.10 0.4142 3 {1..20} {21..40} {41..80} 0.7730 8 {1..10}...{71..80}

(c) F-F, 1 common object
PS InvKL

Q C partition Q C partition
p = 0.02 0.5711 4 {1..20}...{61..80} 0.7498 4 {1..20}...{61..80}
p = 0.04 0.5146 4 {1..20}...{61..80} 0.7492 4 {1..20}...{61..80}
p = 0.06 0.4465 4 {1..20}...{61..80} 0.7480 4 {1..20}...{61..80}
p = 0.08 0.3734 4 {1..20}...{61..80} 0.7692 8 {1..10}...{71..80}
p = 0.10 0.3038 4 {1..20}...{61..80} 0.7730 8 {1..10}...{71..80}

(d) F-F, M/2 common objects
PS InvKL

Q C partition Q C partition
p = 0.02 0.1103 4 {1..20}...{61..80} 0.7496 4 {1..20}...{61..80}
p = 0.04 0.0841 4 {1..20}...{61..80} 0.7481 4 {1..20}...{61..80}
p = 0.06 0.0610 4 {1..20}...{61..80} 0.7444 4 {1..20}...{61..80}
p = 0.08 0.0422 4 {1..20}...{61..80} 0.7611 8 {1..10}...{71..80}
p = 0.10 0.0485 5 {1..15}...{61..75} {16..20,36..40,56..60,76..80} 0.7549 8 {1..10}...{71..80}

Table III
RESOLUTION EXPERIMENTS: MODULARITY AND COMMUNITIES FORMED, N = 80, M = 20

(a) Similar nodes
PS InvKL

Q C partition Q C partition
0.0215 2 {1..38} {39..80} 0.6740 5 {1..14} {15..28} {29..44} {45..61} {62..80}

(b) Dissimilar nodes
PS InvKL

Q C partition Q C partition
0.7860 10 {1..8}..{73..80} 0 1 {1..80}
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(b) Dissimilar nodes

Figure 2. Resolution experiments: Edge weight distributions

are more non-detected communities. InvKL, on the contrary,
cannot since it squeezes all edge weight values that result
from the first processing step within an interval of 0.012 width
(Figure 2(b)).

However, an important question is regarding the level of
resolution, i.e., in which cases communities should be more
resolved. Intuitively, it seems more important to identify finer
community structure in a network with more similar nodes,
than in case of dissimilar ones. Hence, the resolution advan-

tage of InvKL at high similarity scenarios may overweigh its
disadvantage at low similarity ones.

IV. APPLICATION TO A REAL NETWORK

We apply ISCoDe to data traces extracted from the Delicious
website (www.delicious.com). Delicious is a social bookmark-
ing application where users can save all their web bookmarks
(annotated with tags) online, share them with other users,
and track what other users are bookmarking themselves. Each
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user forms a network with other users that have subscribed
to see their bookmarks. We use the organization of users into
networks and interests into tags to generate the user interest
distributions and feed ISCoDe with them.

From user interest profiles to interest distributions. Let
M be the set of most popular tags used by each Delicious
user. Let Bn

m be the number of bookmarks tagged with m
(1 ≤ m ≤ M ) by user n (1 ≤ n ≤ N ). Then the (normalized)
interest of node n in tag m is given by the ratio of the number
of bookmarks tagged with m by node n over the total number
of bookmarks of this user:

Fn
m =

Bn
m∑M

m=1 B
n
m

. (6)

Experimentation set-up. The Delicious network is crawled in
two ways. The first method starts from four Delicious accounts
(root users) chosen randomly on the website. From each root
user 29 users – who follow the root user – are extracted using a
breadth-first exploration of the graph formed by these links. To
avoid the long tail of infrequently used tags, only bookmarks
that contain the 99 most popular tags are considered for each
user. The interest profiles of 120 in total users are derived
from (6). Running the community detection algorithm with
the PS and InvKL metrics results in community structures
with modularity values 0.0672 and 0.1130, respectively. The
second procedure is similar to the first one; only now the
four root users are selected among those having placed recent
bookmarks on the website. Here the 30 highest preference tags
(as derived from (6) are kept for each user. The PS and InvKL
metrics for this case result in modularity values 0.0754 and
0.1971, respectively.

Our results suggest that modularity values are higher in the
second case, as expected, since many users are interested in
the same tags. Overall, however, the modularity values of the
respective users’ partitions are low, implying that Delicious
user networks do not display interest similarity structure.
Users do not follow other users based on similarity of their
tagged bookmarks. We argue that the satisfaction of users
from the Delicious network would greatly increase if users
formed communities taking higher account of their interests’
matching. The framework proposed in this paper could be
valuable in this respect.

V. CONCLUSION AND FUTURE WORK
In this paper we proposed a framework, ISCoDe, for

clustering of users (nodes) according to their interests. The
framework is straightforward and can be used as a guide for
the formation of more interest-coherent communities in online
social networks. It consists of two steps. First, it quantifies the
similarity in the interests of network members with the help
of interest similarity metrics. These metrics become the edges
of the weighted graph that models the social network. Then
a community detection algorithm is applied to this graph to
extract communities of nodes with similar interests.

We have investigated two similarity metrics, PS and InvKL,
for the derivation of weighted graph edges from user prefer-
ences. Our results suggest that both metrics produce reasonable

partitions for strong community structure. However, the InvKL
metric is not as sensitive as PS regarding the changes in the
strength of community structure. On the other hand, InvKL
has a higher resolution in networks of nodes with highly
similar interests. In any case, our paper has illustrated that the
interest distribution mappings influence the discernibility of
the framework, by emphasizing or de-emphasizing differences
in the interest distributions. This insight can be useful in
the search for other mappings that map more effectively
distribution differences into values better “matched” to the
commodity community detection machinery in the sense that
they result in more effective community detection.
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