
Mistreatment-Resilient Distributed Caching ?

Georgios Smaragdakis1, Nikolaos Laoutaris1,2, Azer Bestavros1

Ibrahim Matta1, Ioannis Stavrakakis2

Abstract

The distributed partitioning of autonomous, self-aware nodes into cooperative groups,
within which scarce resources could be effectively shared for the benefit of the group,
is increasingly emerging as a hallmark of many newly-proposed overlay and peer-to-
peer applications. Distributed caching protocols in which group members cooperate
to satisfy local requests for objects is a canonical example of such applications.
In recent work of ours we identified mistreatment as a potentially serious problem
for nodes participating in such cooperative caching arrangements. Mistreatment
materializes when a node’s access cost for fetching objects worsens as a result of
cooperation. To that end, we outlined an emulation-based framework for the de-
velopment of mistreatment-resilient distributed selfish caching schemes. Under this
framework, a node opts to participate in the group only if its individual access cost
is less than the one achieved while in isolation. In this paper, we argue against
the use of such static “all or nothing” approaches which force an individual node
to either join or not join a cooperative group. Instead, we advocate the use of a
smoother approach, whereby the level of cooperation is tied to the benefit that a
node begets from joining a group. To that end, we propose a distributed and easily
deployable feedback-control scheme which mitigates mistreatment. Under our pro-
posed adaptive scheme, a node independently emulates its performance as if it were
acting in a greedy local manner and then adapts its caching policy in the direction
of reducing its measured access cost below its emulated greedy local cost. Using
control-theoretic analysis, we show that our proposed scheme converges to the min-
imal access cost, and indeed outperforms any static scheme. We also show that our
scheme results in insignificant degradation to the performance of the caching group
under typical operating scenaria.

Key words: Cooperative Caching, Service Overlay Networks, Peer-to-Peer
Networks, Control Theory, Performance Evaluation.



1 Introduction

Background and Scope: Network applications often rely on distributed
resources available within a cooperative grouping of nodes to ensure scalability
and efficiency. As typical in many applications such as web server farms or
content distribution networks, the grouping of nodes is dictated by a common
strategic objective, and as such, the payoff from cooperation is assessed by
the overall benefit to the group as opposed to the benefit reaped by individual
nodes in the group (which in this case are not presumed to be selfish). More
recently, however, new classes of network applications have emerged for which
the grouping of nodes is more “ad hoc” in the sense that it is not dictated
by organizational boundaries or strategic goals. Examples include the various
overlay and peer-to-peer (P2P) applications [2,3]. For such applications, the
grouping of nodes is not governed by a common objective, but rather by the
individual (selfish) objectives of the constituent nodes. Under such a setting,
and as we have shown in prior work of ours [4,5], it is possible for a node
(or a set of nodes) to be “mistreated” in the sense that its participation in
the group (while advantageous to the group) would not be advantageous to
its own objective. In this paper we show how to design mistreatment-resilient
cooperative applications.

Mistreatment in Distributed Selfish Replication and Caching Sys-

tems: As part of our recent work on mistreatment in distributed cooperative
settings [4,5], we focused on content networking applications, whereby the
distributed resource being shared amongst a group of nodes is storage. In par-
ticular, we considered a group of nodes that store information objects and
make them available to their local users as well as to remote nodes. A user’s
request is first received by the local node. If the requested object is stored
locally, it is returned to the requesting user immediately, thereby incurring
a minimal access cost. Otherwise, the requested object is searched for, and
fetched from other nodes of the group, at a potentially higher access cost. If
the object cannot be located anywhere in the group, it is retrieved from an
origin server, which is assumed to be outside the group, thus incurring a max-

? A. Bestavros and I. Matta are supported in part by a number of NSF awards,
including CNS Cybertrust Award #0524477, CNS NeTS Award #0520166, CNS
ITR Award #0205294, and EIA RI Award 0202067. I. Stavrakakis is supported
in part by EU IST projects CASCADAS and E-NEXT. N. Laoutaris is supported
by a Marie Curie Outgoing International Fellowship of the EU MOIF-CT-2005-
007230. A preliminary version of this work appeared in the proceedings of 2006
IFIP Networking Conference [1].
1 Computer Science Dept, Boston University, Boston, Massachusetts, USA. Email:
{gsmaragd, nlaout, best, matta}@cs.bu.edu
2 Dept of Informatics and Telecommunications, University of Athens, Athens,
Greece. Email: istavrak@di.uoa.gr

2



imal access cost. Contrary to most previous work in the field, we considered
selfish nodes, i.e., nodes that cater strictly and only to the minimization of the
access cost for their local client population (disregarding any consequences for
the performance of the group as a whole).

In [4,5] we established the vulnerability of many socially optimal (SO) object
replication/caching schemes to mistreatment problems. A mistreated node was
defined as a node whose access cost under some cooperative scheme is higher
than the corresponding minimal access cost that the node can guarantee for it-
self by being uncooperative. Unlike centrally designed/controlled groups where
all constituent nodes have to abide by the ultimate goal of optimizing the so-
cial utility of the group, an autonomous, selfish node will not tolerate such a
mistreatment. Indeed, the emergence of such mistreatments may cause selfish
nodes to secede from the replication group, resulting in severe inefficiencies
for both the individual users as well as the entire group.

Proactive replication strategies such as those studied in [4] are not practical in
a highly dynamic content networking setting, which is likely to be the case for
most of the Internet overlays and P2P applications we envision for a variety of
reasons: (1) Fluid group membership makes it impractical for nodes to decide
what to replicate based on what (and where) objects are replicated in the
group. (2) Access patterns as well as access costs may be highly dynamic (due
to bursty network/server load), necessitating that the selection of replicas and
their placement be done continuously, which is not practical. (3) Both the
identification of the appropriate re-invocation times [6] and the estimation of
the non-stationary demands (or equivalently, the timescale for a stationarity
assumption to hold) [7] are non-trivial problems. (4) Content objects may be
dynamic and/or may expire, necessitating the use of “pull” (i.e., on-demand
caching) as opposed to “push” (i.e., pro-active replication) approaches. Using
on-demand caching is the most widely acceptable and natural solution to
all of these issues because it requires no a priori knowledge of local/group
demand patterns and, as a consequence, responds dynamically to changes in
these patterns over time (e.g., introduction of new objects, reduction in the
popularity of older ones, etc.).

Therefore, in [5] we considered the problem of Distributed Selfish Caching
(DSC), which could be seen as the on-line equivalent of the Distributed Selfish
Replication (DSR) problem [4]. In DSC, we adopted an object caching model,
whereby a node used demand-driven temporary storage of objects, combined
with replacement. Based on that model, we uncovered the operational char-
acteristics of a DSC group that can give rise to mistreatment problems. And,
while we argued that under stationary conditions, simple parametric versions
of already established protocols and mechanisms are capable of mitigating
these problems, we did not prescribe an integrated approach for regulating
these parameters in a manner that adapts to the constantly changing con-

3



ditions of the group (e.g., varying group size, node capacities, delays, and
demand patterns).

Mistreatment-Resilient Distributed Selfish Caching: In this paper, we
take our work one significant, constructive step further by proposing a gen-
eral control-theoretic framework, which enables the parametrization of DSC
protocols so as to make these protocols resilient to mistreatment, even under
the aforementioned fluid group conditions. Through extensive analysis and
simulation experiments, we show that our adaptive scheme not only miti-
gates mistreatment that may evolve in a distributed caching group, but it also
guarantees an access cost for each individual node that is lower than the one
achieved by any static scheme. We also show that the impact of this adaptive
scheme on the performance of the distributed caching group is minimal under
typical operating scenaria.

Organization of the Paper: The rest of the paper is organized as fol-
lows. Section 2 summarizes related work in cooperative caching and dynamic
schemes used to optimize caching. In Section 3 we describe our model of a
distributed caching group. In Section 4 we demonstrate the causes of mis-
treatment in distributed caching groups. The design of a generic feedback
controller for the mitigation of mistreatment is covered in Section 5. In Sec-
tion 6 we argue that a node equipped with our feedback controller achieves
the minimum access cost (compared to any other static scheme). In Section 7,
we study the impact of such a controller on the overall performance of the dis-
tributed group. We evaluate the performance of our controller with extensive
simulations in Section 8. Section 9 concludes the paper.

2 Related Work

Cooperative caching [8,9] allows multiple caches to cooperate in servicing each
others’ requests. Monitoring and controlling the number of copies for the same
documents across different caches has been studied in [10] for the web and [11]
for wireless ad hoc networks. All aforementioned studies were concerned with
the minimization of the aggregated cost of the group. Apart from our pre-
vious work [5,1], we are aware of only two additional works that deal with
dynamic schemes to optimize caching: According to [12] different caching al-
gorithms may be employed dynamically to best serve the demand; in [13], a
control-theoretic approach is proposed for achieving performance differentia-
tion in proxy caches. Our study differs from these two works, by focusing on
characterizing the impact of dynamic schemes on cache groups, as opposed to
individual caches. Given the multi-faceted nature of the relationship between
our work and this body of literature, and for the sake of a better exposition of
our contributions, rather than enumerating these studies here, we discuss how

4



we leverage and relate to such works throughout the paper, as appropriate.

3 Model of a Distributed Caching Group

In this section we present the model of a distributed caching group that we
consider in our study. Let oi, 1 ≤ i ≤ N , and vj, 1 ≤ j ≤ n, denote the
ith unit-sized object and the jth node, and let O = {o1, . . . , oN} and V =
{v1, . . . , vn} denote the corresponding sets. Node vj is assumed to have storage
capacity for up to Cj unit-sized objects, a total request rate λj (total number
of requests per unit time, across all objects), and a demand described by
a probability distribution over O, ~pj = {p1j, . . . , pNj}, where pij denotes the
probability of object oi being requested by the local users of node vj. Successive
requests are assumed to be independent and identically distributed. 3 For our
numerical examples in later sections we will assume that the ith most popular
object is requested according to a generalized power-law distribution, i.e.,
with probability pi = Λ/iα (such distributions have been observed in many
measured workloads [18,20]).

Let tl, tr, ts denote the access cost paid for fetching an object locally, remotely,
or from the origin server, respectively, where ts > tr > tl;

4 these costs can be
interpreted either as delay costs for delivering an object to the requesting user
or as bandwidth consumption costs for bringing the object from its initial lo-
cation. User requests are serviced by the closest node that stores the requested
object along the following chain: local node, group, origin server. Each node
employs an object admission algorithm for storing (or not) objects retrieved
remotely either from the group or from the origin server. Furthermore, each
node employs a replacement algorithm for managing the content of its cache.
In this work we focus on the Least Recently Used (LRU) replacement algo-
rithm but we can obtain similar results under other replacement algorithms,
such as Least Frequently Used (LFU) replacement algorithm (see also our
previous work in [5]).

3 The Independent Reference Model (IRM) [14] is commonly used to characterize
cache access patterns [15–18]. The impact of temporal correlations was shown in
[7,19] to be minuscule, especially under typical, Zipf-like object popularity profiles.
4 The assumption that the access cost is the same across all node pairs in the group
is made only for the sake of simplifying the presentation (those values can also be
assumed as upper bounds in our analysis). Our results can be adapted easily to
accommodate arbitrary inter-node distances.

5



4 Mistreatment in Distributed Caching Groups

The examination of the operational characteristics of a group of nodes involved
in a distributed caching solution enabled us to identify two key culprits for the
emergence of mistreatment phenomena [5]: (1) the use of a common caching
scheme across all the nodes of the group, irrespectively of the particular capa-
bilities and characteristics of each individual node, and (2) the mutual state
interaction between replacement algorithms running on different nodes.

4.1 Mistreatment Due to Common Scheme

The common caching scheme problem is a very generic vehicle for the mani-
festation of mistreatment. To understand it, one has first to observe that most
of the work on cooperative caching has hinged on the fundamental assumption
that all nodes in a cooperating group adopt a common caching scheme. We
use the word “scheme” to refer to the combination of: (i) the employed re-
placement algorithm, (ii) the employed request redirection algorithm, and (iii)
the employed object admission algorithm. Cases (i) and (ii) are more or less
self-explanatory. Case (iii) refers to the decision of whether to cache locally
an incoming object after a local miss. The problem here is that the adoption
of a common scheme can be beneficial to some of the nodes of a group, but
harmful to others, particularly to nodes that have special characteristics that
make them “outliers”. A simple case of an outlier, is a node that is situated
further away from the center of the group, where most nodes lie. Here distance
may have a topological/affine meaning (e.g., number of hops, or propagation
delay), or it may relate to dynamic performance characteristics (e.g., vari-
able throughput or latencies due to load conditions on network links or server
nodes). Such an outlier node cannot rely on the other nodes for fetching ob-
jects at a small access cost, and thus prefers to keep local copies of all incoming
objects. The rest of the nodes, however, as long as they are close enough to
each other, prefer not to cache local copies of incoming objects that already
exist elsewhere in the group. Since such objects can be fetched from remote
nodes at a small access cost, it is better to preserve the local storage for keep-
ing objects that do not exist in the group since otherwise, they would have to
be fetched from the origin server at a high access cost.

Enforcing a common scheme under such a setting is bound to mistreat either
the outlier node or the rest of the group. Consider the group depicted in
Figure 1 in which n − 1 nodes are clustered together, meaning that they are
very close to each other (tr → tl ≈ 0), while there’s also a single “outlier”
node at distance t′r from the cluster. The n− 1 nodes would naturally employ
a Single Copy (SC) scheme, i.e., a scheme where there can be at most one copy

6



cluster

n−1 nodes
   t       0r

Single Copy scheme

/  t r
outlier node

Fig. 1. An example of a group composed
of a cluster of n − 1 nodes and a unique
outlier.

     cache

   virtual cache

requests
local

Fig. 2. Block diagram of a node
equipped with a virtual cache.

of each distinct object in the group (e.g. LRU-SC [10]) in order to capitalize
on their small remote access cost. From the previous discussion it should be
clear that the best scheme for the outlier node would depend on t′r. If t′r → tr,
the outlier should obviously follow LRU-SC and avoid duplicating objects that
already exist elsewhere in the group. If t′r À tr, then the outlier should follow a
Multiple Copy (MC) scheme, i.e., a scheme where there can be multiple copies
of the same object at different nodes — an example of an MC scheme is the
LRU-MC. Under LRU-MC, if a node retrieves an object from a remote node
in the group (or the origin server), then it stores a copy of it locally replacing
an existing object if the cache is full, according to the LRU policy.

4.2 Mistreatment Due to State Interaction

The state interaction problem takes place through the so-called “remote hits”.
Consider nodes v, u and object o. A request for object o issued by a user of v
that cannot be served at v but could be served at u is said to have incurred
a local miss at v, but a remote hit at u. Consider now the implications of the
remote hit at u. If u does not discriminate between hits due to local requests
and hits due to remote requests 5 , then the remote hit for object o will affect
the state of the replacement algorithm in effect at u. If u is employing LRU
replacement, then o will be brought to the top of the LRU list. If u employs
LFU replacement, then the frequency of o will be increased, and so on with
other replacement algorithms [22]. If the frequency of remote hits is sufficiently
high, e.g., because v has a much higher local request rate and thus sends an
intense miss-stream to u, then there could be performance implications for
the u: u’s cache may get invaded by objects that follow v’s demand, thereby
depriving the users of u from valuable storage space for caching their own
objects. This can lead to the mistreatment of u, whose cache is effectively
“hijacked” by v.

5 The Internet Cache Protocol (ICP)/Squid web cache [21] and other systems (e.g.,
Akamai Content Distribution Network, IBM Olympic Server Architecture), by de-
fault, do not discriminate between local and remote requests.

7



5 Towards Mistreatment-Resilient Caching

From the exposition so far, it should be clear that there exist situations under
which an inappropriate, or enforced, scheme may mistreat some of the nodes.
While we have focused on detecting and analyzing two causes of mistreatment
which appear to be important (namely, due to the adoption of a common
cache management scheme and cache state interactions), it should be evident
that mistreatments may well arise through other causes. For example, we have
not investigated the possibility of mistreatment due to request re-routing [23],
not to mention that there are vastly more parameter sets and combinations
of schemes that cannot all be investigated exhaustively.

5.1 Design Disciplines

To address the above challenges, we first sketch a general framework for de-
signing mistreatment-resilient schemes. We then apply this general framework
to the two types of mistreatments that we have considered in this work. We
target “open systems” in which group settings (e.g., number of nodes, dis-
tances, demand patterns) change dynamically. In such systems it is not possi-
ble to address the mistreatment issue with predefined, fixed designs. Instead,
we believe that nodes should adjust their scheme dynamically so as to avoid
or respond to mistreatment if and when it emerges. To achieve this goal we
argue that the following three requirements are necessary.

Detection Mechanism: This requirement is obvious but not trivially achiev-
able when operating in a dynamic environment. How can a node realize that it
is being mistreated? In our previous work on replication [4], a node compared
its access cost under a given replication scheme with the guaranteed max-
imal access cost obtained through greedy local (GL) replication. This gave
the node a “reference point” for a mistreatment test. In that game theoretic
framework, we considered nodes that had a priori knowledge of their demand
patterns, thus could easily compute their GL cost thresholds. In caching, how-
ever, demand patterns (even local ones) are not known a priori, nor are they
stationary. Thus in our DSC setting, the nodes have to estimate and update
their thresholds in an on-line manner. We believe that a promising approach
for this is emulation. Figure 2 depicts a node equipped with an additional
virtual cache, alongside its “real” cache that holds its objects. The virtual
cache does not hold actual objects, but rather object identifiers 6 . It is used

6 Since the virtual cache stores object identifiers as opposed to the actual objects,
the memory it uses is insignificant (compared to the memory required to store the
actual objects). The processing cost is also trivial (i.e., incurring O(1) update cost
for each request under both LRU and LFU replacement policies).

8



for emulating the cache contents and the access cost under a scheme different
from the one being currently employed by the node to manage its “real” cache
under the same request sequence (notice that the input local request stream is
copied to both caches). The basic idea is that the virtual cache can be used for
emulating the threshold cost that the node can guarantee for itself by employing
a greedy (non-cooperative) scheme.

Mitigation Mechanism: This requirement ensures that a node has a mech-
anism that allows it to react to mistreatment—a mechanism via which it is
able to respond to the onset of mistreatment. In the context of the common
scheme problem, the outlier should adjust its caching behavior according to its
distance from the group. For this purpose, we introduce the LRU(q)-scheme,
under which, objects that are fetched from the group are cached locally only
with probability q; q will hereafter be referred to as the reliance parameter,
capturing the amount of reliance that the node puts into being able to fetch
objects efficiently from other nodes. In the context of the state interaction
problem, one may define an interaction parameter ps and the corresponding
LRU(ps) scheme, in which a remote hit is allowed to affect the local state with
probability ps, whereas it is denied such access with probability (1-ps). As
it will be demonstrated later on, nodes may avoid mistreatment by selecting
appropriate values for these parameters according to the current operating
conditions.

Control Scheme: In addition to the availability of a mistreatment mitiga-
tion mechanism (e.g., LRU(q)), there needs to be a programmatic scheme for
adapting the control variable(s) of that mechanism (e.g., how to set the value
of q). Since the optimal setting of these control variables depends heavily on
a multitude of other time-varying parameters of the DSC system (e.g., group
size, storage capacities, demand patterns, distances), it is clear that there
cannot be a simple (static) rule-of-thumb for optimally setting the control
variables of the mitigation mechanism. To that end, dynamic feedback-based
control becomes an attractive option.

To make the previous discussion more concrete, we now focus on the common
scheme problem and demonstrate a mistreatment-resilient solution based on
the previous three principle requirements. A similar solution can be developed
for the state interaction problem.

5.2 Resilience to Common-Scheme-Induced Mistreatments

We start with a simple “hard-switch” solution that allows a node to change
operating parameters by selecting between two alternative schemes. This can
be achieved by using the virtual cache for emulating the LRU(q =1) scheme,

9



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2

ac
ce

ss
 c

os
t

n=4, C=250, N=1000, a=0.9, tl=0, ts=2

outlier virtual cache
outlier (LRU(0))

P
S
frag

rep
lacem

en
ts

t′r

Fig. 3. Simulation results on the effect
of the remote access cost t′r on the ac-
cess cost of the outlier node under the
virtual cache and LRU(0) schemes.

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2

no
rm

al
iz

ed
 a

cc
es

s 
co

st

n=4, C=250, N=1000, a=0.9, tl=0, ts=2

outlier (LRU(0))
outlier (LRU(0.1))
outlier (LRU(0.5))

outlier (LRU(1))

P
S
frag

rep
lacem

en
ts

t′r

Fig. 4. Simulation results on the ef-
fect of the remote access cost t′r on
the normalized (by the virtual cost)
access cost of the outlier node under
different LRU(q) schemes.

capturing the case that the outlier node does not put any trust on the remote
nodes for fetching objects and, thus, keeps copies of all incoming objects after
local misses. Equipped with such a device, the outlier can calculate a running
estimate of its threshold cost based on the objects it emulates as present in the
virtual cache. 7 By comparing the access cost of sticking to the current scheme
to the access cost obtained through the emulated scheme, the outlier can decide
which one of the two schemes is more appropriate. For example, it may transit
between the two extreme LRU(q) schemes–the LRU(q = 0) scheme and the
LRU(q = 1) scheme. Figure 3 shows that the relative performance ranking of
the two schemes depends on the distance from the group t′r and that there is
a value of t′r for which the ranking changes.

A more efficient design can be obtained by manipulating the reliance parame-
ter q at a finer scale. Indeed, there are situations in which intermediate values
of q, 0 < q < 1, are better than either q = 0 and q = 1 (see the LRU(0.1)
and LRU(0.5) curves in Figure 4). Consider two different values of the reliance
parameter q1 and q2 such that q1 < q2. Figure 5 illustrates a typical behavior
of the average object access cost under q1 and q2 as a function of the distance
t′r of the outlier node from its cooperative cluster. As discussed in the previ-
ous section, q1 (q2) will perform better with small (large) t′r. In the remainder
of this section, we present and evaluate a Proportional-Integral-Differential
(PID) controller for controlling the value of q. This type of controller is known
for its good convergence and stability properties (converges to a target value
with zero error) [24,25].

7 The outlier can include in the emulation the cost of remote fetches that would
result from misses in the emulated cache contents; this would give it the exact access
cost under the emulated scheme. A simpler approach would be to replace the access
cost of remote fetches by that from the origin server and thus reduce the inter-
node query traffic; this would give it an upper bound on the access cost under the
emulated scheme.

10



r

q
2

q
1Virtual Cache cost

cost
access
average

PSfrag replacements

t′

Fig. 5. Representative behavior of average object access cost as a function of the
reliance parameter and distance of the outlier from the cluster, q1 < q2.

A node equipped with the PID controller maintains an Exponential Weighted
Moving Average (EWMA) of the object access cost (costvirtual) for the em-
ulated greedy scheme. The virtual cache emulates an LRU(q = 1)-scheme in
which no remote fetches are considered, so as to avoid doubling the number
of queries sent to remote nodes. Let costq denote the EWMA of the object
access cost of the employed LRU(q)-scheme in the actual cache of the node.
Let dist denote the difference between the virtual access cost and the actual
access cost, and let diff be the difference between two consecutive values of
dist.

The PID controller adapts q proportionally to the magnitude of diff; if the
magnitude of diff is small then consecutive observations of the performance
of the system are very close, thus the value of q should be changed smoothly
until the diff is zeroed. On the other hand, if the magnitude of diff is high,
then the value of q has to be updated significantly. A pseudo-code for this
process is provided in Algorithm 1. In the forthcoming section (Section 6), we
argue that the access cost of a node equipped with this controller converges
to a value which is lower than that of any scheme that employs a fixed q. We
also provide an estimation of the converged value as a function of controller
parameters and other system characteristics.

Our algorithm has two parameters. The first one, denoted by αc, is the gain of
the controller, which determines the rate with which the value of q is changed
in a single control period. The second parameter, denoted by βc, is the up-
date weight of the difference in the cost that is observed in the last (two)
updates. A methodology on how to tune these parameters and how sensitive
is the performance of the controller to these parameters will be presented in
Section 8 (evaluation section).

5.3 Resilience to State-Interaction-Induced Mistreatments

Immunizing a node against mistreatments that emerge from state interac-
tions could be similarly achieved. The interaction parameter ps can be con-

11



Algorithm 1 : mitigation of mistreatment
dist(t) = costvirtual(t)− costq(t)
dist(t− 1) = costvirtual(t− 1)− costq(t− 1)
diff(t) = dist(t) − dist(t− 1)
σ = sign(diff(t))
if q(t) ≥ q(t− 1) then

q(t + 1) ← q(t) + σ · αc · |diff(t)| + σ · βc · | |diff(t)| − |diff(t− 1)| |
else

q(t + 1) ← q(t) − σ · αc · |diff(t)| − σ · βc · | |diff(t)| − |diff(t− 1)| |

trolled using schemes similar to those we considered above for the reliance
parameter q. It is important to note that one may argue for isolationism (by
permanently setting ps = 0) as a simple approach to avoid state-interaction-
induced mistreatments. This is not a viable solution. Specifically, by adopting
an LRU(ps = 0) approach, a node is depriving itself from the opportunity of
using miss streams from other nodes to improve the accuracy of LRU-based
cache/no-cache decisions (assuming a uniform popularity profile for group
members).

To conclude this section, we note that the approaches we presented above for
mistreatment resilience may be viewed as “passive” or “end-to-end” in the
sense that a node infers the onset of mistreatment implicitly by monitoring its
utility function. As we alluded at the outset of this paper, for the emerging
class of network applications for which grouping of nodes is “ad hoc” (i.e., not
dictated by organizational boundaries or strategic goals), this might be the
only realistic solution. In particular, to understand “exactly how and exactly
why” mistreatment is taking place would require the use of proactive measures
(e.g., monitoring/policing group member behaviors, measuring distances with
pings, etc.), which would require group members to subscribe to some common
services or to trust some common authority—both of which are not consistent
with the autonomous nature (and the mutual distrust) of participating nodes.

6 Convergence of the Controller

In this section we argue that the access cost of a node equipped with our
adaptive mechanism converges to a value that is lower than the one under any
other static scheme, and we analytically estimate this value. We consider the
scenario with the outlier node that was presented in Section 4.1.

Claim: When Algorithm 1 is used for controlling the probability q of caching
an incoming object at the outlier node, then its average access cost will con-
verge to a single value which is upper-bounded by the minimum average cost

12



average
access
cost desired

q=0

for q:
optimal value

0

Region A Region B

1

Virtual Cache cost

q=1

PSfrag replacements

c0

c1

tl ts
t′r

χ

ψ
θ

Fig. 6. Representative behavior of static schemes (LRU(q = 0), LRU(q = 1)) and
the “desired” behavior of the controller.

of any static scheme (i.e. a scheme employing a fixed q).

Justification: As illustrated in Figure 5, the average access cost of the outlier
increases linearly with its distance from the group (t′r). When t′r → tl, the
optimal value of q → 0. When t′r → ts, the optimal value for q → 1. We
would like our controller to exhibit this behavior while tuning the value of
q. We can approximate the “desired” average access cost of the outlier as a
linear function of q. In Figure 6, we illustrate a representative behavior of
the average access cost of two static schemes, LRU(q = 0) and LRU(q = 1).
We also illustrate the “desired” behavior of the controller as a linear function
with slope θ. It is clear that the average access cost of the controller will be a
lower bound on the average access cost of every static scheme, as θ < ψ and
although χ < θ the average access cost of LRU(q = 1) will converge to the
access cost of the controller only when t′r = ts, because the initial access cost
for LRU(q = 1) is higher than that of LRU(q = 0). In our analysis we assume
that the cache capacity C and the skewness of the demand α are constants;
their exact values affect only the slopes.

We define two operating regions for the controller: Region A and Region B, as
denoted in Figure 6. In Region A, the cost of the outlier under the LRU(q = 1)-
scheme, is always higher than the one under the LRU(q = 0)-scheme and vice
versa for Region B.

We now proceed to analyze the behavior of our adaptive scheme in these two
regions. We can design the controller such that the control update rate is higher
that the rate at which t′r changes. Thus, for the purpose of our analysis, let us

13



+

−

+
+

PSfrag replacements
θ

s

DIFF
αc + βc·s

s

-
αc + βc·s

s Q

µ
COSTq

1
s

COSTvirtual

DIST

1
s
c0

1
s
c1
σ
1
s
1
s

+

−

+
+

PSfrag replacements
θ

s

DIFF

αc + βc·s

s

-
αc + βc·s

s

Q

µ
COSTq

1
s

COSTvirtual

DIST

1
s
c0

1
s
c1
σ
1
s
1
s

(a) (b)

+

−

++
− −

PSfrag replacements
θ

s
DIFF

αc + βc·s

s

-
αc + βc·s

s Q

µ
COSTq

1
s

COSTvirtual

DIST

1
s
c0

1
s
c1

σ

1
s

1
s

+

−

++
−−

PSfrag replacements
θ

s
DIFF

αc + βc·s

s

-
αc + βc·s

s

Q

µ
COSTq

1
s

COSTvirtual

DIST

1
s
c0

1
s
c1

σ
1
s

1
s

(c) (d)

Fig. 7. Laplace-Transform of the control loop for cases: (a) A1; (b) A2; (c) B1; (d)
B2.

assume that t′r is fixed for a short period that includes few control updates.

In Region A, we consider two cases:

case A1: If q(t) ≥ q(t−1) then cost(t) ≥ cost(t−1), dist(t) ≤ dist(t−1)
and as a result diff(t) ≤ 0, thus our controller switches course and decreases
the value of q at the adaptation point t+ 1.

case A2: If q(t) < q(t−1) then cost(t) < cost(t−1), dist(t) > dist(t−1)
and as a result diff(t) > 0, thus the controller will keep decreasing the value
of q at the adaptation point t+ 1.

In both cases, our adaptive scheme examines locally the possible values of q
and updates its value towards the direction that reduces the average access
cost.

In Region B, we consider the same two cases:

case B1: If q(t) ≥ q(t−1) then cost(t) ≤ cost(t−1), dist(t) ≥ dist(t−1)
and as a result diff(t) ≥ 0, thus the controller will keep increasing the value
of q at the adaptation point t+ 1.

14



case B2: If q(t) < q(t−1) then cost(t) > cost(t−1), dist(t) < dist(t−1)
and as a result diff(t) < 0, thus the controller will change course and increase
the value of q at the adaptation point t+ 1.

As in the previous cases, our adaptive scheme updates the value of q in the
direction of reducing the access cost of the outlier.

We follow a control-theoretic approach to show the convergence properties of
our controller.

We start by providing the proof for case A1:

From Algorithm 1, we derive the following continuous-time equations:

∂dist(t)

∂t
= diff(t) (1)

where

dist(t) = costvirtual(t) − costq(t) (2)

The value of q is updated as follows:

∂q(t)

∂t
= αc · diff(t) + βc ·

∂diff(t)

∂t
(3)

We can approximate the average access cost under our adaptive scheme as
follows:

costq(t) ≈ c0 + µ · q(t) (4)

where µ = tan(θ) and c0 is the cost of the outlier for q = 0 and t′r = tl.

Next, we take the Laplace-transform of Equations (1), (2), (3) and (4), and
draw the block diagram that describes the flow of the signals (Figure 7(a)).
We can now derive the relation between DIFF and COSTq (in the s-domain):

c0
s

+ DIFF (s) ·
αc + βc · s

s
· µ = COSTq(s)

15



Furthermore, assuming that costvirtual is constant 8 , we have:

DIFF (s) = s
(

1

s
COSTvirtual − COSTq(s)

)

After some algebraic manipulations we have:

COSTq(s) =
c0 + (αc + βc · s) · µ · COSTvirtual

s · (1 + (αc + βc · s) · µ)

From the above equation we can conclude that the system is stable and over-
damped since the pole s = − 1

βc
·( 1

µ
+ αc) is negative [24,25]. In order to find

the steady-state value of the average cost, we use the Final Value Theorem
[24,25]:

costq(∞) = lim
s→0

s · COSTq(s) =
c0 + αc · µ · COSTvirtual

1 + αc · µ

If we can calculate the “desired” slope µ, we can estimate the optimal value
for αc. In principle, for small c0, the smaller the value of αc < 1 the lower the
access cost is, even when the value of µ is not known in advance. We show
that this condition on αc holds for all other cases as well.

In case A2:

We follow the same analysis that was provided for the A1 case, but with a
new expression in place of Equation (3):

∂q(t)

∂t
= − αc · diff(t) − βc ·

∂diff(t)

∂t

The block diagram for this case is illustrated in Figure 7(b). It is easy to show
that the steady-state value of the average access cost is given by:

costq(∞) =
c0 − αc · µ · COSTvirtual

1 − αc · µ

In case B1:

We follow the same analysis that was provided for the A1 case, but with a
new expression for Equation (4):

costq(t) ≈ c1 − µ · (1 − q(t))

8 Note that the value of the virtual cache cost is independent of t′r.

16



where c1 is the cost of the outlier for q = 1 and t′r = ts. Furthermore, note that
c1 ≈ c0 + µ. The block diagram for this case is illustrated in Figure 7(c).
After some algebraic manipulations, we can show that the steady-state value
of the average access cost is given by:

costq(∞) =
c0 + αc · µ · COSTvirtual

1 + αc · µ

Note that this steady-state value is the same as in case A1.

In case B2:

We follow the same analysis that was provided for the A2 case, but with a new
expression for the Equation (4). The block diagram for this case is illustrated
in Figure 7(d). Following the same analysis, it is easy to show that the steady-
state value of the average access cost is given by:

costq(∞) =
c0 − αc · µ · COSTvirtual

1 − αc · µ

Note that this steady-state value is the same as for case A2.

7 The Effect of Individual Controllers on the Overall Performance

of the Group

In this section we turn our attention to the performance implications resulting
from the use of individual-cost minimizing controllers at different nodes. In
particular, we look at the impact on the (global) group’s performance by com-
paring the aggregated steady-state access cost of the distributed caching group
(AACPID) when all constituent nodes are equipped with the PID controller
described in Section 5.2 with the corresponding cost of the distributed caching
group (AAC) when nodes are not equipped with the PID controller. We refer
to the ratio AACPID/AAC as the controller’s impact ratio (CIR) on group
performance.

7.1 Analysis

We consider a setting similar to the one described in Section 4.1, but with
n − k nodes clustered together and k “outlier” nodes at distance t′r from
the cluster. Nodes uj, 1 ≤ j ≤ n − k, are cluster nodes whereas nodes uj,
n− k+ 1 ≤ j ≤ n, are outlier nodes. Each node has storage capacity up to C

17



unit-sized objects, and has the same request rate λ as all other nodes in the
caching group. In our analysis, we assume that the ith most-popular object
has a request probability drawn from a generalized power-law with skewness
a, i.e., pi = Λ/ia, 1 ≤ i ≤ N .

Closed-form analytic models for prediction of cache performance do not exist
(see [26] for the development of numerical models). A simulation study is more
tractable, but given the size of the parameter space we are considering, it is not
clear that simulation studies would be useful. Thus, the alternative we adopt
in this paper relies on the observation that the content of a cache could be seen
as the result of superimposing an offline-optimal replication strategy with the
“noise” caused by replacement errors. Using this approach we are able to draw
some basic qualitative conclusions for caching by studying replications [27].

Under this framework, the clustered group of nodes can be abstracted by a
single cache with storage capacity of (n−k)C unit-sized objects, whereas each
outlier node represents a single cache with storage capacity of C unit-sized
objects. Assuming that the size of the cluster is larger than the population of
the outliers (i.e., n > 2k), the (n − k)C most popular objects will be stored
in the clustered nodes, this would occur under LRU (q = 0) or any other SC-
scheme (which assumes full collaboration in caching decisions, e.g., as with
the case of hash-based caching). Objects that are less popular–namely objects
with ids (n − k)C + 1, .., nC– would be stored in the outlier nodes. Without
loss of generality, we assume that objects (j− 1)C +1, .., jC, will be stored in
the node uj, n− k + 1 ≤ j ≤ n.

The aggregated access cost of the distributed caching group is the summation
of the individual costs of the clustered and the outlier nodes, and is equal to:

AAC =
n−k
∑

j=1

costj +
n
∑

j=n−k+1

costj

=
n−k
∑

j=1





(n−k)C
∑

i=1

pitl +
nC
∑

i=(n−k)C+1

pit
′

r +
N
∑

i=nC+1

pits





+
n
∑

j=n−k+1





(n−k)C
∑

i=1

pit
′

r +
nC
∑

i=(n−k)C+1

pitij −
jC
∑

i=(j−1)C+1

pitij +
N
∑

i=nC+1

pits





where tij, (n−k)C+1 ≤ i ≤ nC, n−k+1 ≤ j ≤ n is the cost of fetching object
oi by outlier node uj from a different outlier node. In the worst case scenario,
this object will be stored in another outlier which cannot be within a distance
greater than 2t′r. Thus, for the aforementioned values of i, j, tij ≤ min(2t′r, ts).
For the rest of our analysis, we will assume that t′r < 0.5ts, in order to study a
more realistic setting, in which outliers are not extremely far from the cluster.

18



Substituting in the above equation, with tij ≤ 2t′r and tl = 0, we get:

AAC ≤
n−k
∑

j=1





(n−k)C
∑

i=1

pitl +
nC
∑

i=(n−k)C+1

pit
′

r +
N
∑

i=nC+1

pits





+
n
∑

j=n−k+1





(n−k)C
∑

i=1

pit
′

r +
nC
∑

i=(n−k)C+1

pi 2t′r −
jC
∑

i=(j−1)C+1

pi 2t′r +
N
∑

i=nC+1

pits





= (n− k)





nC
∑

i=(n−k)C+1

pit
′

r +
N
∑

i=nC+1

pits





+ k





(n−k)C
∑

i=1

pit
′

r + 2
nC
∑

i=(n−k)C+1

pit
′

r +
N
∑

i=nC+1

pits





− 2
n
∑

j=n−k+1

jC
∑

i=(j−1)C+1

pit
′

r

= (n− k)





nC
∑

i=(n−k)C+1

pit
′

r +
N
∑

i=nC+1

pits





+ k





(n−k)C
∑

i=1

pit
′

r + 2
nC
∑

i=(n−k)C+1

pit
′

r +
N
∑

i=nC+1

pits





− 2
nC
∑

i=(n−k)C+1

pit
′

r

= Λ[(n− k)
((

H
(a)
nC −H

(a)
(n−k)C

)

t′r +
(

H
(a)
N −H

(a)
nC

)

ts
)

+ k
((

H
(a)
(n−k)C −H

(a)
0

)

t′r + 2
(

H
(a)
nC −H

(a)
(n−k)C

)

t′r +
(

H
(a)
N −H

(a)
nC

)

ts
)

− 2
(

H
(a)
nC −H

(a)
(n−k)C

)

t′r]

= Λ
[

ntsH
(a)
N − (n− 2)t′rH

(a)
(n−k)C + (n+ k − 2) t′rH

(a)
nC − ntsH

(a)
nC

]

The generalized harmonic number H
(a)
C can be approximated by its integral

expression [28]:

H
(a)
C =

C
∑

i=1

1

ia
≈

C
∫

1

1

la
dl =

C1−a − 1

1− a

where H
(a)
0 = 0.

19



Using this approximation we obtain:

AAC ≤
Λ

1− a

[(

((n+ k − 2)t′r − nts)n
1−a − (n− 2)t′r(n− k)

1−a
)

C1−a + ntsN
1−a − kt′r

]

(5)

In the presence of a controller at each node, the analysis is more involved.
In particular, we note that the outlier nodes are located at distance t′r from
the cluster, and as a consequence, the cost to fetch a popular object from the
group becomes much greater than the corresponding cost if the object was
stored locally. Therefore, some of the objects (the most popular ones) may
end up being cached locally, which is precisely the goal of the PID controller
of Section 5.2. Thus, although the (n− k)C most-popular objects would still
be stored in the clustered nodes, the object placement in the outlier nodes
may result in having duplicate (local) copies of these objects at the outliers
as well.

The aggregated access cost for this setting is equal to:

AACPID =
n−k
∑

j=1

costj +
n
∑

j=n−k+1

costj

=
n−k
∑

j=1





(n−k)C
∑

i=1

pitl +
N
∑

i=(n−k)C+1

pits





+
n
∑

j=n−k+1





C
∑

i=1

pitl +
(n−k)C
∑

i=C+1

pit
′

r +
N
∑

i=(n−k)C+1

pits





= (n− k)
N
∑

i=(n−k)C+1

pits + k





(n−k)C
∑

i=C+1

pit
′

r +
N
∑

i=(n−k)C+1

pits





= Λ
[

(n− k)
(

H
(a)
N −H

(a)
(n−k)C

)

ts + k
((

H
(a)
(n−k)C −H

(a)
C

)

t′r +
(

H
(a)
N −H

(a)
(n−k)C

)

ts
)]

= Λ
[

ntsH
(a)
N + (kt′r − nts)H

(a)
(n−k)C − kt

′

rH
(a)
C

]

≈
Λ

1− a

[(

(kt′r − nts)(n− k)
1−a − kt′r

)

C1−a + ntsN
1−a

]

Using the harmonic approximation given in Equation (5) and substituting in
the above, we can lower-bound the controller’s impact ratio as follows.

CIR≥
((kt′r − nts)(n− k)

1−a − kt′r)C
1−a + ntsN

1−a

(((n+ k − 2)t′r − nts)n
1−a − (n− 2)t′r(n− k)

1−a)C1−a + ntsN1−a − kt′r

=

(

(kt′r − nts)(1−
k
n
)1−a − k

n
t′r
) (

C
N

)1−a
+ ts

((

(1 + k
n
− 2

n
)t′r − ts

)

n1−a − (n− 2)t′r(1−
k
n
)1−a

) (

C
N

)1−a
+ ts −

k
nN
t′r

20



Figure 8 shows how the above lower-bound on CIR relates to the skewness of
the power-law demand under a range of values for the relative population of
the outliers.

7.2 Observations

The above bound and illustration allow us to make three important observa-
tions. First, given some relative storage capacity C/N , the controller’s impact
ratio is constant, and as one would expect, it is more pronounced for smaller
values of C/N . Second, under skewed demands (a → 1), the impact of the
controller on the performance of the caching group is small. This could be
explained by noting that for workloads with less skewed (i.e., more uniform)
demand distributions the marginal utility of the outlier caches to the caching
group becomes higher, resulting in a more pronounced impact ratio. However,
for highly-skewed demand, the collective caches of the caching group (exclud-
ing those at the outliers) would be able to accommodate most of the working
set in the request stream, rendering the impact ratio insignificant. The afore-
mentioned explanation is also supported by our numerical results. Figure 9
depicts the cluster node’s cost increase ratio and the lower bound of outlier
node’s cost reduction ratio (cost of a node equipped with the PID controller
compared to its cost when it is not equipped with the PID controller). Under
skewed demands, the cluster node’s cost increases in a linear fashion, but the
outlier node’s cost decreases exponentially fast. This is an important obser-
vation because most reference streams characterized in the literature exhibit
highly-skewed demand distributions (see [18] for example). Third, when the
relative population of the outliers is small (k/n→ 0), the controller’s impact
on the performance of the caching group is insignificant 9 . This observation is
important because in a typical setting, one would expect that the clustering of
nodes in a caching group would result in the presence of a small ratio of outlier
nodes (k/n). Moreover, in a typical setting, a large k/n ratio may signify an
anomalous condition (e.g., the onset of congestion that effectively partitions
the cluster), which may trigger a regrouping.

To summarize, under typically skewed demand distributions and for well-
formed caching groups featuring a small proportion of outliers, our adaptive
scheme guarantees minimal access cost for each individual selfish node, with
insignificant degradation to the group’s performance.

9 Both cluster and outlier node’s cost increases in a linear fashion with k/n (see
Figure 9).

21



 0.4
 0.3

 0.2
 0.1

 0.02

 0.9
 0.8

 0.7
 0.6

 0.5
 0.4

 0.3
 0.2

 0.1
 0

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14

lower bound of CIRlower bound of CIR

P
S
frag

rep
lacem

en
tsθ

n = 100, C = 50, N = 10000, tl = 0, ts = 2, t′r = 0.3ts

a
k
n

Fig. 8. The behavior of the lower bound of CIR, under power-law demand and
different values for the relative population of outliers.

 0.4
 0.3

 0.2
 0.1

 0.02

 0.9
 0.8

 0.7
 0.6

 0.5
 0.4

 0.3
 0.2

 0.1
 0

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14
 1.16
 1.18

 1.2

cluster node’s cost increase ratio
lower bound of outlier node’s cost reduction ratio

P
S
frag

rep
lacem

en
tsθ

n = 100, C = 50, N = 10000, tl = 0, ts = 2, t′r = 0.3ts

a
k
n

Fig. 9. The behavior of the cluster node’s cost increase ratio and the lower bound
of outlier node’s cost reduction ratio, under power-law demand and different values
for the relative population of the outliers.

8 Evaluation Of the Controller

In order to evaluate our adaptive scheme, we compare its steady-state average
access cost to the corresponding cost of one of the two extreme static schemes
(LRU(q = 0) or LRU(q = 1)), corresponding to full- or no-cooperation, re-
spectively. To that end, we define the following performance metric:

minimum cost reduction (%) = 100 ·
coststatic − costadaptive

coststatic

(6)

where costadaptive is the access cost of our adaptive mechanism, and coststatic is
the minimum cost of the two static schemes: coststatic = min( cost(LRU(q =

22



0)), cost(LRU(q = 1)) ). This metric captures the minimum additional benefit
that our adaptive scheme has over the previous static schemes. To capture the
maximum additional benefit of our adaptive scheme (the optimistic case), we
similarly define maximum cost reduction as in Equation (6), where coststatic =
max( cost(LRU(q = 0)), cost(LRU(q = 1)) ).

8.1 Experimental Setting

In this subsection we provide a detailed description of the design and parame-
terization of the experiment used to evaluate the performance of our adaptive
scheme. We consider the outlier scenario described in Section 4.1.

Motivated by a realistic scenario from a wireless caching application [11], we
capture the dynamics in t′r by having the outlier move according to the Mod-
ified Random Waypoint Model (modified RWP) [29]. 10 Under the modified
RWP model, the outlier (mobile) node picks an initial distance D0 according
to the distribution:

F 0
D(r) =

3

2Rmax

(

r −
r3

3R2
max

)

for the first time period X0. Rmax is the maximum distance that a mobile node
can travel in a given chosen direction. Moreover, the node picks a velocity V0

uniformly from [Vmin, Vmax], where Vmin and Vmax denote the minimum and
maximum speed of the outlier node, respectively. For the following time peri-
ods Xi, i > 0, the outlier node picks distance Di according to the distribution:

FD(r) =
(

r

Rmax

)2

and speed according to the distribution:

FV (v) =
v2 − V 2

min

V 2
max − V

2
min

Upon reaching the randomly chosen destination point, the outlier node pauses
for a time period P , and the process repeats itself until the end of the simu-
lation.

10 This recent version fixes the non-stationarity of the original model, and thus
provides better statistical confidence.

23



Modified RWP parameters

Outlier’s Speed mean(t′r) stdv(t′r)

low: Vmax = 1 du/tu 0.67 du 0.49 du

moderate: Vmax = 5 du/tu 0.62 du 0.45 du

high: Vmax = 20 du/tu 0.65 du 0.46 du

Table 1
The characteristics of the Modified RWP model used in our simulation study.

In order to map the distance (determined by this mobility model) to an asso-
ciated cost in the mobile environment, we use the energy cost function which
is proportional to the square of that distance [30], i.e. the instantaneous out-

lier’s cost is given by t′r(t) =
(

r(t)
Rmax

)2
ts, where r(t) is the current distance of

the outlier from other group members.

Unless otherwise specified, for the modified RWP mobility model, we set Vmin

and P to zero, and the dimensions of the space inside which the outlier node
moves are given by a circle of radius Rmax=1000 distance units (du) centered
around other (non-mobile) nodes in the cooperative group. We also take the
time between successive requests for objects as our basic time unit (tu).

The rate at which our feedback controller updates q should depend only on
the rate of change of the access cost of local requests. Given that the latter is
determined by the rate of change in distance traveled by the outlier, the control
update period must be set taking this distance change into consideration. The
average distance that the mobile object travels is given by:

E[D] =
∑

Di

Di · pmf(Di) =
∑

Di

Di · (FD(Di+1)− FD(Di)) = 2/3 Rmax

Following the same analysis it can be shown that E[V ] = 2/3 (Vmax − Vmin)

and as a result the average travel time of the outlier is E[X] = E[D]
E[V ]

=
Rmax

Vmax−Vmin
.

Under the assumption that each node in the group (of n nodes) generates
on average the same number of requests, the embedded controller in a node
updates q at least every E[X]/n local requests.

8.2 Experimental Results

For the aforementioned setting, we consider a group of n = 4 nodes composed
of a cluster of 3 nodes and a unique outlier. The size of the object universe
was set to N = 1000. Each node is assumed to have the same storage capacity
C and the same request rate as all the other nodes in the group. All the

24



Controller parameters

Outlier’s Speed update control period αc , C=250/150/50 βc

low: Vmax = 1 du/tu 250 local requests 0.1/0.1/1 0.01

moderate: Vmax = 5 du/tu 50 local requests 0.1/0.1/1 0.01

high: Vmax = 20 du/tu 13 local requests 0.1/0.1/1 0.01

Table 2
The characteristics of the PID Controller used in our simulation study.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.2  0.4  0.6  0.8  1

m
in

im
um

 c
os

t r
ed

uc
tio

n 
(%

)

n=4, N=1000, tl=0, ts=2, Vmax=1

C=250
C=150

C=50

P
S
frag

rep
lacem

en
tsθ

α (skewness of demand)

 0

 10

 20

 30

 40

 50

 60

 70

 0  0.2  0.4  0.6  0.8  1

m
ax

im
um

 c
os

t r
ed

uc
tio

n 
(%

)

n=4, N=1000, tl=0, ts=2, Vmax=1

C=250
C=150
C=50

P
S
frag

rep
lacem

en
tsθ

α (skewness of demand)

Fig. 10. Simulation results on the cost reduction that is achieved using our adap-
tive mechanism, (left): The minimum cost reduction, (right): The maximum cost
reduction.

nodes in the caching group have the same Zipf (with parameter a) object
popularity profile. We consider three different values for C such that the total
capacity of the caching group, nC, is smaller than or equal to the size of
the object universe. We also consider three different values of speed for the
outlier (mobile) node: low, moderate, and high. We generate 100, 000 requests
uniformly initiated from the peers in the group. For our adaptive controller,
we set αc = 0.1 and βc = 0.01. To match the aggressiveness of LRU
under small cache sizes (C=50), we set αc = 1. Tables 1 and 2 summarize the
parameters of the modified Random Waypoint Model and the controller used
in our experiments respectively.

We repeated the experiment 10 times under each setting (of cache size, access
demand skewness and maximum speed of the outlier) under the adaptive and
the static schemes using the same random seed for a single run of the experi-
ment. In all experiments we report the virtual cache cost as well as the actual
access cost averaged using EWMA where the weight of the history w was set
to 0.875.

Figure 10 summarizes results (along with 95th-percentile confidence intervals)
we obtained under different cache sizes, demand skewness, and movement
speed Vmax = 1 distance units/time unit (similar results are observed under
higher speeds as well).

By employing our adaptive scheme, the outlier achieves a maximum cost re-
duction that can be up to 60% under skewed demand. The depicted profile

25



of the maximum cost reduction curve can be explained as follows. The worst
performance of the static schemes appears at the two extremes of skewness.
Under uniform demand, a = 0, we get the worst performance of the LRU(1)
static scheme, whereas under highly skewed demand, a = 1, we get the worst
performance of the LRU(0) static scheme. In the intermediate region both
static schemes provide for some level of compromise, and thus the ratio of
the cost achieved by either scheme to the corresponding cost of the adaptive
scheme becomes smaller than in the two extremes.

Turning our attention to the minimum cost reduction, we observe that it
can be substantial under skewed demand, and disappears only under uniform
demand (such demand, however, is not typically observed in measured work-
loads [18]). The explanation of this behavior is as follows. At the two extreme
cases of skewness, one of the static scheme reaches its best performance—
under low skewed demand, the best static scheme is the LRU(0) and under
high skewed demand the best static scheme is the LRU(1). Thus, the ratio of
the cost achieved by the best static scheme and the corresponding cost of our
adaptive scheme gets maximized in the intermediate region, in which neither
of the static schemes can reach its best performance.

8.3 Sensitivity of the Controller

Figure 11 depicts the effect of the choice of αc on the average access cost of the
outlier. When the demand is very skewed the effect of the choice of αc on the
access cost of the outlier is minimal as there is overlap of the 95th-percentile
confidence intervals for values of αc that range from 0.01 to 1. For less skewed
demands, the access cost of the outlier is very sensitive to the choice of αc. By
setting the value of αc close to 1, yields significant increase in the access cost
of the outlier. For values of αc ≤ 0.1, our adaptive scheme outperformed the
most cost effective static scheme (LRU(q = 0) or LRU(q = 1)), for different
cache sizes and demand skewness.

9 Conclusion

Recent work in the literature [5] has uncovered the susceptibility of nodes par-
ticipating in a distributed caching group to being mistreated, when a node’s
access cost for fetching objects while participating in the group is higher than
that accrued when operating in isolation. Mistreatment emerges as a result of
the adoption of a common caching scheme or as a result of the mutual state in-
teraction between replacement algorithms used by members of the group. Pre-
liminary mistreatment-resilient mechanisms either relied on decisions based on

26



αc = 1

αc = 0.1

αc = 0.01

αc = 1

αc = 0.1

αc = 0.01

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  10  20  30  40  50  60  70  80  90  100

cu
m

ul
at

iv
e 

av
er

ag
e 

ac
ce

ss
 c

os
t

adjustments

P
S
frag

rep
lacem

en
tsθ

n = 4, N = 1000, C = 250, Vmax = 1, α = 0.9

n
=

4
,

N
=

1
0
0
0
,

C
=

2
5
0
,

V
m

a
x

=
1
,

α
=

0
.
6

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  10  20  30  40  50  60  70  80  90  100

cu
m

ul
at

iv
e 

av
er

ag
e 

ac
ce

ss
 c

os
t

adjustments

P
S
frag

rep
lacem

en
tsθ

n
=

4
,

N
=

1
0
0
0
,

C
=

2
5
0
,

V
m

a
x

=
1
,

α
=

0
.
9

n = 4, N = 1000, C = 250, Vmax = 1, α = 0.6

Fig. 11. Simulation results on the effect of the choice of αc on average access cost
under different demand skewness.

the emulated individual cost that can be achieved by the node while not par-
ticipating in the group, or using probabilistic caching schemes by assigning
values to the so-called reliance or interaction parameters, respectively [5]. The
first approach was able only to provide a hard “all or nothing” switch between
full-participation and no-participation in the caching group. The latter affords
more flexibility to each node, but did not propose any concrete methodology
for assigning values to the aforementioned reliance or interaction parameters,
which are crucial especially in a dynamic environment.

In this paper, we have proposed a distributed and lightweight mechanism to
mitigate mistreatment by optimally tuning the reliance and interaction pa-
rameter in a dynamic environment. Both the computational and memory re-
quirements for developing such an adaptive mechanism are minimal. Through
detailed analysis and extensive simulations we showed that a node equipped
with this mechanism achieves a minimal access cost (compared to any other
static scheme), without increasing substantially the access cost for the group,
for a large spectrum of operational settings.

Our future research agenda, includes a tolerance study of our adaptive scheme
against orchestrated adversarial mistreatment that may target the adaptation
of our scheme. This type of mistreatment may be more intense [31] than the
coincidental mistreatment that was the subject of the work presented in this
paper. We are also interested in examining the applicability of our adaptive
scheme on other networking applications, where a join/no-join decision is too
conservative, including but not limited to admission control and load balancing
where the resources being shared amongst a group of nodes can be cpu cycles,
time slots or wireless spectrum, to give some examples.

27



References

[1] G. Smaragdakis, N. Laoutaris, I. Matta, A. Bestavros, I. Stavrakakis, A
Feedback Control Approach to Mitigating Mistreatment in Distributed Caching
Groups, in: Proceedings of IFIP Networking 2006, Coimbra, Portugal, 2006.

[2] J. W. Byers, J. Considine, M. Mitzenmacher, S. Rost, Informed content delivery
across adaptive overlay networks, IEEE/ACM Transactions on Networking
12 (5) (2004) 767–780.

[3] E. Cohen, S. Shenker, Replication strategies in unstructured peer-to-peer
networks, in: Proceedings of ACM SIGCOMM’02 Conference, Pittsburgh, PA,
USA, 2002.

[4] N. Laoutaris, O. Telelis, V. Zissimopoulos, I. Stavrakakis, Distributed selfish
replication, IEEE Transactions on Parallel and Distributed Systems 17 (12)
(2006) 1401–1413.

[5] N. Laoutaris, G. Smaragdakis, A. Bestavros, I. Stavrakakis, Mistreatment in
Distributed Caching Groups: Causes and Implications, in: Proceedings of the
Conference on Computer Communications (IEEE Infocom), Barcelona, Spain,
2006.

[6] T. Loukopoulos, P. Lampsas, I. Ahmad, Continuous replica placement schemes
in distributed systems, in: Proceedings of the 19th ACM International
Conference on Supercomputing (ACM ICS), Boston, MA, 2005.

[7] S. Jin, A. Bestavros, Sources and Characteristics of Web Temporal Locality,
in: Proceedings of Mascots’2000: The IEEE/ACM International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems, San Fransisco, CA, 2000.

[8] P. Rodriguez, C. Spanner, E. W. Biersack, Analysis of web caching
architectures: Hierarchical and distributed caching, IEEE/ACM Transactions
on Networking 9 (4) (2001) 401–418.

[9] M. R. Korupolu, M. Dahlin, Coordinated placement and replacement for
large-scale distributed caches, IEEE Transactions on Knowledge and Data
Engineering 14 (6) (2002) 1317–1329.

[10] L. Fan, P. Cao, J. Almeida, A. Z. Broder, Summary cache: a scalable wide-
area web cache sharing protocol, IEEE/ACM Transactions on Networking 8 (3)
(2000) 281–293.

[11] L. Yin, G. Cao, Supporting cooperative caching in ad hoc networks., in:
Proceedings of the Conference on Computer Communications (IEEE Infocom),
Hong Kong, China, 2004.

[12] S. Sivasubramanian, G. Pierre, M. van Steen, A case for dynamic selection
of replication and caching strategies, in: Proceedings of the 8th International
Workshop on Web Caching and Content Distribution (WCW), New York, NY,
2003.

28



[13] Y. Lu, T. F. Abdelzaher, A. Saxena, Design, implementation, and evaluation of
differentiated caching services, IEEE Transactions on Parallel and Distributed
Systems 15 (5) (2004) 440–452.

[14] E. G. Coffman, P. J. Denning, Operating systems theory, Prentice-Hall, 1973.

[15] M. F. Arlitt, C. L. Williamson, Web server workload characterization: the search
for invariants, in: Proceedings of the 1996 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, 1996.

[16] P. Cao, S. Irani, Cost-aware WWW proxy caching algorithms, in: Proceedings
of USITS, Monterey, California, United States, 1997.

[17] N. Young, The k-server dual and loose competitiveness for paging, Algorithmica
11 (1994) 525–541.

[18] L. Breslau, P. Cao, L. Fan, G. Philips, S. Shenker, Web caching and Zipf-like
distributions: Evidence and implications, in: Proceedings of the Conference on
Computer Communications (IEEE Infocom), New York, NY, 1999.

[19] K. Psounis, A. Zhu, B. Prabhakar, R. Motwani, Modeling correlations in web
traces and implications for designing replacement policies, Computer Networks
45 (4) (2004) 379–398.

[20] A. Mahanti, C. Williamson, D. Eager, Traffic analysis of a web proxy caching
hierarchy, IEEE Network 14 (3) (2000) 16–23.

[21] D. Wessels, K. Claffy, ICP and the Squid web cache, IEEE Journal on Selected
Areas in Communications 16 (3) (1998) 345–357.

[22] S. Podlipnig, L. Böszörmenyi, A survey of web cache replacement strategies,
ACM Computing Surveys 35 (4) (2003) 374–398.

[23] J. Pan, Y. T. Hou, B. Li, An overview DNS-based server selection in content
distribution networks, Computer Networks 43 (6) (2003) 695–711.

[24] K. Ogata, Modern control engineering (4th ed.), Prentice-Hall, 2002.

[25] G. F. Franklin, D. J. Powell, A. Emami-Naeini, Feedback Control of Dynamic
Systems (5th ed.), Prentice-Hall, 2005.

[26] N. Laoutaris, H. Che, I. Stavrakakis, The LCD interconnection of LRU caches
and its analysis, Performance Evaluation 63 (7) (2006) 609–634.

[27] A. Leff, J. L. Wolf, P. S. Yu, Replication algorithms in a remote caching
architecture, IEEE Transactions on Parallel and Distributed Systems 4 (11)
(1993) 1185–1204.

[28] X. Tang, S. T. Chanson, Adaptive hash routing for a cluster of client-side web
proxies, Journal of Parallel and Distributed Computing 64 (10) (2004) 1168–
1184.

[29] G. Lin, G. Noubir, R. Rajaraman, Mobility models for ad hoc network
simulation, in: Proceedings of the Conference on Computer Communications
(IEEE Infocom), Hong Kong, China, 2004.

29



[30] W. R. Heinzelman, A. P. Chandrakasan, H. Balakrishnan, An application-
specific protocol architecture for wireless microsensor networks, IEEE
Transactions on Wireless Communications 1 (4) (2002) 660–670.

[31] M. Guirguis, A. Bestavros, I. Matta, Exploiting the transients of adaptation
for RoQ attacks on Internet resources, in: Proceedings of the 12th IEEE
International Conference on Network Protocols (ICNP’04), Berlin, Germany,
2004.

30


