
The Impact of Playout Policy on the Performance of P2P Live
Streaming

Constantinos Vassilakisa, Nikolaos Laoutarisb, and Ioannis Stavrakakisa

aDept of Informatics and Telecommunications, University of Athens, Greece;
bSchool of Engineering and Applied Sciences, Harvard University, USA

ABSTRACT

In this paper we examine the impact of the adopted playout policy on the performance of P2P live streaming systems. We
argue and demonstrate experimentally that (popular) playout policies which permit the divergence of the playout points
of different nodes can deteriorate drastically the performance of P2P live streaming. Consequently, we argue in favor of
keeping different playout points “near-in-time”, even if this requires sacrificing (dropping) some late frames that could
otherwise be rendered (assuming no strict bidirectional interactivity requirements are in place). Such nearly synchronized
playout policies create “positive correlation” with respect to the available frames at different playout buffers. Therefore,
they increase the number of upstream relay nodes from which a node can pull frames and thus boost the playout quality of
both single-parent (tree) and multiple-parent (mesh) systems. On the contrary, diverging playout points reduce the number
of upstream parents that can offer a gapless relay of the stream. This is clearly undesirable and should be avoided as it
contradicts the fundamental philosophy of P2P systems which is to supplement an original service point with as many
additional ones presented by the very own users of the service.

1. INTRODUCTION

P2P streaming using tree or mesh overlays:Distributing a live video stream using a P2P streaming system has the
advantage over a point-to-point client/server system of offering more resources to clients by effectively turning each one
of them into a secondary server that assists in the distribution of the stream. These additional resources can yield improved
scalability and/or resilience, depending on the design of the system. Organizing the nodes into a tree shoots for scalability
by requiring onlyn overlay links, wheren denotes the number of receivers. Having a minimal number of overlay links
reduces thestressof the underlying physical links, i.e., the number of times that the same information can flow over the
same physical link (this can happen as multiple overlay links may go through the same physical link). It also minimizes
the amount of overlay link monitoring overhead for detecting congestion/churn and triggering handoffs in-time to avoid
disruption of playout (assuming that the same amount of monitoring expenditure is paid at each link). These observations
hold true to both single-tree/no-coding and multiple-tree/multiple-description-coding architectures.

Meshes on the other hand shoot for resilience to congestion/churn by providing each node with multiple parents from
which it can receive the stream in parallel (using single-, multiple-description-, or network-coding). Since a mesh uses
more thann overlay links, it can increase the stress of the underlying physical links and the monitoring overhead (although
the latter is not necessarily true as a node can take advantage of the redundancy offered by having multiple parents and per-
forming a more lazy monitoring of each incoming links). The discussion of which combination of topology and encoding
is the “right-one” has been going-on for some time, and although it seems that recent mesh-based systems using coding
have several advantages,1 it all depends in the end on the assumed operating environment and the desired cost/complexity
of building and maintaining the system: well-behaving environments (e.g., dedicated cable networks) can benefit from the
simplicity/economy offered by tree-based distribution; uncontrolled/variable environments (e.g., under-provisioned parts
of the current Internet) can benefit from the redundancy offered by mesh topologies and coding.

The (new) role of playout scheduling in P2P:The playout scheduler is the component of a video receiver that handles
the buffering and rendering of received frames. Designing appropriate playout schedulers for video streaming application
was one of the central research topics of the multimedia transmission community up to the emergence of P2P streaming
systems, at which point the focus shifted onto overlay construction and coding issues. Although fairly well understood
in the context of point-to-point video streaming,2 playout scheduling has received a rather limited attention in the context

Email addresses: cvassilakis@noc.uoa.gr (C. Vassilakis), nlaout@eecs.harvard.edu (N. Laoutaris), ioannis@di.uoa.gr (I. Stavrakakis).

of P2P video streaming. The new setting, however, perplexes playout scheduling beyond our previous understanding. In
addition to achieving the desired tradeoff between interactivity and stream continuity, the playout scheduler must now
jointly factor-in that different playout processes become coupled in the context of P2P: buffering, rendering, or dropping
a frame affects not only the local process but also downstream ones that might connect and request frames from the local
node. In this article we argue that although seemingly subtle compared to topology construction and coding, playout
scheduling still deserves some attention as a bad choice with respect to it can impact quite negatively the performance of
P2P streaming systems, despite the existence of the other two powerful enablers.

Our contribution: We consider adelay preservingplayout policy calledSyncand adata preservingone calledAsyncin
the context of a P2P streaming system. These two policies lay at the extremes of the spectrum of studied playout policies.2

With Sync, the playout scheduler enforces a fixed predefined time offset between the time that a frame is presented at a
receiver and the time it was captured at the sender. To do so, it has to drop “late” frames that arrive after their scheduled
playout time, even if they are eventually received correctly and in their entirety. The data preserving Async policy on the
other hand, imposes an initial buffering delay and then presents frames by draining the buffer at a constant rate. In the
event of a buffer underflow, the playout freezes and resumes again upon the reception of the next frame. Not dropping late
frames makes the offset between encoding and decoding times variable. In fact, in the absence of losses in the network,
the offset increases with each underflow by an amount equal to the duration of the underflow.

We operate each one of these playout policies in a P2P streaming system with the following characteristics: (1) hi-
erarchical structure, (2) threshold-based handoffs (change of upstream parent) based on partial or full information on the
remaining network, (3) single-description coding. Such a setting resembles initial P2P streaming systems like the one
presented in3 and was chosen due to the popularity of such systems, their simplicity, and most importantly, in order to
protect our evaluation of playout from issues that are orthogonal to it. In a sense, our chosen setting is the most fragile one
as it includes a minimum amount of redundancy. Certainly one can design an over-provisioned system based on a dense
overlay graph with multiple reception points and elaborate coding, but this would obscure the effects of playout policy
which is what we want to isolate in this work.

We develop a simulation environment for the above policies and setting and use it to compare them across different
levels of network load and heterogeneity with respect to link capacities. Our evaluation is based on “direct” metrics like
DiscontinuityandLoss(to be defined precisely later). To explain the observed results on these metrics we introduce a new
“indirect” one – calledAvailability – which roughly amounts to the number of available upstream parents to which a node
can perform a smooth handoff at a time of poor reception quality from its current parent. Based on several simulation
scenarios for our control variables (load, heterogeneity, information on remote nodes, number of past frames kept) we
arrive at the following observations and conclusions:

• Sync performs consistently better than Async with respect to both Discontinuity and Loss under a wide spectrum of load
and heterogeneity. The improved performance can be explained by the fact that Sync maintains higher Availability and
thus is able to perform smooth handoffs at times of poor reception. Under Async, the underflows contribute to the time
divergence of playout points and the de-correlation of buffer contents. Thus when a node seeks a handoff it becomes
difficult to find a parent with the missing frames for a smooth transition.

• Sync is effective even under limited knowledge of remote nodes (used for performing handoffs). Having the playout
nodes nearly synchronized means that any one of them can offer more or less the missing frames, so we don’t need to
have a global view of buffer contents – tracking a small set of alternative parents suffices for handoff operations. Async
on the other hand needs to know the buffer contents of remote nodes so as to identify the one (if any) whose playout
point is at the right distance for a gapless handoff.

• Similarly, Sync is relatively immune to constraints on the number of downstream nodes that a parent can support. Having
the playout points of different nodes near in time creates a natural load-balancing with respect to the handoffs because
all nodes hold approximately the same frames thus are equally good from the standpoint of a seeking node. Contrary to
this, in Async there are many cases where few nodes exist that are at the “correct” time distance from many other nodes,
but cannot accommodate all of them due to these constraints and thus the seeking nodes are forced to perform handoffs
that induce gaps in playout.

• Although rather counter intuitive, Async’s performance is favored by randomness in parent selection (imposed by re-
strictions such the ones described above) since the latter eventually assists in keeping playout points “near-in-time”;
peers are forced not to diverge a lot by performing handoffs that induce loss and thus restore up to a point their offset.

2

• Unlike Sync, Async can benefit from keeping frames in the buffer even after they have been displayed locally. This,
however, leads to several known complications (how much of it is needed to smooth out the disruption without making
the offset exceedingly large) as well as some new ones (copyright restrictions permit the nodes of P2P streaming systems
to buffer only a limited time window of a copyright protected material.4

All the above point to that Sync is a better option for the considered P2P systems. At the core of its advantage is that it
is conforming to the P2P character of the application. Async on the other hand, by virtue of the divergence that it fosters,
goes against the P2P paradigm by effectively reducing the number of secondary service points that are available to a node.
Admittedly, an extensive field test with a modified existing system is needed to firmly verify our intuition and simulation
results presented here.

The remainder of the article is structured as follows. In Sect. 2 we review related work from the literature. In Sect. 3
we present the details of the considered playout policies and P2P setting. Several simulation scenarios on multiple metrics
and control parameters are presented in Sect. 4. Sect. 5 summarizes our findings and points out some interesting related
observations on the operation of a popular P2P streaming system. Finally Sect. 6 concludes the article.

2. RELATED WORK

Several application-layer multicast systems have been proposed for addressing the low deployment of network-layer multi-
cast. Initial proposals mimicked the latter and adopted a single tree topology5–7 aiming at providing a similar performance
to it with respect to stress and stretch (the stress metric is defined per-link and counts the number of identical packets sent
by a protocol over each underlying link in the network, the stretch metric is defined per pair of nodes and captures the ratio
of path-length over the overlay to the corresponding path-length over unicast IP).

The first wave of improvements to these systems aimed at addressing the unreliability of end-nodes and at decreasing
the control overhead. The Bullet system8 proposed splitting a stream into multiple blocks and delivering disjoint subsets
of these blocks to different nodes over an overlay tree. It then let the nodes search for “missing blocks” and download
them from other nodes using additional mesh links. The Zigzag system9 aimed at reducing the control overhead by first
clustering peers and then building a multicast tree on top the formed clusters.

Additional improvements aimed at balancing the forwarding load and leveraging bandwidth heterogeneity. Split-
Stream10 splits a stream into multiple stripes and sends each one over a different multicast tree. Load balancing in term
of forwarding is achieved by making a node internal into one tree and leaf in all the others. CoopNet11 proposed using
multiple-description-coding∗ and transmitting each description layer over a different tree so as to allow heterogeneous
peers join trees according to their bandwidth capacity. ChunkySpread12 adopted ideas from SplitStream but used an un-
structured approach for building the trees whereas SplitStream is based on the Pastry DHT.13

Latest proposal like CoolStreaming14 and PRIME15 have abandoned trees in favor of BitTorrent-like16 transmission
based on swarming on top of a mesh topology. In these systems the stream is broken into different blocks and nodes obtain
such blocks from multiple senders. “Buffer maps” are used for advertising the availability of blocks at each node.

All these works focus on overlay construction and coding but do not look at the details of playout scheduling. Tree-
based schemes perform blind forwarding (“push”) of all received content and thus also send out frames which are not
needed by playout processes in which these frames have expired. Mesh-based systems generally “pull” frames from the
senders, but most of them assume that receivers buffer all the incoming frames even after they have been presented (which
is not generally possible as discussed in the introduction). PRIME seems to be the first BitTorrent-like mesh system that
integrates into its swarming distribution the real time constraints of live video streams. Contrary to our work, however,
PRIME assumes a deterministic delivery of frames resulting from (1) the assumption that there is no jitter at the backbone
and (2) manipulating in- and out-degrees of nodes so as to avoid congestion due to access-link bandwidth constraints. In
our work we examine playout scheduling in jitter-prone environments and “fragile” tree topologies. In doing so we want
to substantiate the maximum damage from using the wrong playout policy in such a setting.

We are aware of only two works directly related to ours. In17 the authors state that for gapless playout, peer selection
should not only be done based on network quality criteria, but also on the buffer status of the candidate parent peer,
effectively recognizing the phenomenon of “negative correlation”. However they do not associate this phenomenon with

∗A layered coding scheme in which each layer/description/substream is independently decodable and full stream quality amounts to
obtaining all the layers.

3

the level of synchronization between different playout schedulers, which is the main contribution of our work. In18 different
receivers achieve different synchronization levels with the source as a result of the initial prefetching mechanism. In order
to improve a peer’s “liveness”, playout rate is slightly altered while a parent and a client peer may switch roles if the
selected parent is behind in playback to facilitate catch up of the late peer. The connection between the synchronization of
different receivers and their ability to cooperate by serving missing frames (what we call “availability” here) is not made.

3. SYSTEM DESCRIPTION

In this section we present the details of the various components of our evaluation. We start with the two playout policies
and move on to the details of the single tree hierarchical P2P streaming system which we consider.

3.1 Playout Policies

Let e(k) denote the encoding time for thekth frame andpi(k) be its scheduled playout time at nodevi. We define the
following playout schemes:

Sync(Di): Frames that become available at peervi before their scheduled playout time are displayed at their exact playout
timepi. Frames that miss their playout time are skipped. This amounts to synchronous playout between the source and node
vi where bysynchronouswe indicate afixed offsetDi between encoding and playout times. That is:pi(k) = e(k) + Di.
Let V be the set of all peers into the system. WhenDi = D, ∀vi ∈ V , all nodes display the same frame at the exact same
time and a global synchronization is achieved.

Async(Di): After an initial buffering delayDi for the first frame, subsequent frames get displayed at the earliest possible
time following their previously displayed one. Assuming that no frames are lost in the network, we can define Async
recursively as follows:pi(k) = pi(k− 1) + T + U(k− 1), pi(1) = e(1) + Di, whereT is the nominal duration of a frame
andU(k − 1) is the duration of a possible underflow that follows the presentation of framek − 1. If frame k is readily
available after the presentation of framek − 1 thenU(k − 1) = 0.

Sync and Async stand at the two extremes of the spectrum of playout policies from delay to data preserving. Of course
there exists intermediate policies in this spectrum, e.g., those that apply modified playout rates depending on the current
buffer occupancy,19 but these are rather elaborate and fall outside the scope of the current article.

3.2 Initial Tree Build-Up

We assume that nodes form a single hierarchy rooted at the video source which transmits a single-description stream. A
new peervi selects randomly a parent peervj already in the system and connects to it (we discuss reconnecting peers and
handoffs later). Nodevi selects a specific frame fromvj ’s playout buffer and starts prefetching it and all subsequent ones
for a time intervalFij which leads to the desired offsetDi between the playout of this first received frame atvi and its
encoding time at the source. We describe how to select this frame and the prefetching periodFij in Appendix A. At the
end of the prefetching period, the playout process starts. It is at this point that the differences between Sync and Async start
to materialize – the first one maintains this initial offset whereas the second one lets it increase by accepting and presenting
late frames.

3.3 Performing Handoffs

We allow a nodevi to be in either of the following two modes:

Stable mode:A node is stably connected to its parent as long as its current buffer occupancybi is above a threshold value
Bh and its parent hasn’t left the distribution tree.

Handoff mode: A node enters a handoff mode as soon as its buffer occupancy falls beneathBh or is abandoned by its
parent. The handoff amounts to selecting a new parent and connecting to it for a grace periodTg before returning to stable
mode. The grace period allows buffer build up thus avoiding cascading handoffs.

Pre-active handoffs are employed to increase the chance for gap-free transitions when the connection to the current
parent peer is not good enough, or when the latter has left the system. To perform such handoffs nodevi is supplied with
a random subsetVi ⊆ V : |Vi| = m ≤ n (n is the number of all peers in the system) of potential parents which it keeps
monitoring while in stable mode. Monitoring amounts to exchanging periodic signalling messages with each nodev ∈ Vi

containing the identity of the frame currently on display atv, as well as the newest frame inv’s playout buffer. To perform

4

the handoff,vi partitionsVi into three disjoint subsetsV A
i , V B

i , andV C
i , and connects to a random node starting fromV A

i ,
continuing withV B

i if V A
i = ∅, and withV C

i if both V A
i andV B

i are empty. The three sets are defined as follows:

• V A
i includes the known peers that have in their buffers the next missing frame forvi, i.e., the one whose id is higher by

1 from the id of the frame that is on the top of the playout buffer ofvi (positionbi).
• V B

i includes the known peers that don’t have the next missing frame forvi, but will have it in the future as their playout
point hasn’t exceeded it yet.

• V C
i includes peers inVi\(V A

i ∪ V B
i) that hold any frames thatvi doesn’t have.

Peers are selected randomly within the subsets for load balancing. The handoff is gapless only when it is done towards
a node ofV A

i . In Appendix B we present the details of partitioning the nodes ofVi into the three subsets based on the
received signalling messages from them.

4. PERFORMANCE EVALUATION

4.1 Metrics

We compare Sync(D) and Async(D) based on the following performance metrics:

Discontinuity: A discontinuity occurs when due to the unavailability of the next fresh frame(s), the last in-time rendered
frame remains on display longer than its nominal time. Under Sync, the discontinuity increases byT with each frame that
misses its scheduled playout time. Under Async, the discontinuity increases with each underflow, by an amount that equals
the duration of the underflow. We letd denote the average discontinuity ratio expressed as the average among all peers of
the total time that a peer spends viewing frozen frames to the total playback time.

Loss:Under both Sync and Async, each frame that is not displayed increases the loss byT . Under Sync, discontinuity and
loss coincide. Under Async, though, the two are different because a delayed frame causes discontinuity (underflow) but not
loss because it is displayed when it eventually arrives. During handoffs, the loss increases when the next missing frames
do not exist on the playout buffer of the parent, in which case the scheduler starts pulling and presenting whichever frame
is closer (in the future) to the next missing one. We letl denote the average loss ratio expressed as the average among all
peers of the total lost playback time experienced by a peer to the total playback time of all frames that should be presented
to the user.

Availability: We define thepeer availabilityA to be the average (over the effective duration of the stream) ratio of com-
patible pairs over all possible pairs. A pair of peers(vi, vj) is deemed compatible when each of them may serve as a
parent peer for the other without the client peer experiencing any discontinuity or loss given the following assumptions:
(1) connection to a parent peer is instant, (2) the parent peer is supplied with new frames at least at the nominal rate, and
(3) the available bandwidth between client and parent peers is at least equal to the nominal video rate . It is clear that due
to these assumptionsA is an upper bound of the real availability that can exist in practice.

Loss burst:We defineloss burstL to be the average among all peers of the average number of continuous frames lost
during a single loss event over the effective duration of the stream.

4.2 Description of Simulation Model

Initial tree formation: We assume discrete time with slot duration set equal to the frame periodT . n = 100 peers enter the
network according to a Poisson arrival process of rate 1 arrival/slot and remain in it for the entire duration of the simulation.
We start collecting statistics after all peers have commenced playback.

Video source:The normal playback rate is set to30 frames/sec, i.e., the video source at the root of the delivery tree makes
available a new frame everyT = 1

30 seconds. Frame sizes are extracted from an educational video encoded in MPEG4
format at constant bit rateRN = 256 Kbps (LectureHQ-Reisslein trace file available at20).

Available bandwidth of overlay links: We use a simple two-parameter model for obtaining the available bandwidth of
each established overlay link: parameterW captures theaverage load(or congestion level) in the network, and parameterα
captures theheterogeneityin terms of the available bandwidth of individual overlay links. We consider that at each time slot
of T seconds a directed overlay linkLji from a peervj to a peervi is “down” (rate 0) with a probabilityPji(α, W), which
we call the “overlay link drop probability” for a given heterogeneity valueα and congestion level valueW . At each time
slot when an overlay link is “up”, the value of the transmission rate is drawn uniformly at random from [RL,RH] Kbps.

5

We present the details of the employed model in Appendix C. This very simple model suffices for an initial qualitative
performance comparison between Sync and Async. The overall system being quite complex, it is not clear what more
realistic typical workloads look like, so in the end it will take a real prototype to validate our conclusions.

4.3 Experiments

In the following we describe our simulation experiments and present our results.

The number of peers isn = 100, the nominal rate of the stream isRN = 256 Kbps, the frame period isT = 1
30 seconds,

when a link is “up” its rate is drawn uniformly at random from the range[0, 1024]. All nodes useDi = D = 150 · T
seconds, i.e., initially they prefetch up to 150 frames, which is also their buffer capacityBc = 150. The buffer threshold
for triggering a handoff isBh = 10 frames , the grace period isTg = 4 ·Bh · T and the time between a disconnection and
reconnection to a new parent peer isTh = 5 · T .

Our control parameters are the heterogeneityα, taking values in [0.8,2], and the average loadW taking values in
[5000,7000]. These ranges make a medium to high percentage of overlay links have enough rate to support the nominal
stream rate (see Fig. 6(d)). Each simulation point in our results is the average of the outcomes of 100 independent runs
each of which simulated 50000 time slots of system operation. In each graph the95th-percentile confidence interval is
drawn.

Experiment 1 (Unlimited upload capacity, Global information): In this experiment each peer can serve an unlimited
number of downstream peers and has full knowledge of the buffer contents of all other peers i.e.,m = 100.

In Fig. 1(a) we plot the loss ratiol against the congestion levelW , for various heterogeneity valuesα under Sync(D)
and Async(D) playout. As it may be seen, Async exhibits a much higher loss throughout the depictedα,W space. For
example, forα = 0.8 andW = 7000 Async has loss ratio 24% whereas Sync has only 1.2%. Increasing congestion
hurts both policies as fewer links have enough effective rate (factoring in the up/down transitions) to support the stream,
the damage, however, is always worse for Async. Also, for a given congestion level, the loss decreases with increasing
heterogeneity, for both policies. This is expected because under high heterogeneity, very few connections have a small
available rate, while the majority of them have medium to high rate thus, all together, more overlay links can support
the nominal rate under high heterogeneity. In Fig. 1(b) we plot the discontinuity ratiod and the loss ratiol under Async
only. Both ratios seem to be pretty close (see discussion later). In Fig. 1(c) we plot the peer availabilityA, which we use to
interpret the previous results on loss and discontinuity. Sync exhibits high availability, close to 1, which decreases slowly as
the link rates fall (i.e., with higherW and lowerα). Under Async, deteriorating rates de-synchronize the different playout
points, as different nodes face different underflow periods. Consequently, the buffer contents become de-correlated which
implies smaller availability of alternative parents which can provide for gapless handoffs. Such, gap-inducing handoffs
make Async perform worse with respect to both discontinuity and loss.

Losses occur in Sync whenever a frame is not available at its scheduled playout. Frame lateness can be caused from
the artificial jitter we introduce with the aforementioned on/off model for overlay links. For example when the established
link to the parent goes off and the buffer level falls beneath the handoff threshold, a node can become underflowed if the
new parent cannot feed it immediately with missing frames during grace period or if the buffer drains during the handoff.
In Async such phenomena cause only discontinuity, whereas losses occur only when connection to a peer with later than
the required frames. Also, recall that for the Sync case a freeze in playback implies also loss of content; thus, a period of
discontinuity is also a period of frame loss while frame loss can not exist without discontinuity. The loss ratio in this case
represents also the average percentage of playback time that a user experiences an annoying disruption. In the Async case a
discontinuity period is not necessarily followed by loss and a loss does not necessarily happens after a discontinuity period.
In this case loss ratio represents only the average percentage of content never presented to a peer while the experienced by
a user disruption in playback is much higher.

To make the above more clear, we conduct a single simulation run forα = 0.8,W = 7000 and log at every slot a
single peer’svi buffer levelbi, current offset from the sourceDi(t) and availabilityAi(t), for both policies. A peer’s
vi availability Ai(t) at timet is defined to be the ratio of peers which are compatible tovi to the total number of peers
in the system. This is an upper bound to the percentage of peers that may serve as parents forvi at timet facilitating a
disruption-less handoff.
In the Async case a buffer underflow (see Fig.2(a), time period 35000-40000) increases peer’s offset (see Fig.2(b)) while
severely decreases availability (see Fig.2(c)) since as its playout point diverges from the playout points of other peers

6

 0.0001

 0.001

 0.01

 0.1

 1

 7000 6500 6000 5500 5000

Lo
ss

 R
at

io
 l

Congestion Level W

Async(D),α=0.8
Async(D),α=1
Async(D),α=2
Sync(D),α=0.8
Sync(D),α=1
Sync(D),α=2

 0.001

 0.01

 0.1

 1

 7000 6500 6000 5500 5000

R
at

io

Congestion Level W

d, α=0.8
d, α=1
d, α=2
l, α=0.8
l, α=1
l, α=2

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 7000 6500 6000 5500 5000

P
ee

r
A

va
ila

bi
lit

y
A

Congestion Level W

Async(D),α=0.8
Async(D),α=1
Async(D),α=2
Sync(D),α=0.8
Sync(D),α=1
Sync(D),α=2

(a) (b) (c)

 0.0001

 0.001

 0.01

 0.1

 1

 7000 6500 6000 5500 5000

Lo
ss

 R
at

io
 l

Congestion Level W

Async(D),α=0.8
Async(D),α=1
Async(D),α=2
Sync(D),α=0.8
Sync(D),α=1
Sync(D),α=2

 0.001

 0.01

 0.1

 1

 7000 6500 6000 5500 5000

R
at

io

Congestion Level W

d, α=0.8
d, α=1
d, α=2
l, α=0.8
l, α=1
l, α=2

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 7000 6500 6000 5500 5000

P
ee

r
A

va
ila

bi
lit

y
A

Congestion Level W

Async(D),α=0.8
Async(D),α=1
Async(D),α=2
Sync(D),α=0.8
Sync(D),α=1
Sync(D),α=2

(d) (e) (f)

 0.0001

 0.001

 0.01

 0.1

 7000 6500 6000 5500 5000

Lo
ss

 R
at

io
 l

Congestion Level W

Async(D),α=0.8
Async(D),α=1
Async(D),α=2
Sync(D),α=0.8
Sync(D),α=1
Sync(D),α=2

 0.0001

 0.001

 0.01

 0.1

 7000 6500 6000 5500 5000

R
at

io

Congestion Level W

d, α=0.8
d, α=1
d, α=2
l, α=0.8
l, α=1
l, α=2

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 7000 6500 6000 5500 5000

P
ee

r
A

va
ila

bi
lit

y
A

Congestion Level W

Async(D),α=0.8
Async(D),α=1
Async(D),α=2
Sync(D),α=0.8
Sync(D),α=1
Sync(D),α=2

(g) (h) (i)

 0.0001

 0.001

 0.01

 0.1

 7000 6500 6000 5500 5000

Lo
ss

 R
at

io
 l

Congestion Level W

Async(D),α=0.8
Async(D),α=1
Async(D),α=2
Sync(D),α=0.8
Sync(D),α=1
Sync(D),α=2

 0.0001

 0.001

 0.01

 0.1

 7000 6500 6000 5500 5000

R
at

io

Congestion Level W

d, α=0.8
d, α=1
d, α=2
l, α=0.8
l, α=1
l, α=2

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 7000 6500 6000 5500 5000

P
ee

r
A

va
ila

bi
lit

y
A

Congestion Level W

Async(D),α=0.8
Async(D),α=1
Async(D),α=2
Sync(D),α=0.8
Sync(D),α=1
Sync(D),α=2

(j) (k) (l)

Figure 1. Results from (a)(b)(c) experiment 1,(d)(e)(f) experiment 2,(g)(h)(i) experiment 3 (j)(k)(l) experiment 4.

gradually less peers are able to serve the peer with the required frames. This leads sooner or later to connection to a parent
peer with loss of content, the peer has to consume later frames, which restores its offset at a lower value and availability at
a higher value. This way in the Async case offset and availability fluctuate through time.
In the Sync case a buffer underflow (see Fig.2(d), time period 0-2000) does not affect the peer’s offset as expected (see
Fig.2(e)) while it lowers availability (see Fig.2(f)) which is kept at high levels during all times due to the fact that since
playout points are the same among peers, buffer contents are highly correlated.

In our system setup in order to minimize the probability of experiencing a buffer underflow a peer seeks for another
parent when its buffer level falls to the buffer threshold. However, after reconnection to another parent, a buffer underflow
may not be avoided during the grace period even if after the end of that period when buffer level is checked again against
the buffer threshold it is found to be above the threshold and thus it is decided that the connection is good enough. So a
low connection rate during that period may lead to a buffer underflow and then a rate improvement to enable filling the

7

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50000 40000 30000 20000 10000

B
uf

fe
r

Le
ve

l b
i (

fr
am

es
)

Simulation Time (slots)

 150

 200

 250

 300

 350

 400

 450

 50000 40000 30000 20000 10000

D
i(t

)
(f

ra
m

es
)

Simulation Time (slots)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50000 40000 30000 20000 10000

A
va

ila
bi

lit
y

A
i(t

)

Simulation Time (slots)

(a) (b) (c)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50000 40000 30000 20000 10000

B
uf

fe
r

Le
ve

l b
i (

fr
am

es
)

Simulation Time (slots)

 152

 151

 150

 149

 148
 50000 40000 30000 20000 10000

D
i(t

)
(f

ra
m

es
)

Simulation Time (slots)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50000 40000 30000 20000 10000

A
va

ila
bi

lit
y

A
i(t

)

Simulation Time (slots)

(d) (e) (f)
Figure 2. A single peer’s buffer level, offset and availability over time during a single simulation run of experiment 1 fora = 0.8, W =
7000 under the (a)(b)(c) Async policy ,(d)(e)(f) Sync policy.

buffer with missed frames waiting in the transmission queue. This fact explains how collectively buffer contents become
decorrelated in the Async case.

Experiment 2 (Limited upload capacity, Global information): In this experiment peers have full knowledge of the
buffer contents of all other peers i.e.,m = 100, but can support only a limited number of downstream peers: the source
can support up to 10 peers; all other peers can support up to a number taken uniformly at random from the range [1,10]
when joining the streaming hierarchy.

In Fig. 1(d) we plot the loss ratiol under Sync(D) and Async(D) playout. Sync exhibits almost the same loss ratiol as in
experiment 1 (see Fig. 1(a)) and seems unaffected by the node outdegree assumed adopted in this experiment. Surprisingly
Async exhibits lower loss ratio than before in experiment 1 but still remarkably higher than Sync. The same observation
holds for the discontinuity ratiod exhibited by Async which takes similar values with the loss ratiol (see Fig. 1(e)). The
behavior changes withα, W as described in experiment 1. In Fig. 1(f) we plot the peer availabilityA which is close to 1
for the Sync and around 0.75 for Async (i.e., Async is benefited compared to experiment 1 where it got 0.55).

The observed improvement in the performance of Async is attributed to the fact that in the current scenario, because
of the limited upload capacity of peers, peers that fall behind due to underflows, do not easily find peers to which they can
perform a gapless handoff. Therefore, most of the times they have to induce a gap and connect to a peer that is further
ahead in time. The gap hurts momentarily, but in the long run is helpful as it leads implicitly to less divergence of playout
points. On the other hand Sync exhibits almost the same performance as in experiment 1 since it manages to always retain
a very high availability thus it is less likely for a peer not to find an appropriate peer to cooperate effectively.

Experiment 3 (Unlimited upload capacity, Partial information): In this experiment each peer can serve an unlimited
number of downstream peers and has knowledge of the buffer contents of only a random subset of 10 peers out of all the
peers i.e.,m = 10.

In Fig. 1(g) we plot the loss ratiol under Sync(D) and Async(D) playout. Sync again exhibits almost the same loss
ratio l as in experiments 1,2. Async exhibits even lower loss ratiol than in experiment 2 but still higher than Sync. The
same observation holds for the discontinuity ratiod (see Fig. 1(h)).

In Fig. 1(i) we plot the peer availabilityA which is again close to 1 for the Sync case while for the Async takes even
higher values (above 0.9).

The performance of Sync and Async are more close in this experiment because peers following the Async policy are
more likely to be forced to perform loss inducing handoffs due to the fact that a peer during the peer selection process

8

 0

 5

 10

 15

 20

 25

 30

 35

 5000 5500 6000 6500 7000

Lo
ss

 b
ur

st
 L

Congestion level W

Async, mean
Async, standard deviation
Sync, mean
Sync, standard deviation

Figure 3. Loss burst (mean and standard deviation) versusW for α = 0.8 in experiment 4.

knows only a random subset of all the peers in the system. This way peers’ playout points become almost synchronized
and buffer contents become almost correlated, resulting to high availability. Sync as explained also before retains a very
high availability thus performance is unaffected.

Experiment 4 (Limited upload capacity, Partial information): In this experiment peers have knowledge of the buffer
contents of only a random subset of 10 peers out of all the peers i.e.,m = 10, while they can support only a limited number
of downstream peers: the source can support up to 10 peers; all other peers can support up to a number taken uniformly at
random from the range [1,10] when joining the streaming hierarchy.

While Sync performance seems unaffected by restrictions induced in this experiment, Async exhibits a higher perfor-
mance more close to that of Sync’s (see Fig. 1(j),Fig. 1(k)).

In Fig. 1(l) we plot the peer availabilityA which is close to 1 for the Sync case while for the Async takes even higher
values (above 0.93). The reason for this performance improvement is due to the reasons already mentioned for experiments
2 and 3.

Experiments 2,3 and 4 point to that Async’s performance is favored by randomness in selection since the latter assists
in keeping playout points “near-in-time”.

Study of the loss burstiness:In Fig.3 we plot loss burstL and its standard deviation forα = 0.8 and variousW
values for experiment 4. We can observe that although forα = 0.8 in experiment 4 Sync and Async exhibit pretty close
values to loss ratio, in Async the loss burst is remarkably higher while its standard deviation is close to that of Sync. This
is translated to that Sync has more losses of few frames while Async less losses of a large number of frames. It is widely
accepted that although many losses of few frames may not disturb a viewer, on the contrary losses of many frames may
result to uncomprehensible video material.

The effect of the buffer size:As explained earlier when using the Async policy a rate decrease below the nominal rate
during the grace period may lead to a buffer underflow and a freeze in playback. A following drastic rate increase before
the end of the grace period enables the peer to fill up the buffer with the required frames and may lead to a buffer overflow.
Thus as the buffer size increases the probability of a buffer overflow decreases. This leads Async policy to perform slightly
better as buffer increases under our rate change model while Sync is unaffected by a buffer size increase since its buffer
requirements are always constant; in Sync a missed frame is a lost frame, thus the maximum buffer utilization isD/T . It
is expected that under a more bursty connection rate model, Async will be significantly favored by a buffer size increase
since buffer overflow events are expected to be more often. Avoiding a buffer overflow into a peer not only helps the peer
to assure more time ahead of continuous playback but also to serve as better resource of frames for other peers. We omit
the results from the experiments we conducted varying the buffer size since, although better, performance is pretty close to
the one already presented.

The effect of keeping past frames:Up to now peers were assumed to be keeping only a sliding window of future
frames. We now let each peer keep a number of past frames i.e., frames that have already been rendered at the local playout
scheduler. We retain the terminology used till now and call “buffer” the storage space allocated for undisplayed (future)
frames. We use an additional “past frames’ buffer” to keep past frames. We repeat experiment 1 forα = 0.8, W = 7000,
Bc = 150 and various sizes of the past frames’ buffer. In Fig.4(a) we plot loss against the number of past frames kept while
in Fig.4(b) we plot the availability. One may verify that Sync is oblivious to the number of past frames kept whereas Async
is favored from the existence of past frames at each peer. Loss decreases until the number of past frames kept reaches the

9

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 50 150 300 700 1000

Lo
ss

 R
at

io
 l

Past frames kept

Async
Sync

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 50 150 300 700 1000

P
ee

r
A

va
ila

bi
lit

y
A

Past frames kept

Async
Sync

(a) (b)

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

 50 150 300 700 1000

Lo
ss

 R
at

io
 l

Past frames kept

Async
Sync

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 50 150 300 700 1000

P
ee

r
A

va
ila

bi
lit

y
A

Past frames kept

Async
Sync

(c) (d)

Figure 4. The effect of the number of past frames kept at each peer observed forα = 0.8, W = 7000, Bh = 150 in (a)(b) experiment
1, (c)(d) experiment 3.

value 300 at which point it remains flat (this amount of buffer space suffices to mask the worst kind of jitter that can appear
under our on/off link model).

Under a similar setup we run experiment 3. The behavior is similar with the only difference that loss ratio is lower than
before for past frames kept less than 300 for the reason that divergence of playout points is not favored due to limitations
in peer selection (see Fig.4(c),(d)).

Finally, selectively we conducted simulation runs for peer populations larger than 100 peers. Observations and conclu-
sions presented in this section prove to be also valid when the number of peers in the system scales up.

5. DISCUSSION

In this work we examined playout scheduling in jitter-prone environments and “fragile” tree topologies in order to substan-
tiate the maximum damage from using the wrong playout policy in such a setting. We summarize our results and make a
side by side comparison between Sync and Async:

• Sync performs consistently better than Async in terms ofdiscontinuityandlosswhile both policies exhibit higher per-
formance as heterogeneity increases and congestion level decreases.

• Sync’s performance is unaffected by restrictions in peer selection since it maintains high availability needing more or
less only to achieve a good connection to some peer. Async’s performance increases with randomness in peer selection
since peers are forced not to diverge a lot by performing handoffs that induce loss.

• Sync policy requires constant buffer size equal toD
T . Async is favored by a buffer size increase.

• In Sync a discontinuity period and a loss period coincide. This is not the case in Async where a discontinuity period
maybe followed or not by loss while at the same time a loss not necessarily follows a discontinuity period.

• Sync is able to satisfy a strict interactivity requirement since it maintains for each viewer a constant offset between
encoding and playback times. On the contrary, in Async the offset fluctuates through time in an unpredictable manner.

• While Sync is oblivious to the existence of past frames at each peer, Async is highly favored. However it is not possible
to know a priori how many past frames should be kept in order Async to exhibit a high performance (close to Sync’s
performance) since this would require knowledge of the network conditions peers will face.

10

Although in this work we limited to single distribution trees, we believe that our observations will also carry through
to mesh-like topologies.1 Measurement studies of popular P2P streaming systems supporting distribution over a mesh
overlay topology like PPLIVE21,22 justify our intuition. PPLIVE employs an Async alike playout policy, in which peers
maintain large buffers to store recently presented chunks and chunks scheduled to be played in the future while constantly
exchanging “buffer maps”. This measurement study reports that some peers watch frames in a channel minutes behind
others while at the same time large average freezing periods close to 1 min are observed. It seems that the adoption of the
Sync policy in such a system would greatly improve its performance while it would eliminate the control overhead since
availability would be high thus even a random selection of a list of parents would be sufficient.

6. CONCLUSIONS

The adoption of a synchronized playout policy in a P2P live streaming system results in “positive correlation” of buffer
contents among peers increasing this way the number of upstream relay nodes from which a node can pull frames and thus
boost the playout quality of P2P streaming systems. The inherent advantage offered by the P2P architecture is preserved
and can be exploited effectively on the benefit of playout quality.

APPENDIX A. SELECTING THE FIRST FRAME AND THE INITIAL BUFFERING DELAY

A peer’svi playout buffer can be thought to be draining from the bottom (position1i holding the currently displayed frame)
and filling from the top (the most recently received frame being at positionbi, which is also the buffer occupancy at time
t). Let id{xi} denote the id of the frame at positionxi of peer’svi buffer. LetBi be the set of the ids of all frames in
peer’svi buffer i.e.,Bi = {id(1i)..id(bi)}. Let Ci(t) denote thecredit of peervi at time t, defined to be equal to its
remaining discontinuity-free playout time if its input (feeding) rate falls to zero at timet. We can define the credit as
follows: Ci(t) = pi(id{bi}) + T − t.

Consider that at timet the new node isvi and its parent isvj
†. There are three distinct cases:

• vj = v0, i.e. vj is the source of the transmission. Thenvi gets the most recently encoded frame and those that will
follow and starts displaying themFij = Di time units after the connection timet.

• vj 6= v0 and assume thatvj is not in its initial prefetching period.vi starts receiving fromvj the frame at buffer position
xj , 1j ≤ xj ≤ bj and all subsequent ones and starts displaying themFij = pj(id{xj})− t+Di−Dj(t) time units after
the connection timet. Dj(t) denotes the offset between encoding and playout times at timet to nodevj . For the Sync
caseDj(t) is constant∀ t ‡ . The initial targeted offsetDi can only be achieved only ifpj(id{xj})− t > Di −Dj(t).
Given that this condition is satisfiedpi(id{1i}) = pj(id{xj})+Di−Dj(t). We setxj = bj which amounts to retrieving
from vj its newest frame and all subsequent ones. This way the period for buffer buildup subject to the targetedDi is
maximized, giving the chance to prefetch the largest number of frames into the buffer while achievingDi. This would
happen under the assumption that the parent peer will be regularly supplied during that period by its ancestor peer. Thus
if xj = bj , Fij can be also expressed asFij = Cj(t)− T + Di −Dj(t).

• vj 6= v0 and assume thatvj is in its initial prefetching period. LetFj(t) be the remaining time until nodevj starts
playback. Since nodevj will start playback with an initial offset ofDj afterFj(t) then ifvi starts receiving fromvj the
frame at buffer positionxj , Fij = Fj(t) + pj(id{xj})− t + Di −Dj given thatFj(t) + pj(id{xj})− t > Di −Dj .
If xj = bj thenFij = Fj(t) + Cj(t)− T + Di −Dj .

APPENDIX B. PARTITIONING VI

Figure 5 illustrates all the cases of possible playout buffer contents’ correlations between a peervi performing handoff
and a candidate parent peervj . The distinct cases become clear in the following where the setsV A

i , V B
i , V C

i ⊆ Vi are
determined given the offsetsDi(t), Dj(t) and the credit valuesCi(t), Cj(t) at timet of peersvi andvj respectively.

†vi andvj are considered to have synchronized clocks.
‡For Di < Dj(t) i.e. vi is less interactive that its parent the received frame will be presented atvi, Dj(t) − Di earlier than atvj

while for Di > Dj(t) the received frame will be presented atvi, Di −Dj(t) later than atvj . ForDi = Dj(t) it will be presented to
both the same time.

11

Currently displayed frame

Playback time

(1) (2) (3)

(a)

(b)

(c)

() ()i jD t D t= () ()i jD t D t> () ()i jD t D t<

() ()i jC t C t=

() ()i jC t C t>

() ()i jC t C t<

() () ()i i jC t D t D t= −

() () ()i i jC t D t D t> −

() () ()i i jC t D t D t< −

() () ()j j iC t D t D t= −

() () ()j j iC t D t D t< −

() () ()j j iC t D t D t> −

() () () ()j i j iC t C t D t D t> + −

() () ()i i jC t D t D t> −

() () () ()i j i jC t C t D t D t> + −

() () ()j j iC t D t D t> −

(d)

() ()i jD t D t−

() ()j iD t D t−
iv

jv

iv

iv

jv

jv

Node : Buffer contentsjv

jv

jv

jv

jv

jv

jv

iv

iv

iv

iv iv

iv

iv iv

jv
jv

() () () ()i j i jC t C t D t D t≤ + − () () () ()j i j iC t C t D t D t≤ + −

Figure 5. An illustration of all the possible cases of playout buffer contents’ correlations between a peervi performing handoff and a
candidate parent peervj .

• If Di(t) = Dj(t), peersvi andvj have the same offsets between playback and encoding times, thus at timet they both
view the same frame. Ifvj has more buffered frames for future playback thanvi, Ci(t) < Cj(t) thenvj ∈ V A

i sincevi

will be able to find the next frame to the one on top of its buffer to peer’svj buffer (Fig.5,1.a). IfCi(t) ≥ Cj(t) then
vj ∈ V B

i (Fig.5,1.b,1.c).
• If Di(t) > Dj(t), peervj precedes in playback peervi displaying at timet a later frame than the one displayed atvi. If

Ci(t) ≥ Di(t)−Dj(t) ∧ Ci(t) ≤ Cj(t) + Di(t)−Dj(t) thenvj ∈ V A
i (Fig.5,2.b, 2.c). IfCi(t) > Di(t)−Dj(t) ∧

Ci(t) > Cj(t) + Di(t)−Dj(t) thenvj ∈ V B
i (Fig.5,2.d). IfCi(t) < Di(t)−Dj(t) thenvj ∈ V C

i (Fig.5,2.a).
• If Di(t) < Dj(t), peervi precedes in playback peervj . If Cj(t) ≥ Dj(t) −Di(t) ∧ Cj(t) ≤ Ci(t) + Dj(t) −Di(t)

thenvj ∈ V B
i (Fig.5,2.b, 2.c). IfCj(t) > Dj(t)−Di(t) ∧ Cj(t) > Ci(t) + Dj(t)−Di(t) thenvj ∈ V A

i (Fig.5,2.d).
If Cj(t) < Dj(t)−Di(t) thenvj ∈ V B

i (Fig.5,2.a).

APPENDIX C. DETAILED MODEL FOR THE AVAILABLE BANDWIDTH OF OVERLAY LINKS

We consider that at each time slot ofT seconds a directed overlay linkLji from a peervj to a peervi is “down” with a
probabilityPji(α,W) called the overlay link drop probability for a given heterogeneity valueα and congestion level value
W . Pji(α,W) is defined at start∀ i, j according to following procedure:

1. An indexed listK of pairs (each pair represents a directed overlay link) is produced after a random permutation of
all pairs.

2. Probability mass is distributed according to a generalized power law with parameterα and a probabilityP ′i is as-
signed to theith directed link of the list produced in the previous step∀i.

3. The list of produced probabilities in the previous step is traversed from the start and each probabilityP ′i is multiplied
by a weight factorW . If the result is less than 1 thenPi = P ′i · W elsePi = 1 and the extra massP ′i · W − 1
is distributed proportionally to the rest of the following link drop probabilities in the list. This step repeats until all
items of the list have been visited. This way the sum of probabilities is the same under the sameW and differentα
values.

4. ProbabilityPi is assigned to theith directed link inK.

12

Steps 2 and 3 are presented in detail in Algorithm 1. By using different valuesa we model different levels of heterogeneity
in terms of expected overlay link rates while the weightW captures the overlay network’s congestion level. At each time
slot when an overlay link is “up”, the value of the transmission rate is drawn uniformly at random from the range [RL,RH]
Kbps.

In Fig.6(a) we drawPi versusi for variousα values and a constant valueW while in Fig.6(b) we drawPi versusi for
variousW values and a constant valueα. The number of peers is 100 and thus the number of distinct directed overlay links
that can exist by considering all possible pairs is 9900. In Fig.6(c) we present the percentage of the overlay links which
are expected to support a rate above the nominalRN = 256 Kbps versusα andW when link rate is drawn uniformly at
random from [0,1024] when a link is “up”. In Fig.6(d) the average of expected overlay link rates is drawn versusα andW
also when link rate is drawn uniformly at random from [0,1024] when a link is “up”. Notice that according to our algorithm
the average is kept constant for the sameW and differentα values.

Algorithm 1 Generation of the Overlay Link Drop Probabilities

1: m = n · (n− 1) {m is the number of directed overlay links}
2: K = (

∑m
i=1

1
ia)−1

3: for i = 1 to m do
4: Pi = K

ia

5: Pi = Pi ·W
6: end for
7: for i = 1 to m do
8: extramass = max(0, Pi − 1)
9: Pi = min(1, Pi)

10: if extramass > 0 then
11: s = 0
12: for j = i + 1 to m do
13: s = s + Pj

14: end for
15: for k = i + 1 to m do
16: Pk = Pk + extramass·Pk

s
17: end for
18: end if
19: end for

REFERENCES
1. N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A comparative study of live p2p streaming approaches,” inINFOCOM

2007, Anchorage, Alaska,6-12 May 2007.
2. N. Laoutaris and I. Stavrakakis, “Intrastream synchronization for continuous media streams: A survey of playout schedulers,”

IEEE Network Magazine16(3), May 2002.
3. S. Rao,Establishing the viability of end system multicast using a systems approach to protocol design, Carnegie Mellon University,

Phd Thesis, Technical Report CMU-CS-04-168, Oct. 2004.
4. D. L. Hayes,Advanced copyright Issues on the internet, Fenwick and West LLP, 2007.
5. H. Deshpande, M. Bawa, and H. Garcia-Molina,Streaming live media over peer-to-peer network, Stanford University, Technical

Report, 2001.
6. Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system multicast,”IEEE Journal on Selected Areas in Communi-

cation (JSAC), Special Issue on Networking Support for Multicast20(8), 2002.
7. S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer multicast,” inACM Sigcomm 2002, Pittsburgh,

Pennsylvania, August 2002.
8. D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: high bandwidth data dissemination using an overlay mesh,” inACM

SOSP ’03, New York, USA, Oct. 2003.
9. D. A. Tran, K. A. Hua, and T. T. Do, “A peer-to-peer architecture for media streaming,”IEEE Journal on Selected Areas in

Communication (JSAC)22(1), January 2004.
10. M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Splitstream: High-bandwidth multicast in a

cooperative environment,” inACM SOSP ’03, New York, USA, Oct. 2003.

13

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2000 4000 6000 8000 10000

P
ro

ba
bi

lit
y

(Directed) Overlay Link Index

α=0, W=3500
α=0.1, W=3500
α=0.3, W=3500
α=0.7, W=3500

α=1, W=3500
α=1.3, W=3500
α=1.7, W=3500

α=2, W=3500

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2000 4000 6000 8000 10000

P
ro

ba
bi

lit
y

(Directed) Overlay Link Index

α=0.7, W=1000
α=0.7, W=2000
α=0.7, W=3000
α=0.7, W=4000
α=0.7, W=5000
α=0.7, W=6000
α=0.7, W=7000

(a) (b)

 0
 0.5

 1
 1.5

 2
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 0
 20
 40
 60
 80

 100

percentage

α
W

percentage

 0
 0.5

 1
 1.5

 2
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 100
 150
 200
 250
 300
 350
 400
 450
 500

Avg Expected Link Rate

α
W

Avg Expected Link Rate

(c) (d)

Figure 6. (a) Probability of an overlay link to be “down” versus the overlay link index for a constantW and variousα values, (b)
Probability of an overlay link to be “down” versus the overlay link index for a constantα and variousW values, (c) Percentage of
directed overlay links that their expected rate is greater or equal to 256Kbps versusα andW when link rate is drawn uniformly at
random from [0,1024] when a link is “up”, (d) Average expected link rate versusα andW when link rate is drawn uniformly at random
from [0,1024] when a link is “up”.

11. V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, “Distributing streaming media content using cooperative
networking,” inACM NOSSDAV 2002, Miami Beach, FL, USA, May 2002.

12. V. Venkataraman, K. Yoshida, and P. Francis, “Chunkyspread: Heterogeneous unstructured end system multicast,” inICNP 2006,
Santa Barbara, California, 12-15 November 2006.

13. A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems,” in
IFIP/ACM International Conference on Distributed Systems Platforms (Middleware), pp. 329–350, Heidelberg, Germany, Novem-
ber 2001.

14. X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Donet/coolstreaming: A data-driven overlay network for peer-to-peer live media
streaming,”Proc. INFOCOM 20053, pp. 2102–2111, Miami, FL, USA, 13-17 March 2005.

15. N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-based streaming,” inINFOCOM 2007, Anchorage,
Alaska,6-12 May 2007.

16. Bittorent, http://www.bittorrent.org.
17. C.-C. Yeh and L. S. Pui, “On the frame forwarding in peer-to-peer multimedia streaming,” inWorkshop on Advances in Peer-to-Peer

Multimedia Streaming (In conjunction with ACM Multimedia 2005), 11 Nov. 2005, Hilton,Singapore.
18. H. Jiang and S. Jin, “Nsync: Network synchronization for peer-to-peer streaming overlay construction,” inACM NOSSDAV ’06,

Newport, Rhode Island, May 2006.
19. N. Laoutaris, B. V. Houdt, and I. Stavrakakis, “Optimization of a packet video receiver under different levels of delay jitter: An

analytical approach,”Performance Evaluation55(3-4), pp. 251–275, 2004.
20. V. T. R. Group, http://trace.eas.asu.edu.
21. X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, “Insights into pplive: A measurement study of a large-scale p2p iptv system,” in

Workshop on Internet Protocol TV (IPTV) Services over World Wide Web (in conjunction with WWW2006), Edinburgh, Scotland,
May 2006.

22. PPLIVE, http://www.pplive.com.

14

