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Abstract. Security of cryptographic symmetric primitives is studied in
this thesis. Pseudorandomness characteristics of cryptographic sequences
are analyzed, resulting in new methods for constructing sequences with
high linear complexity. Connections between nonlinear complexity and
other cryptographic criteria are also established, whereas a new recursive
algorithm for efficiently computing the minimal feedback shift register
which generates a given sequence is provided. Furthermore, security is-
sues of cryptographic Boolean functions that are used in cryptographic
systems as components of sequence generators are studied; on this direc-
tion, new efficient formulas for determining best quadratic approxima-
tions of several classes of Boolean functions are derived, leading to new
design principles that should be considered in the construction of secure
cryptosystems.
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1 Introduction

Cryptographic algorithms are categorized into two families, namely symmetric or
secret-key algorithms and public-key algorithms [22]. Symmetric algorithms are
the only ones that achieve several important functionalities such as high speed
and low-cost encryption and are used in conjunction with public-key techniques
in order to safely distribute the secret key among the members of a group.
Symmetric algorithms, being further classified into block ciphers and stream
ciphers, are used in many applications. Especially stream ciphers are widely used
to provide confidentiality in environments characterized by a limited computing
power or memory capacity, and the need to encrypt at high speed. Typical
examples of stream ciphers are the A5/1 and E0 algorithms, employed in GSM
communications and Bluetooth protocol respectively.

In general, a stream cipher consists of a binary keystream generator, whose
output k1k2 . . . is added modulo 2 to the original message m1m2 . . ., leading
to the encrypted message (ciphertext) c1c2 . . . (Fig. 1). Shift registers of linear
(LFSR) or nonlinear (NFSR) feedback are a basic building block of keystreams
generators in stream ciphers. The security of such systems is strongly contingent
on the pseudorandomness characteristics of the keystream. The pseudorandom-
ness is attributed to several factors; amongst others, an important cryptographic
� Dissertation Advisor: Nicholas Kalouptsidis, Professor.
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Fig. 1. Basic functionality of a stream cipher

feature of a sequence is its nonlinear complexity or simply complexity, defined
as the length of the shortest feedback shift register that produces the sequence.
Especially the linear complexity, i.e. the length of the shortest LFSR generating
a given sequence, is important for assessing resistance to cryptanalytic attacks,
like the Berlekamp–Massey algorithm (BMA) [19]. However, determining the
connections and trade-offs between several cryptographic criteria of sequences
remains an open problem. Since most constructions are ad-hoc, finding good
generators is of great theoretical and practical value.

High linear complexity keystreams are generated by applying Boolean func-
tions either as filters [7][26] or combiners [26], to one or several LFSRs respec-
tively. In any case, the highest value attainable by linear complexity depends
on the degree of the function [7]. The problem of determining the exact linear
complexity attained by filterings is open. Two classes of filters have been intro-
duced, namely equidistant [26] and normal [8], that allow to derive lower bounds
on the linear complexity. Given a filter of degree k and a LFSR of length n whose
characteristic polynomial is primitive over F2n , the lower bound on the linear
complexity of keystreams is

(
n
k

)
for both types of filters. These results rely on

the so-called Rueppel’s root presence test [26].
On the contrary, the general case of nonlinear complexity has not been stud-

ied to the same extent. In [4], a directed acyclic word graph is used to exhibit the
complexity profile of sequences over arbitrary fields. An approximate probability
distribution for the nonlinear complexity of random binary sequences is derived
in [3]. Recent results are provided in [24], where the minimal nonlinear FSR
generating a given sequence is computed via an algorithmic approach, and [25]
where the special case of a quadratic feedback function of the FSR is treated.

Apart from the pseudorandomness characteristics of keystream, many attacks
on conventional cryptographic algorithms are related to some properties of the
underlying Boolean functions. The formalization of well-known attacks against
LFSR-based stream ciphers have led to the definitions of some relevant quanti-
ties related to Boolean functions. These quantities measure the resistance of a
cryptosystem to classical attacks. For instance, high algebraic degree of nonlin-
ear filters or combiners is prerequisite for constructing sequences achieving high
linear complexity. Furthermore, the nonlinearity of Boolean functions is one of
the most significant cryptographic properties; it is defined as the minimum dis-
tance from all affine functions, and indicates the degree to which attacks based
on linear cryptanalysis [21] can be prevented. With the appearance of more
recent attacks, such as algebraic [2], and low order approximation attacks [11],



Boolean functions need also have the property that they cannot be approximated
efficiently by low degree functions. Hence, the rth order nonlinearity character-
istics of Boolean functions need also be analyzed. This is known to be a difficult
task for r > 1, whereas even the second order nonlinearity is unknown for all
Boolean functions, with the exception of some special cases, or if the number of
variables n is small [1].

In this thesis, state-space representations are employed as vehicle to the study
of complexity of binary sequences. System theoretic concepts, namely control-
lability and observability, are used to characterize minimal sequence generators
[6]. Jordan canonical forms are used for the complete analysis of sequences whose
Fourier transform is not defined [15]. A new generalized discrete Fourier trans-
form (GDFT) is proposed that presents the same properties with the GDFT
defined in [20]. In addition, connections of this new GDFT with a new vecto-
rial trace representation of sequences are established that facilitate the gener-
ation of sequences with prescribed linear complexity. Furthermore, nonlinearly
filtered maximal length sequences with period N = 2n − 1 are studied under
this framework, resulting in new general classes of nonlinear filters of degree
k which generalize Rueppel’s equidistant filters and guarantee the same lower
bound

(
n
k

)
on the linear complexity [15]. The connections between the nonlinear

and Lempel-Ziv complexity are also studied, which is a well-known open prob-
lem [23]. It is shown that the eigenvalue profile of a sequence, which determines
the Lempel-Ziv complexity, also determines its nonlinear complexity profile [14].
Furthermore, for any periodic binary sequence, we establish the dependence of
the minimum achievable compression ratio on its nonlinear complexity by deriv-
ing a lower bound depending on the complexity [14]. Based on the properties of
the nonlinear complexity profile, a new efficient recursive algorithm producing
the minimal FSR of a binary sequence is developed, thus generalizing the BMA
to the nonlinear case [14],[16]. Finally, explicit formulas are proved that compute
all best quadratic approximations of a class of functions with degree 3 or 4 [9].
These results are based upon Shannon’s expansion formula of Boolean functions
and hold for an arbitrary number n of variables. The derived method reveals
new design principles for cryptographic functions. An analysis of contemporary
constructions of functions is also performed, indicating potential weaknesses if
construction parameters are not properly chosen.

This summary is organized as follows; First, Section 2 introduces the basic
definitions and settles the notation. Section 3 provides the basic results regard-
ing the linear complexity of sequences obtained by state space generators, while
Section 4 presents the new results regarding the nonlinear complexity, as well
as its connections with Lempel-Ziv complexity. The algorithmic method of com-
putating the best quadratic approximations of Boolean functions is described in
Section 5. Finally, concluding results are given in Section 6.

2 Preliminaries

Let f : F
n
2 → F2 be a Boolean function, where F2 = {0, 1}. The set of Boolean

functions on n variables is denoted by Bn. The complement of a binary variable
x will be denoted by x′ = x + 1, where “+” represents addition modulo 2.



Boolean functions are expressed in their algebraic normal form (ANF) as

f(x1, . . . xn) =
∑
e∈F

n
2

ae xe1
1 · · ·xen

n , ae ∈ F2 (1)

where the sum is taken modulo 2, e = (e1, . . . , en), while x1
i = xi and x0

i = 1. The
degree of f equals deg(f) = max{wt(e) : ae = 1}, and wt(e) is the Hamming
weight of vector e. If deg(f) = 1, 2, 3, then f is called affine (or linear if its
constant term is zero), quadratic, cubic; terms with degree k ≤ deg(f) in ANF
comprise its kth degree part . The distance of f, g ∈ Bn is wt(f + g).

Another representation , the so-called Exclusive-or Sum-Of-Products (ESOP),
occurs if the variables in (1) are taken to be in either complemented or uncom-
plemented form.

The Shannon’s expansion formula of f ∈ Bn with respect to xj is

f(x1, . . . , xn) = f0 ‖j f1 � (1 + xj)f0 + xjf1 , 1 ≤ j ≤ n

where sub-functions f0, f1 ∈ Bn−1 do not depend on xj ; they are the restriction
of f in xj = 0, 1.

The Walsh transform of f ∈ Bn at a ∈ F
n
2 is the real-valued function

χ̂f (a) =
∑

x∈ F
n
2

χf (x)(−1)φa(x) = 2n − 2 wt(f + φa) (2)

with χf (x) = (−1)f(x) and φa(x) =
∑

i aixi. The minimum distance between f
and all affine functions is determined by

NLf = min
v ∈R(1,n)

{
wt(f + v)

}
= 2n−1 − 1

2
max
a∈ F

n
2

|χ̂f (a)| (3)

and is called nonlinearity of f . An affine function v such that wt(f + v) = NLf

is a best affine approximation of f , denoted by λf , and Af is the set of all
its best affine approximations. The above can be extended to best quadratic
approximations of f , denoted by ξf , which are quadratic functions u satisfying
wt(f + u) = minu:deg(u)≤2{wt(f + u)} � NQf .

A sequence y = {yi}i≥0 with elements in the finite field F2 is said to be
ultimately periodic if there exist integers T > 0 and t0 ≥ 0 such that yi+T = yi

for all i ≥ t0. The least integer T with this property is called period of y, and t0
is its preperiod. If t0 = 0, then the sequence y is said to be periodic. If y has finite
length N , then yN � yN−1

0 denotes the whole sequence. For any 0 ≤ j < N ,
the tuple yj

0 is a prefix of yN ; for the special case that j < N − 1, such a
prefix is called proper prefix. A suffix of yN is any tuple yN−1

j , 0 ≤ j ≤ N − 1;
a proper suffix is similarly defined. Such sequences are typically generated by
FSRs satisfying a recurring relation of the form yi+n = h(yi+n−1, . . . , yi), i ≥ 0,
where n > 0 equals the number of stages of the FSR. The feedback h : F

n
2 → F2

is a nonlinear function, usually having a zero constant term, mapping elements
of the nth-dimensional vector space F

n
2 onto F2. In the case of a linear feedback,

i.e. yi+n = an−1yi+n−1 + · · · + a1yi+1 + a0yi, each LFSR is associated with its
characteristic polynomial f(z) = zn + an−1z

n−1 + · · · + a0.



Definition 1 The length of the shortest FSR generating a sequence yN is re-
ferred to as nonlinear complexity of yN , and is denoted by c(yN ). The integer-
valued sequence c(y1), . . . , c(yN ) is called nonlinear complexity profile. The linear
complexity lc(yN ) and the linear complexity profile are similarly defined.

When the LFSR generating y has the minimum possible length, then its char-
acteristic polynomial f(z) is called minimal polynomial of y.

Let the vector y = (y0 y1 · · · yN−1) contain the first N elements of a binary
periodic sequence y of period N . Let N be a divisor of 2n − 1 for some positive
integer n. The Fourier transform of y is the vector Y = (Y0 Y1 · · · YN−1) of
length N whose elements are given by

Yj =
N−1∑
i=0

yiα
ij , 0 ≤ j < N (4)

where Yj ∈ F2n and α ∈ F2n is an element of order N in the extension field F2n .
Vector y is reconstructed from Y by means of the inverse Fourier transform

yi =
N−1∑
j=0

Yjα
−ij , 0 ≤ i < N . (5)

A direct consequence of (4) is that the Fourier coefficients satisfy the conjugacy
property, i.e. Y2j mod N = Y 2

j for all 0 ≤ j < N . The linear complexity of a
periodic sequence over F2, with period N a divisor of 2n − 1 for some integer
n, equals the Hamming weight of its Fourier transform (Blahut’s theorem). A
generalized Fourier transform, that describes sequences of arbitrary period, is
defined in [20].

For any positive integer N such that gcd(N, 2) = 1 and each j ∈ ZN =
{0, . . . , N − 1}, we define the set of distinct elements Ij =

{
j, 2j, . . . , 2nj−1j

}
to be the cyclotomic coset of j, where all elements are taken modulo N and
nj = |Ij |. The least element in Ij is referred to as coset leader and the set
containing all coset leaders modulo N will be denoted by I. From the definition
of cyclotomic cosets and the conjugacy property satisfied by (4) and (5), the
Fourier transform can be equivalently written as

yi =
∑
j∈I

trnj

1 (Yjα
−ij) (6)

where Yj ∈ F2nj and the function trnj

1 (z) = z + z2 + · · · + z2nj−1
is the trace

function that maps elements of F2nj onto its prime subfield F2 [13]. The above
is called trace representation of the sequence y.

3 Linear complexity of sequences obtained by state-space
generators

In this section we focus on linear state space generators, described by

xi+1 = A xi (7a)

yi = cT xi (7b)



where xi, c are n × 1 vectors, cT denotes the transpose of c, and A is an n × n
matrix. The integer n defines the dimension of the system L. Clearly, any LFSR
can be described by (7). Any such system is denoted by L = 〈A, c, x0〉.

Proposition 1 ([5]) A linear realization L = 〈A, c, x0〉 of a periodic sequence
y with dimension n is minimal (i.e. there is no other linear realization of lower
dimension generating y) if and only if it is both controllable and observable.

Proposition 2 ([5]) Let L = 〈A, c, x0〉 and L′ = 〈A′, c′, x′
0〉 be two minimal

linear realizations of a periodic sequence y. Then, L and L′ are necessarily iso-
morphic (or equivalent) since there exists a change of coordinates P such that
it holds A′ = PAP−1, (c′)T = cT P−1, and x′

0 = P x0.

It is well-known that any matrix with coefficients in an algebraically closed
field can be put into the so-called Jordan canonical form. Thus, among all iso-
morphic minimal linear realizations L of a given sequence y, there exists one
with state transition matrix A in the Jordan canonical form.

Theorem 1 ([15]) Let L = 〈A, c, x0〉 be a linear realization of sequence y with
matrix A in the Jordan canonical form. The generator L is controllable (resp. ob-
servable) if and only if there is one Jordan block associated with each eigenvalue
and all elements of the initial state vector x0 (resp. output vector c) correspond-
ing to the last row (resp. first column) of each Jordan block are nonzero.

Theorem 2 ([15]) With the above notation, let the state transition matrix A
be diagonal. Then, the generator L is minimal if and only if the eigenvalues of
A are pairwise distinct and all elements of x0 and c are nonzero.

In this thesis it is proved (by using the above results) that, if y is a periodic
binary sequence with least period N , then it admits a diagonal realization L
over the splitting field of zN − 1 if and only if its Fourier transform exists, or
equivalently gcd(N, 2) = 1. In this case, the initial state of the diagonal realiza-
tion with dimension N equals its Fourier transform. Hence, we directly prove
that the dimension of a minimal realization of any such sequence equals its lin-
ear complexity. Similar results for the more interesting general case of sequences
whose Fourier transform is not defined are also proved. Let z = (z1 z2 · · · zm)T

be an m × 1 vector with elements over F2n . We define the block-trace function

trn
1 (z) =

(
trn

1 (z1) trn
1 (z2) · · · trn

1 (zm)
)T (8)

that maps vectors of F
m
2n to elements of the vector space F

m
2 . Then, we prove

the following.

Theorem 3 Let y be a binary sequence of period N = 2em, with m odd and
e > 0, and minimal polynomial f(z) factored as

f(z) = f1(z)d1f2(z)d2 · · · fr(z)dr (9)
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Fig. 2. A nonlinear filter applying to a LFSR

where ds > 0 and fs is irreducible of degree ns, 1 ≤ s ≤ r. Further let α be a
primitive mth root of unity over F2 lying in the splitting field of zN − 1, and let
αjs be a root of fs. Then y is always written in the vectorial trace representation

yi =
∑

1≤s≤r

1T
ds

trns

1 (J i
js

zs), i ≥ 0 (10)

where zs = (zs,1 zs,2 · · · zs,ds) is a vector over the splitting field of f(z), and
the Jordan block Jjs has dimension ds and diagonal element αjs .

Equation (10) provides a novel generalized trace representation of any sequence
y, including those whose minimal polynomial does not have distinct irreducible
factors. The practical importance of the above resides in the fact that we can
generate sequences of prescribed linear complexity by appropriately selecting the
initial state for any LFSR.

Based on (10), which generalizes (6), we introduce below a new generalised
discrete Fourier transform (GDFT) for sequences of arbitrary period N = 2em,
with m odd and e > 0.

Definition 2 ([15]) Let y be a binary sequence of period N = 2em generated
by L = 〈J ,1, Y 〉 of dimension N , where J is a Jordan matrix. Then, the initial
state

Y = (Y0 Y1 · · · YN−1)T (11)

is defined as the generalized discrete Fourier transform of y.

The above definition is easily generalized to sequences over fields with an odd
prime characteristic p, since it can be easily seen that the vectorial trace rep-
resentation (10) holds for sequences over any field. Clearly, if e = 0 the above
generalized discrete Fourier transform and the vectorial trace representation (10)
coincide with their ordinary counterparts. The advantage of the proposed GDFT
is that while being a natural generalization of the usual DFT from a system the-
oretic point of view, it also allows the easy computation of the linear complexity
of sequences by means of the Günther weight, like the GDFT proposed in [20].

Next, we consider a LFSR of length n with a primitive characteristic polyno-
mial f , where a nonlinear filter function g of degree k ≤ n is applied to its stages



(Fig. 2). The realization N = 〈A, g, x0〉 of the sequence y = {yi}i≥0 generated
by the above automaton is described by

xi+1 = Axi (12a)
yi = g(xi) (12b)

where A is the companion matrix of the characteristic polynomial f and x0 =
(x0,1 x0,2 · · · x0,n)T is the initial state of N. The study of such generators is
simplified if they are linearly described; this is accomplished by treating each
product term in the ANF of g as a single variable by suitably extending the
state space. This procedure is called linearization of generator N and is based
upon properties of Kronecker products. Hence, minimality characteristics of the
equivalent linearized system are also determined by controllability and observ-
ability arguments. It is proved in this thesis that the Rueppel’s root presence
test can be re-derived by this analysis. Furthermore, based on the analysis via
Kronecker products, the following result is proved.

Theorem 4 ([15]) Let N = 〈A, g, x0〉 be a generator of dimension n > 0 and
let the characteristic polynomial f of the state transition matrix A be primitive.
For some positive integer δ with gcd(δ, 2n − 1) = 1 assume the nonlinear filter g
consists of only one product of degree k < n

g(z1, z2, . . . , zn) = zt1zt2 · · · ztk

where t1 > δ or tk ≤ n − δ. If there exists an integer 1 ≤ i ≤ k such that the
product gi(z1, . . . , zn) = zt1 · · · zti−1zti+1 · · · ztk

is equidistant, with distance δ,
then the linear complexity of the generated sequence is lower bounded by

(
n
k

)
.

Theorem 4 generalizes Rueppel’s results since it defines filter functions that
are slightly different from equidistant filters but admit the same lower bound
on the linear complexity. It is also proved that these results can be used to
generalize other classes of nonlinear filters that generate sequences achieving
a prescribed lower bound on the linear complexity - such as filters based on
normal bases. Clearly, the above new construction provides greater flexibility in
designing nonlinear filters that output sequences of high linear complexity.

4 Nonlinear complexity and Lempel-Ziv complexity

This section studies the nonlinear conplexity of sequences and its connections
with Lempel-Ziv complexity; the latter is defined by the number of words oc-
curing via a specific parsing procedure of the sequence described in [12]. As it
is shown in [12], the Lempel-Ziv complexity is determined by the the eigenvalue
profile k(y1), k(y2), . . . , k(yN ) of the sequence yN . The value of k(yi) equals i−si,
where si is the length of the longest suffix of yi that is present at least twice
within yi. By proving a series of results, we get the following.

Theorem 5 ([14]) Let c(yn−1) = m and assume the minimal FSR of yn−1 does
not generate yn. Then, it holds

c(yn) = max
{
c(yn−1), n − k(yn−1)

}
(13)



1: k ← 0 % jump
2: m ← 0 % complexity
3: h ← y0 % feedback

4: for n ← 1, . . . , N − 1 do
5: d ← yn − h(yn−1, . . . , yn−m) % discrepancy

6: if d �= 0 then
7: if m = 0 then
8: k ← n
9: m ← n

10: else if k ≤ 0 then
11: t ← Eigenvalue(yn) % period+ preperiod

12: if t < n + 1 − m then
13: k ← n + 1 − t − m
14: m ← n + 1 − t
15: end
16: else
17: k ← k − 1
18: end

19: f ← (x1 + y′
n−1) · · · (xm + y′

n−m) % minterm
20: h ← h + f
21: else
22: k ← k − 1
23: end
24: end

Fig. 3. A recursive algorithm for minimal FSR synthesis of binary sequence yN

The next result exhibits that the eigenvalue profile uniquely determines the
complexity profile.

Theorem 6 ([14]) If two sequences have the same eigenvalue profile, then they
necessarily have the same nonlinear complexity profile.

The above are used to develop a recursive algorithm that computes the minimal
FSR of any binary sequence, which comprises the generalization of the BMA to
the nonlinear case. This algorithm is illustrated in Fig. 3 [14],[16]. The feedback
function of the minimal FSR is given in the ESOP representation. In Lines 11, 12
of the algorithm, we examine whether a jump in the complexity occurs based
on Theorem 5; if a jump occurs, then its value is computed in Line 13. Note
that this step has linear computational complexity due to the existence of the
Knuth-Morris-Pratt (KMP) algorithm for pattern matching. The computational
complexity of the algorithm mainly rests with line 5 where the boolean function
h(n) is evaluated. For each n ≤ N the ESOP representation of h(n) has less
than n terms, each consisting of at most c(yn) ≤ n variables. Since no term is
present in the ESOP representation of h(n) having more than c(yN ) variables, the
computational complexity of the algorithm in the average case highly depends
on the expected value of the nonlinear complexity of random binary sequences of
given length N . It is known that for large N it holds E(c(yN )) ≈ 2 log2 N , and
the average computational complexity of the algorithm becomes O(N2 log2 N).
Note that our algorithm has the same computational complexity with the one
proposed in [4] for determining the minimal FSR of a given sequence. However,
its recursive nature is an important advantage since it eliminates the need to
know the entire sequence in advance.



Connections between nonlinear complexity and Lempel-Ziv compression ratio
are also established. More precisely, the next result is proved.

Theorem 7 ([14]) Let y be a binary sequence with period N , and let c(y) = m.
If yN denotes the first N terms of y and n is the largest integer such that 2n ≤
m < 2n+1, then

ρyN > min
{

1
mlog2(2m)�, 1

2n (n + 1)
}

, (14)

where ρyN is the compression ratio of yN according to the Lempel-Ziv compres-
sion algorithm of [27].

As it is proved in this thesis, the bound in (14) decreases as the complexity
c(y) of the periodic sequence y increases. Therefore, it is possible to design a
construction for generating sequences of very high complexity, which however are
highly compressible. Since truly random sequences do not present such behavior,
we expect that compressibility is used in conjunction with nonlinear complexity
to filter out sequences having this type of deficiency. A specific class of sequences
achieving high nonlinear complexity and low compression ratio is identified in
this thesis, the so-called s-optimal sequences, thus revealing the cryptographic
value of compressibility.

5 Efficient computations of best quadratic approximations
of Boolean functions

This section presents new efficient formulas for determining best quadratic ap-
proximations of boolean functions. The main result is the following.

Theorem 8 ([9]) Let f ∈ Bn be a cubic function, where there exists variable
xj such that f = (q + l0) ‖j (q + qj + l1) (q, qj are quadratic). Then, the best
quadratic approximations of f have one of the following forms

i. ξ0
f = (q + l0) ‖j (q + l1 + λqj ) ;

ii. ξ1
f = (q + qj + l0 + λqj ) ‖j (q + qj + l1) .

Corollary 1. The second order nonlinearity of any cubic function f ∈ Bn of the
above form is equal to NQf = 2n−2 − 2n−2−hqj , for some 1 ≤ hqj ≤ �(n− 1)/2�.
The above is proved by means of special properties that characterize the Walsh
transform of quadratic boolean functions. The importance of Theorem 8 rests
with the fact that it enables direct computation of all the best quadratic approx-
imations of a particular subset of cubic Boolean functions on n variables, which
have a variable being present in all cubic terms, by determining the best affine
approximations of quadratic Boolean functions on n−1 variables; direct formulas
for determining these best affine approximations are also proved in this thesis,
which exploit the representation of quadratic functions according to Dickson’s
theorem [18], without using the Walsh transform. Cubic functions of the form
described in Theorem 8 have been recently proposed for contemporary stream
ciphers, thus revealing the cryptographic importance of the above result.

Best quadratic approximations of functions with degree 4 are also proved.



Theorem 9 ([9]) Let f ∈ Bn be a Boolean function of degree 4, and let f =
f0 ‖j f1, for some 1 ≤ j ≤ n, such that f0 is cubic function of the form described
in Theorem 8 and f1 = q + l is a quadratic function, where q, l are its quadratic
and linear part respectively. If NLf0+q ≤ 2n−2 − 2n−4, then all functions

g = (q + λf0+q) ‖j f1 (15)

are best quadratic approximations of f and NQf = NLf0+q. Otherwise, it holds
NQf > 2n−2 − 2n−4.

It is evident from the above that constructions of Boolean functions based on
the concatenation of low-degree functions with fewer number of variables are sus-
ceptible to successful best quadratic approximation attacks if the sub-functions
are not properly chosen, and in particular if the resulting Boolean function has
low second order nonlinearity. Since many constructions of bent functions or
correlation-immune functions (both admitting important cryptographic prop-
erties) present this structure, our results determine new design principles that
need to be considered in constructions of boolean functions, so as to guarantee
resistance in low order approximation attacks [10].

6 Conclusions

This thesis studies cryptographic features of sequences and Boolean functions,
by using signal processing techniques. This leads to new methods for construct-
ing cryptographic primitives achieving good cryptographic properties. Research
is progress focuses on generalizing the results of Section 5 in a wider class of
Boolean functions, while the security of several contemporary stream ciphers
with respect to low order approximations is also currently studied. Moreover,
the connection between several other cryptographic criteria of sequences, apart
from nonlinear and Lempel-Ziv complexity, remains an interesting open problem.
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