Exploring relationships between pseudorandomness properties of sequences and cryptographic properties of Boolean functions

Konstantinos Limniotis

Hellenic Data Protection Authority, Kifissias 1-3, 11523 Athens, Greece Email: klimniotis@dpa.gr Dept. of Informatics & Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece Email: klimn@di.uoa.gr

Athens Cryptography Day 2019 -National Technical University of Athens

January 8th, 2019, Athens, Greece

Talk Outline

Introduction

- Cryptographic properties of Boolean functions
- Error linear complexity spectrum of sequences
 - The Games-Chan algorithm
 - The Lauder-Paterson algorithm

Investigating relationships

Joint work with N. Kolokotronis (submitted - under review)

- Bijection between 2^n -periodic binary sequences and Boolean functions on n variables
- Properties of the error linear complexity spectrum provides information on how well a function can be approximated by a simpler function
 - with fewer number of variables
 - with lower degree

Conclusions

Introduction - Definitions - Current results	Symmetric ciphers
Relationships between cryptographic functions and sequences	
Conclusions	Pseudorandomness properties of sequences

Symmetric ciphers

A typical cryptosystem

Symmetric cryptography

- Encryption Key = Decryption Key
- The key is only shared between the two parties
 - The security rests with the secrecy of the key (Kerchoffs principle)
 - Post-quantum resistant (for appropriate key sizes)

Two types of symmetric ciphers

- Stream ciphers
- Block ciphers

∃ ► < ∃ ►</p>

Stream ciphers

Simplest Case: Binary additive stream cipher

- Suitable in environments characterized by a limited computing power or memory, and the need to encrypt at high speed
- The seed of the keystream generators constitutes the secret key
- Security depends on
 - Pseudorandomness of the keystram k_i
 - Properties of the underlying functions that form the keystream generator

Introduction - Definitions - Current results	Symmetric ciphers
Relationships between cryptographic functions and sequences	
Conclusions	Pseudorandomness properties of sequences

Block ciphers

Simplest Case: Electronic Codebook Mode of operation (ECB)

- Encryption on a per-block basis (typical block size: 128 bits)
- Several drawbacks of the ECB Other modes of operation are being used in practice (CTR, GCM etc.)
 - Some modes resemble the operation of stream ciphers the encryption function ${\cal E}$ stands as a keystream generator
- Current research trend: Authenticated cipher (CAESAR)

A common approach for block and stream ciphers

- Despite their differences, a common study is needed for their building blocks (multi-output and single-output Boolean functions)
- The attacks in block ciphers are, in general, different from the attacks in stream ciphers and vice versa. However:
 - For both cases, almost the same cryptographic criteria of functions should be in place
- Challenges:
 - There are tradeoffs between several cryptographic criteria
 - The relationships between several criteria are still unknown
 - How to construct functions that are mathematically bound to satisfy all the main criteria
 - New attacks \Rightarrow New criteria

4 3 5 4 3 5 5

Boolean Functions

A Boolean function f on n variables $(f \in \mathbb{B}_n)$ is a mapping from \mathbb{F}_2^n onto \mathbb{F}_2

- The vector $f = (f(0,0,\ldots,0), f(1,0,\ldots,0),\ldots,f(1,1,\ldots,1))$ of length 2^n is the truth table of f
- The Hamming weight of f is denoted by wt(f)
 - f is balanced if and only if $wt(f) = 2^{n-1}$

• The support supp(f) of f is the set $\{b \in \mathbb{F}_2^n : f(b) = 1\}$ Example: Truth table of balanced f with n = 3

x_1	0	1	0	1	0	1	0	1
x_2	0	0	1	1	0	0	1	1
x_3	0	0	0	0	1	1	1	1
$f(x_1, x_2, x_3)$	0	1	0	0	0	1	1	1

A vectorial Boolean function F is a mapping from \mathbb{F}_2^n onto \mathbb{F}_2^m , $m \ge 1$

Introduction - Definitions - Current results Relationships between cryptographic functions and sequences Conclusions Symmetric ciphers Cryptographic properties of Boolean functions Pseudorandomness properties of sequences

Algebraic Normal Form and degree of functions

• Algebraic Normal Form (ANF) of *f*:

$$f(x) = \sum_{\boldsymbol{v} \in \mathbb{F}_2^n} a_{\boldsymbol{v}} x^{\boldsymbol{v}}, \quad \text{where } x^{\boldsymbol{v}} = \prod_{i=1}^n x_i^{v_i}$$

- The sum is performed over \mathbb{F}_2 (XOR addition)
- The degree deg(f) of f is the highest number of variables that appear in a product term in its ANF.
- If $\deg(f) = 1$, then f is called affine function
 - If, in addition, the constant term is zero, then the function is called linear
- In the previous example: $f(x_1, x_2, x_3) = x_1x_2 \oplus x_2x_3 \oplus x_1$.

•
$$\deg(f) = 2$$

Univariate representation of Boolean functions

- \mathbb{F}_2^n is isomorphic to the finite field \mathbb{F}_{2^n} ,
- \Rightarrow Any function $f \in \mathbb{B}_n$ can also be represented by a univariate polynomial, mapping \mathbb{F}_{2^n} onto \mathbb{F}_2 , as follows

$$f(x) = \sum_{i=0}^{2^n - 1} \beta_i x^i$$

where $\beta_0, \beta_{2^n-1} \in \mathbb{F}_2$ and $\beta_{2i} = \beta_i^2 \in \mathbb{F}_{2^n}$ for $1 \le i \le 2^n - 2$

- The coefficients of the polynomial determine the Discrete Fourier Transform of f
- The degree of $f\ {\rm can}\ {\rm be\ directly\ deduced\ by\ the\ univariate\ representation}$
- The univariate representation is more convenient in several cases

・ロッ ・ 一 ・ ・ ヨッ・

Walsh transform

Definition

The Walsh transform $\widehat{\chi}_f(a)$ at $a \in \mathbb{F}_2^n$ of $f: \mathbb{F}_2^n o \mathbb{F}_2$ is

$$\widehat{\chi}_f(\boldsymbol{a}) = \sum_{\boldsymbol{x} \in \mathbb{F}_2^n} (-1)^{f(\boldsymbol{x}) \oplus \boldsymbol{a} \boldsymbol{x}^{\mathsf{T}}} = 2^n - 2 \operatorname{wt}(f \oplus \phi_{\boldsymbol{a}})$$

where $\phi_{\boldsymbol{a}}(\boldsymbol{x}) = \boldsymbol{a} \boldsymbol{x}^{\mathsf{T}} = a_1 x_1 \oplus \cdots \oplus a_n x_n$

- Computational complexity: $\mathcal{O}(n2^n)$ (via fast Walsh transform)
- Parseval's theorem: $\sum_{a \in \mathbb{F}_2^n} \widehat{\chi}_f(a)^2 = 2^{2n}$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

3

Cryptographic properties

Apart from the balancedness and the high algebraic degree, other important cryptographic criteria are the following:

- Correlation immunity
- Existence of linear structures
- Nonlinearity
 - Higher-order nonlinearity
- Minimum Hamming distance from a function with fewer number of variables
- (Fast) algebraic immunity

More recently, the structure of specific ciphers (e.g. the FLIP stream cipher) necessitates the study of appropriate modifications of (some of) the above criteria (Carlet, 2017).

4 3 5 4 3 5 5

Correlation immunity

- If the output of a Boolean function *f* is correlated to at least one of its inputs, then it is vulnerable to correlation attacks (Siegenthaler, 1984).
- The $f \in \mathbb{B}_n$ is *t*-th correlation immune if it is not correlated with any *t*-subset of $\{x_1, \ldots, x_n\}$; namely if

$$Pr(f(\boldsymbol{x}) = 0 | x_{i_1} = b_{i_1}, \dots, x_{i_t} = b_{it}) = Pr(f(\boldsymbol{x}) = 0)$$

for any t positions x_{i_1}, \ldots, x_{i_t} and any $b_{i_1}, \ldots, b_{i_t} \in \mathbb{F}_2$

• If a *t*-th order correlation immune function is also balanced, then it is called *t*-th order resilient.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Properties of correlation immunity

- Siegenthaler, 1984: A known trade-off: If f is k-th order resilient for $1 \le k \le n-2$, then $\deg(f) \le n-k-1$.
- Xiao-Massey, 1988: A function $f \in \mathbb{B}_n$ is t-th order correlation immune iff its Walsh transform satisfies

$$\widehat{\chi}_f(a) = 0, \forall \ 1 \le \operatorname{wt}(a) \le t$$

- Note that f is balanced iff $\widehat{\chi}_f(\mathbf{0}) = 0$.
- \Rightarrow A function $f \in \mathbb{B}_n$ is t-th order resilient iff its Walsh transform satisfies $\widehat{\chi}_f(a) = 0, \forall \ 0 \le \operatorname{wt}(a) \le t$
- Siegenthaler also proposed a recursive procedure to construct *m*-th order resilient Boolean functions, for any desired *m*, with the maximum possible degree
- Several other constructions are currently known

Linear structures

• The derivative of f in the direction of the vector $oldsymbol{a} \in \mathbb{F}_2^n$ is given by

$$D_{\boldsymbol{a}}(f(\boldsymbol{x})) = f(\boldsymbol{x}) \oplus f(\boldsymbol{x} \oplus \boldsymbol{a}).$$

- A vector $a \in \mathbb{F}_2^n$ is called a linear structure of f if the derivative $D_a(f)$ is constant.
- Boolean functions used in symmetric ciphers should avoid nonzero linear structures.
 - To thwart, e.g. differential cryptanalysis

< 回 > < 三 > < 三 > -

The linear kernel of f

- The set of linear structures of f constitutes the so-called linear kernel of f, being a subspace of 𝔽ⁿ₂.
- A Boolean function admits a nonzero linear structure if and only if it is linear equivalent to a function of the form f(x₁,...,x_n) = g(x₁,...,x_{n-1}) ⊕ εx_n.
- More generally, its linear kernel has dimension at least k if and only if it is linearly equivalent to a function of the form:

$$f(x_1, \dots, x_n) = g(x_1, \dots, x_{n-k}) \oplus \epsilon_{n-k+1} x_{n-k+1} \oplus \dots \oplus \epsilon_n x_n ,$$

$$\epsilon_{n-k+1}, \dots, \epsilon_n \in \mathbb{F}_2.$$

ヘロト 人間ト ヘヨト ヘヨト

Linear approximation attacks

- $\bullet\,$ The maximum possible degree of a balanced Boolean function with n variables is n-1
- High degree though is not adequate to prevent linear cryptanalysis (in block ciphers - Matsui, 1992) or best affine approximation attacks (in stream ciphers - Ding et. al., 1991)
- A function should not be well approximated by a linear/affine function
- Any function of degree 1 that best approximates f is a best affine/linear approximation of f
- An equivalent notion of describing the Hamming distance between two Boolean functions f, g is the so-called bias ε:

$$\epsilon = |p(f(\boldsymbol{x}) = g(\boldsymbol{x})) - 1/2|$$

ヘロ ト ヘ 同 ト ヘ 三 ト ー

Introduction - Definitions - Current results Relationships between cryptographic functions and sequences Conclusions Symmetric ciphers Cryptographic properties of Boolean functions Pseudorandomness properties of sequences

Example of approximation attacks

The Achterbahn cipher [Gammel-Göttfert-Kniffler,2005] (candidate in eSTREAM project)

- Lengths of nonlinear FSRs: 22-31
- $f(x_1,...,x_8) = \sum_{i=1}^4 x_i \oplus x_5 x_7 \oplus x_6 x_7 \oplus x_6 x_8 \oplus x_5 x_6 x_7 \oplus x_6 x_7 x_8$
- Johansson-Meier-Muller, 2006: cryptanalysis via the linear approximation $g(x_1, \ldots, x_8) = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_6$, satisfying wt $(f \oplus g) = 64$ $(p(f = g) = 3/4, \epsilon = 0.25)$

The notion of nonlinearity

• The minimum distance between *f* and all affine functions is the nonlinearity of *f*:

$$\mathsf{nl}(f) = \min_{l \in \mathbb{B}_n: \deg(l) = 1} \operatorname{wt}(f \oplus l)$$

• Relathionship with Walsh transform

$$\mathsf{nl}(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |\widehat{\chi}_f(a)|$$

 $\bullet\,\Rightarrow$ Nonlinearity is computed via the Fast Walsh Transform

• High nonlinearity is prerequisite for thwarting attacks based on affine (linear) approximations

▶ < ∃ >

Known results on nonlinearity of Boolean functions

- For even n, the maximum possible nonlinearity is $2^{n-1} 2^{n/2-1}$, achieved by the so-called bent functions
 - Many constructions are known (not fully classified yet)
 - But bent functions are never balanced!
- For odd n, the maximum possible nonlinearity is still unknown
 - By concatenating bent functions, we can get nonlinearity $2^{n-1} 2^{\frac{n-1}{2}}$. Can we impove this?
 - For $n \leq 7$, the answer is no
 - For $n \ge 15$, the answer is yes (Patterson-Wiedemann, 1983 Dobbertin, 1995 Maitra-Sarkar, 2002)
 - For n = 9, 11, 13, such functions have been found (Kavut, 2006)
- Several constructions of balanced functions with high nonlinearity exist (e.g. Dobbertin, 1995). However:
 - Finding the highest possible nonlinearity of balanced Boolean functions is still an open problem

Higher-order nonlinearity

- Approximating a function by a low-order function (not necessarily linear) may also lead to cryptanalysis (Non–linear cryptanalysis -Knudsen-1996, low-order approximation attacks - Kurosawa et. al. -2002)
- The *r*th order nonlinearity of a Boolean function $f \in \mathbb{B}_n$ is given by

$$\mathsf{nl}_r(f) = \min_{g \in \mathbb{B}_n : \deg(g) \le r} \operatorname{wt}(f \oplus g)$$

- The rth order nonlinearity remains unknown for r > 1
 - Recursive lower bounds on $nl_r(f)$ (Carlet, 2008)
 - Specific lower and upper bounds for nl₂(*f*) (Cohen, 1992 Carlet, 2007)
 - More recent lower bounds for 2-nd order nonlinearity: Gangopadhyay et. al. 2010, Garg et. al. 2011, Singh 2011, Singh et. al. 2013

イロト 不得 トイヨト イヨト

Computing best low order approximations

- Computing even the best 2-nd order approximations is a difficult task
 - Efficient solution for specific class of 3-rd degree functions (Kolokotronis-Limniotis-Kalouptsidis, 2009)
 - For the Achterbahn's combiner function:

 $q(x) = x_5x_7 \oplus x_6x_8 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4$ is a best 2-nd approximation ((Limniotis, 2007))

• wt
$$(f + q) = 32$$
 $(p(f = q) = 7/8 > 3/4, \epsilon = 0.375)$

- No much is known regarding constructions of functions with high r-th nonlinearity, for $r\geq 2$
 - Even if a high lower bound on the nonlinearity is proved, best *r*-th order approximations cannot be computed
 - A class of highly nonlinear 3-rd degree functions satisfying nl₂(f) = nl(f) (Kolokotronis-Limniotis, 2012)

・ 同 ト ・ ヨ ト ・ ヨ ト

Approximation by a function depending on fewer variables

- Exploiting an approximation of a cryptographic Boolean function by a function of fewer variables may result in specific attacks, such as divide-and-conquer attacks (Canteaut et. al., 2002)
- If $f \in \mathbb{B}_n$ depends only on k < n variables, then we say that $f \in \mathbb{B}_n(k)$
 - Linearly equivalent to a function g depending on x_1, x_2, \dots, x_k
 - The linear kernel of f has dimension n − k (if g ∈ B_k has no linear structures).
- A function with high nonlinearity cannot be efficiently approximated by other function depending on a small subset of its input variables (Canteaut et. al., 2002)
- If $f \in \mathbb{B}_n$ is a *t*-resilient function, then:

$$d_H(f, \mathbb{B}_n(k)) \ge 2^{n-1} - \frac{\max_{\boldsymbol{a} \in \mathbb{F}_2^n} |\widehat{\chi}_f(\boldsymbol{a})|}{2} \Big(\sum_{\substack{i=t+1\\ i \neq j \neq k \leq \frac{n}{2}, i \neq k \leq \frac{n}{2}} \Big(\sum_{\substack{i=t+1\\ i \neq j \neq k \leq \frac{n}{2}, i \neq k \leq \frac{n}{2}} \Big)^{1/2}$$

Annihilators and algebraic immunity

Definition

Given $f \in \mathbb{B}_n$, we say that $g \in \mathbb{B}_n$ is an annihilator of f if and only if g lies in the set

$$\mathcal{AN}(f) = \{g \in \mathbb{B}_n : f * g = 0\}$$

Definition

The algebraic immunity $AI_n(f)$ of $f \in \mathbb{B}_n$ is defined by

$$\mathsf{Al}_n(f) = \min_{g \neq 0} \{ \deg(g) : g \in \mathcal{AN}(f) \cup \mathcal{AN}(f \oplus 1) \}$$

- A high algebraic immunity is prerequisite for preventing algebraic attacks (Meier-Pasalic-Carlet, 2004)
- Well-known upper bound: $\operatorname{Al}_n(f) \leq \lceil \frac{n}{2} \rceil$

4 3 5 4 3 5 5

Fast algebraic attacks

- An extension of the conventional algebraic attacks
- Maximum AI does not imply resistance to fast algebraic attacks

Definition

The fast algebraic immunity $FAI_n(f)$ of $f \in \mathbb{B}_n$ is defined by

$$\mathsf{FAI}_n(f) = \min_{1 \le \deg(g) \le \mathsf{AI}_n(f)} \{ 2 \, \mathsf{AI}_n(f), \deg(g) + \deg(f * g) \}$$

- Upper bound: $FAI_n(f) \le n$
- If $FAI_n(f) = n$, then f is a perfect algebraic immune function

ヘロト 人間ト ヘヨト ヘヨト

The Carlet-Feng construction

- Carlet-Feng, 2008: $\operatorname{supp}(f) = \{0, 1, \alpha, \alpha^2, \dots, \alpha^{2^{n-1}-2}\}$, where α a primitive element of the finite field \mathbb{F}_{2^n} .
 - Degree n-1 (i.e. the maximum possible)
 - High (first-order) nonlinearity is ensured
 - Lower bound (Tang et. al., 2013:)

$$\mathsf{nl}(f) \ge 2^{n-1} - \left(\frac{n\ln(2)}{\pi} + 0.74\right)2^{n/2} - 1$$

- Experiments show that the actual values of nonlinearities may be higher enough
- Optimal against fast algebraic attacks, as subsequently shown (Liu-Zhang-Lin, 2012)
- Several generalizations of the Carlet-Feng construction
 - The most recent is based on exploiting properties of punctured Reed-Muller codes (Limniotis-Kolokotronis, 2018)

・ 同 ト ・ ヨ ト ・ ヨ ト

Predictability of sequences: Linear complexity

Several criteria to measure pseudorandomness of a sequences s

- Widely studied:
 - Linear complexity c(s) of a sequence s (the length of the shortest Linear Feedback Shift Register that generates s)
 - Berlekamp-Massey algorithm
 - Games-Chan algorithm (for 2^n -periodic binary sequences)
 - Linear complexity profile (how linear complexity increases as the sequence length grows)
- Generalized complexity measures:
 - k-error linear complexity c_k(s): min_{wt(e)≤k} c(s + e) (how the linear complexity can be reduced if at most k errors are introduced)
 - k-error linear complexity spectrum (how linear complexity decreases as the error weight k increases)

ヘロト 人間ト ヘヨト ヘヨト

Introduction - Definitions - Current results Relationships between cryptographic functions and sequences Conclusions Symmetric ciphers Cryptographic properties of Boolean functions Pseudorandomness properties of sequences

The Games-Chan algorithm

A recursive algorithm

- s = [L R]
- $B(s) = L \oplus R$ (of period 2^{n-1})
- Is B(s) different from the all-zeroes sequence?
 - If yes, then $c(s) = 2^{n-1} + c(B(s));$
 - otherwise, c(s) = c(L)

Example

- s = 01000111
- B(s) = 0011, c(s) = 4 + c(B(s))
- B(B(s)) = 11, c(B(s)) = 2 + c(B(B(s))) = 2 + 1 = 3
- c(s) = 4 + 3 = 7

Critical Error Linear Complexity Spectrum

 $2^n\mbox{-}{\rm periodic}$ binary sequences attracted great attention, due to special properties implied by the Games-Chan algorihm

- Critical Error Linear Complexity Spectrum (CELCS): the ordered set of points $(k, c_k(s))$ satisfying $c_k(s) > c_{k'}(s)$, for k' > k.
- Each point in CELCS is called critical point (CP)

Milestones

- Stamp-Martin, 1993: an algorithm for computing $c_k(s)$,
- Kurosawa et. al., 2000: the minimum number of bits that should be altered in order to reduce the complexity: $2^{\operatorname{wt}(2^n-c(s))}$,
- Lauder-Paterson, 2003: generalization of the Stamp-Martin algorithm, to compute the entire CELCS
- Etzion-Kalouptsidis-Kolokokotronis-Limniotis-Paterson, 2009: Detailed study on the properties of the CELCS

Introduction - Definitions - Current results Relationships between cryptographic functions and sequences Conclusions Symmetric ciphers Cryptographic properties of Boolean functions Pseudorandomness properties of sequences

The Lauder-Paterson algorithm

Example (Cont.)

- The sequence s = 01000111 has 3 CPs
 - (0,7)
 - (2,2)
 - s' =010<mark>1</mark>01<mark>0</mark>1
 - The sequence e=00010010 such that $\mathbf{c}(s\oplus e)=\mathbf{c}_2(s)$ is a critical error sequence

• (4,0)

- For length $N=2^n$, $\mathcal{O}(N\log(N)^2)$ bit operations
- The Lauder-Paterson algorithm computes all the CPs, but appropriately modified can also compute the critical error sequences
- For any 2^n -periodic binary sequence s, the minimum possible number of CPs is two:
 - (0, c(s)), (wt(s), 0) (the trivial CPs)
- Etzion et. al., 2009: Full characterization of sequences with 2 CPs.

A bijection between sequences and functions

Definition

If $s = (s_0, s_1, \ldots, s_{2^n-1})$ is the vector corresponding to a periodic binary sequence s with period 2^n , then we define the corresponding n-variable Boolean function f, denoted by f_s , to be the function whose truth table equals $f_s = (s_0, s_1, \ldots, s_{2^n-1})$

- We write $s \leftrightarrow f_s$.
- Conversely, for any function $f' \in \mathbb{B}_n$, there is a unique 2^n -periodic binary sequence s' such that $s' \leftrightarrow f'$.

Proposition

Let s be a 2^n -periodic binary sequence, with linear complexity c(s). It holds $2^{n-\ell-1} \leq c(s) < 2^{n-\ell}$ for some $1 \leq \ell < n-1$ if and only if the ANF of $f_s(x_1, \ldots, x_n)$ depends only on $x_1, \ldots, x_{n-\ell}$.

・ロン ・四 と ・ ヨ と ・ ヨ と

э.

"Linear complexity" of Boolean functions

- Due to the aforementioned bijection, the linear complexity of a sequence s reflects the number of variables that appear in the ANF of the corresponding Boolean function f_s
- $\bullet\,$ Similarly, we may proceed with the CELCS of f_s

Theorem

• Let $(k,c_k(s))$ be a CP of s satisfying $2^{n-\ell-1} \le c_k(s) < 2^{n-\ell}$ for some integer $\ell \ge 1$

• Let k be the least integer with this property

- $f_s \leftrightarrow s$.
- Let e be a critical error sequence of s such that wt(e) = k
- \Rightarrow The function $h = f_s + f_e$ depends on the first $n \ell$ variables and, moreover, there is no function $g \in \mathbb{B}_n$ with $\operatorname{wt}(g) < k$ such that $f_s + g$ depends on at most the first $n - \ell - 1$ variables.

Introduction - Definitions - Current results Relationships between cryptographic functions and sequences Associating sequences with Boolean functions CELCS of Boolean functions Low-order approximations

The CELCS of a Boolean function

 The CELCS provides info on how well a function can be approximated by another function with fewer number of variables

• \Rightarrow Use of the Lauder-Paterson algorithm for efficient computation Example - The function f of the first version of the Achterbahn cipher Use of the Lauder-Paterson algorithm for finding approximations of fdepending on k < 8 variables

k	distance	Bias
7	32	0.375
6	64	0.25
5	96	0.125

• There exist functions depending on 7 and 6 variables that approximate $f \in \mathbb{B}_8$ with bias 0.375 (equal to the bias of the best 2nd-order approximation of f) and 0.25 (equal to the bias of the best affine approximation of f) respectively.

Other examples

- The Lauder-Paterson also provides useful results for the 2nd version of the Achterbahn, having a function with 13 variables
- For the 3rd-order resilient function $f \in \mathbb{B}_{10}$ of the LILI-128 cipher, we found out function depending on 4 variables, whose distance from f is very close to the relative lower bound proved in (Canteaut et. al., 2002)

	* -	- (-	
k	distance	CP	Bias
8	130	(130, 97)	0.2461
7	162	(162, 99)	0.1836
6	192	(192, 57)	0.1250
5	220	(220, 26)	0.0703
4	232	(232, 9)	0.0469
3	246	(246, 5)	0.0195

• The Carlet-Feng function $f_{CF} \in \mathbb{B}_9$ (perfect algrebraic immune)

What if the number of CPs is only two?

- If s has two CPs, then it seems that the Lauder-Paterson algorithm does non provide useful information in terms of the previous analysis on the Boolean function f_s
- However, in such a case, f_s is not of cryptographic strength

Lemma

- If s has two CPs, it is "highly probable" that the linear kernel of f_s has dimension at least 1
- Conversely, if $f_s(x_1, \ldots, x_n) = g(x_1, \ldots, x_{n-1}) \oplus \epsilon x_n$, $\epsilon \in \{0, 1\}$ then its linear kernel has dimension at least 1 and s has exactly two CPs.

ヘロ ト ヘ 同 ト ヘ 三 ト ー

An interesting observation

- \bullet Permuting the variables of f_s result in a linearly-equivalent function f_{s^\prime}
 - $\bullet\,$ Actualy, $f_{s'}$ is the same with $f_s,$ having changed the names of the variables
- The CELCS of s^\prime is generally different from the CELCS of s

Definition

Let $f \in \mathbb{B}_n$. Then, for any $0 \le k \le n$, the k-error linear complexity of f, denoted as $c_k(f)$ is defined as

$$c_k(f) = \min_{A \in P_n} \{ c_k(s) : s \leftrightarrow f(A\boldsymbol{x}) \}$$

where P_n is the set of all permutation matrices over \mathbb{F}_2 of order n.

The CELCS of f is similarly defined

・ 同 ト ・ ヨ ト ・ ヨ ト

The Lauder-Paterson algorithm for computing low-order approximations

- The Lauder-Paterson algorithm finds out critical error vectors
- If e is a critical error sequence of s, when it holds $\deg(f_{s\oplus e}) < \deg(f_s)$?

Proposition

Let $s = [L_1 \ R_1]$, $s' = [L_2 \ R_2]$ be two binary sequences of length 2^n . If $R_1 = R_2$ and $\deg(f_{B(s)}) < \deg(f_{B(s')})$, then it holds $\deg(f_s) \le \deg(f_{s'})$.

• The proof of this Proposition illustrates that $\deg(f_s) < \deg(f_{s'})$ with high probability (i.e. equality is not expected to be common)

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

3

The Lauder-Paterson algorithm for computing low-order approximations (Cont.)

Proposition

Let \boldsymbol{s} be a binary sequence with period 2^n such that

$$2^{n-2} < \operatorname{wt}(B(s)) < 2^{n-1}$$

. Then, there exists a non-trivial critical error sequence e of s such that $\deg(f_{s\oplus e}) \leq \deg(f_s).$

- Hence, the Lauder-Paterson algorithm also finds out low-order approximations
- Experiments illustrate that, in some cases, best low-order approximations are obtained

くぼう くほう くほう

Introduction - Definitions - Current results	Conclusions - open problems
Relationships between cryptographic functions and sequences	
Conclusions	Q&A

Conclusions - Open problems

- Via defining a bijection between 2ⁿ-periodic binary sequences and Boolean functions on *n* variables, information on pseudorandomness properties of sequences also reflect cryptographic properties of functions
- Known algorithms on sequences may be used for efficient computation of cryptographic properties of functions (known to be hard to be computed otherwise)
- The Lauder-Paterson algorithm for determining approximations:
 - depending on fewer number of variables
 - of lower degree

Open problems (not an exhaustive list...)

- When are these approximations the best?
- How to use these results for constructing cryptographically strong functions?

Introduction - Definitions - Current results	
Relationships between cryptographic functions and sequences	References
Conclusions	Q&A

- T. Etzion, N. Kalouptsidis, N. Kolokotronis, K. Limniotis and K. G. Paterson, Properties of the error linear complexity spectrum, *IEEE Trans. Inform. Theory, vol. 55, pp. 4681-4686, Oct. 2009.*
 - N. Kolokotronis, K. Limniotis and N. Kalouptsidis, Best affine and quadratic approximations of particular classes of Boolean functions', *IEEE Trans. Inform. Theory, vol. 55, pp. 5211-5222, Nov. 2009.*
- N. Kolokotronis and K. Limniotis, On the second-order nonlinearity of cubic Maiorana-McFarland Boolean functions, Int. Symp. on Inform. Theory and its Applications (ISITA), pp. 596-600, 2012.
- K. Limniotis and N. Kolokotronis, Boolean functions with maximum algebraic immunity: further extensions of the Carlet–Feng construction, *Designs, Codes and Cryptography, vol. 86, pp. 1685–1706, Springer, 2018.*
- K. Limniotis and N. Kolokotronis, The error linear complexity spectrum as a cryptographic criterion of Boolean Functions. *Submitted to IEEE Trans. Inform. Theory (under review).*

Introduction - Definitions - Current results	
Relationships between cryptographic functions and sequences	
Conclusions	Q&A

Questions & Answers

Thank you for your attention!

→ < ∃→