Exploring relationships between pseudorandomness properties of sequences and cryptographic properties of Boolean functions

Konstantinos Limniotis

Hellenic Data Protection Authority,
Kifissias 1-3,
11523 Athens, Greece
Email: klimniotis@dpa.gr

Dept. of Informatics \& Telecommunications,
National and Kapodistrian University of Athens, 15784 Athens, Greece

Email: klimn@di.uoa.gr

Athens Cryptography Day 2019 National Technical University of Athens

January 8th, 2019, Athens, Greece

Talk Outline

- Introduction
- Cryptographic properties of Boolean functions
- Error linear complexity spectrum of sequences
- The Games-Chan algorithm
- The Lauder-Paterson algorithm
- Investigating relationships

Joint work with N. Kolokotronis (submitted - under review)

- Bijection between 2^{n}-periodic binary sequences and Boolean functions on n variables
- Properties of the error linear complexity spectrum provides information on how well a function can be approximated by a simpler function
- with fewer number of variables
- with lower degree
- Conclusions

Symmetric ciphers

A typical cryptosystem

Symmetric cryptography

- Encryption Key = Decryption Key
- The key is only shared between the two parties
- The security rests with the secrecy of the key (Kerchoffs principle)
- Post-quantum resistant (for appropriate key sizes)

Two types of symmetric ciphers

- Stream ciphers
- Block ciphers

Stream ciphers

Simplest Case: Binary additive stream cipher

Transmitter

Receiver

- Suitable in environments characterized by a limited computing power or memory, and the need to encrypt at high speed
- The seed of the keystream generators constitutes the secret key
- Security depends on
- Pseudorandomness of the keystram k_{i}
- Properties of the underlying functions that form the keystream generator

Block ciphers

Simplest Case: Electronic Codebook Mode of operation (ECB)

- Encryption on a per-block basis (typical block size: 128 bits)
- Several drawbacks of the ECB - Other modes of operation are being used in practice (CTR, GCM etc.)
- Some modes resemble the operation of stream ciphers - the encryption function E stands as a keystream generator
- Current research trend: Authenticated cipher (CAESAR)

A common approach for block and stream ciphers

- Despite their differences, a common study is needed for their building blocks (multi-output and single-output Boolean functions)
- The attacks in block ciphers are, in general, different from the attacks in stream ciphers and vice versa. However:
- For both cases, almost the same cryptographic criteria of functions should be in place
- Challenges:
- There are tradeoffs between several cryptographic criteria
- The relationships between several criteria are still unknown
- How to construct functions that are mathematically bound to satisfy all the main criteria
- New attacks \Rightarrow New criteria

Boolean Functions

A Boolean function f on n variables $\left(f \in \mathbb{B}_{n}\right)$ is a mapping from \mathbb{F}_{2}^{n} onto \mathbb{F}_{2}

- The vector $f=(f(0,0, \ldots, 0), f(1,0, \ldots, 0), \ldots, f(1,1, \ldots, 1))$ of length 2^{n} is the truth table of f
- The Hamming weight of f is denoted by $\operatorname{wt}(f)$
- f is balanced if and only if $\mathrm{wt}(f)=2^{n-1}$
- The support $\operatorname{supp}(f)$ of f is the set $\left\{\boldsymbol{b} \in \mathbb{F}_{2}^{n}: f(\boldsymbol{b})=1\right\}$

Example: Truth table of balanced f with $n=3$

x_{1}	0	1	0	1	0	1	0	1
x_{2}	0	0	1	1	0	0	1	1
x_{3}	0	0	0	0	1	1	1	1
$f\left(x_{1}, x_{2}, x_{3}\right)$	0	1	0	0	0	1	1	1

A vectorial Boolean function F is a mapping from \mathbb{F}_{2}^{n} onto $\mathbb{F}_{2}^{m}, m_{\underline{三}}>1_{\underline{\underline{\beta}}}$

Algebraic Normal Form and degree of functions

- Algebraic Normal Form (ANF) of f :

$$
f(x)=\sum_{\boldsymbol{v} \in \mathbb{F}_{2}^{n}} a_{\boldsymbol{v}} x^{\boldsymbol{v}}, \quad \text { where } x^{\boldsymbol{v}}=\prod_{i=1}^{n} x_{i}^{v_{i}}
$$

- The sum is performed over \mathbb{F}_{2} (XOR addition)
- The degree $\operatorname{deg}(f)$ of f is the highest number of variables that appear in a product term in its ANF.
- If $\operatorname{deg}(f)=1$, then f is called affine function
- If, in addition, the constant term is zero, then the function is called linear
- In the previous example: $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} \oplus x_{2} x_{3} \oplus x_{1}$.
- $\operatorname{deg}(f)=2$

Univariate representation of Boolean functions

- \mathbb{F}_{2}^{n} is isomorphic to the finite field $\mathbb{F}_{2^{n}}$,
- \Rightarrow Any function $f \in \mathbb{B}_{n}$ can also be represented by a univariate polynomial, mapping $\mathbb{F}_{2^{n}}$ onto \mathbb{F}_{2}, as follows

$$
f(x)=\sum_{i=0}^{2^{n}-1} \beta_{i} x^{i}
$$

where $\beta_{0}, \beta_{2^{n}-1} \in \mathbb{F}_{2}$ and $\beta_{2 i}=\beta_{i}^{2} \in \mathbb{F}_{2^{n}}$ for $1 \leq i \leq 2^{n}-2$

- The coefficients of the polynomial determine the Discrete Fourier Transform of f
- The degree of f can be directly deduced by the univariate representation
- The univariate representation is more convenient in several cases

Walsh transform

Definition

The Walsh transform $\widehat{\chi}_{f}(\boldsymbol{a})$ at $\boldsymbol{a} \in \mathbb{F}_{2}^{n}$ of $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is

$$
\widehat{\chi}_{f}(\boldsymbol{a})=\sum_{\boldsymbol{x} \in \mathbb{F}_{2}^{n}}(-1)^{f(\boldsymbol{x}) \oplus \boldsymbol{a} \boldsymbol{x}^{T}}=2^{n}-2 \mathrm{wt}\left(f \oplus \phi_{\boldsymbol{a}}\right)
$$

where $\phi_{\boldsymbol{a}}(\boldsymbol{x})=\boldsymbol{a} \boldsymbol{x}^{T}=a_{1} x_{1} \oplus \cdots \oplus a_{n} x_{n}$

- Computational complexity: $\mathcal{O}\left(n 2^{n}\right)$ (via fast Walsh transform)
- Parseval's theorem: $\sum_{a \in \mathbb{F}_{2}^{n}} \widehat{\chi}_{f}(a)^{2}=2^{2 n}$

Cryptographic properties

Apart from the balancedness and the high algebraic degree, other important cryptographic criteria are the following:

- Correlation immunity
- Existence of linear structures
- Nonlinearity
- Higher-order nonlinearity
- Minimum Hamming distance from a function with fewer number of variables
- (Fast) algebraic immunity

More recently, the structure of specific ciphers (e.g. the FLIP stream cipher) necessitates the study of appropriate modifications of (some of) the above criteria (Carlet, 2017).

Correlation immunity

- If the output of a Boolean function f is correlated to at least one of its inputs, then it is vulnerable to correlation attacks (Siegenthaler, 1984).
- The $f \in \mathbb{B}_{n}$ is t-th correlation immune if it is not correlated with any t-subset of $\left\{x_{1}, \ldots, x_{n}\right\}$; namely if

$$
\operatorname{Pr}\left(f(\boldsymbol{x})=0 \mid x_{i_{1}}=b_{i_{1}}, \ldots, x_{i_{t}}=b_{i t}\right)=\operatorname{Pr}(f(\boldsymbol{x})=0)
$$

for any t positions $x_{i_{1}}, \ldots, x_{i_{t}}$ and any $b_{i_{1}}, \ldots, b_{i_{t}} \in \mathbb{F}_{2}$

- If a t-th order correlation immune function is also balanced, then it is called t-th order resilient.

Properties of correlation immunity

- Siegenthaler, 1984: A known trade-off: If f is k-th order resilient for $1 \leq k \leq n-2$, then $\operatorname{deg}(f) \leq n-k-1$.
- Xiao-Massey, 1988: A function $f \in \mathbb{B}_{n}$ is t-th order correlation immune iff its Walsh transform satisfies

$$
\widehat{\chi}_{f}(a)=0, \forall 1 \leq \operatorname{wt}(a) \leq t
$$

- Note that f is balanced iff $\widehat{\chi}_{f}(\mathbf{0})=0$.
- \Rightarrow A function $f \in \mathbb{B}_{n}$ is t-th order resilient iff its Walsh transform satisfies $\widehat{\chi}_{f}(a)=0, \forall 0 \leq \operatorname{wt}(a) \leq t$
- Siegenthaler also proposed a recursive procedure to construct m-th order resilient Boolean functions, for any desired m, with the maximum possible degree
- Several other constructions are currently known

Linear structures

- The derivative of f in the direction of the vector $\boldsymbol{a} \in \mathbb{F}_{2}^{n}$ is given by

$$
D_{a}(f(\boldsymbol{x}))=f(\boldsymbol{x}) \oplus f(\boldsymbol{x} \oplus \boldsymbol{a}) .
$$

- A vector $\boldsymbol{a} \in \mathbb{F}_{2}^{n}$ is called a linear structure of f if the derivative $D_{a}(f)$ is constant.
- Boolean functions used in symmetric ciphers should avoid nonzero linear structures.
- To thwart, e.g. differential cryptanalysis

The linear kernel of f

- The set of linear structures of f constitutes the so-called linear kernel of f, being a subspace of \mathbb{F}_{2}^{n}.
- A Boolean function admits a nonzero linear structure if and only if it is linear equivalent to a function of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n-1}\right) \oplus \epsilon x_{n}
$$

- More generally, its linear kernel has dimension at least k if and only if it is linearly equivalent to a function of the form:

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n-k}\right) \oplus \epsilon_{n-k+1} x_{n-k+1} \oplus \ldots \oplus \epsilon_{n} x_{n} \\
& \epsilon_{n-k+1}, \ldots, \epsilon_{n} \in \mathbb{F}_{2}
\end{aligned}
$$

Linear approximation attacks

- The maximum possible degree of a balanced Boolean function with n variables is $n-1$
- High degree though is not adequate to prevent linear cryptanalysis (in block ciphers - Matsui, 1992) or best affine approximation attacks (in stream ciphers - Ding et. al., 1991)
- A function should not be well approximated by a linear/affine function
- Any function of degree 1 that best approximates f is a best affine/linear approximation of f
- An equivalent notion of describing the Hamming distance between two Boolean functions f, g is the so-called bias ϵ :

$$
\epsilon=|p(f(\boldsymbol{x})=g(\boldsymbol{x}))-1 / 2|
$$

Example of approximation attacks

The Achterbahn cipher [Gammel-Göttfert-Kniffler,2005] (candidate in eSTREAM project)

- Lengths of nonlinear FSRs: 22-31
- $f\left(x_{1}, \ldots, x_{8}\right)=\sum_{i=1}^{4} x_{i} \oplus x_{5} x_{7} \oplus x_{6} x_{7} \oplus x_{6} x_{8} \oplus x_{5} x_{6} x_{7} \oplus x_{6} x_{7} x_{8}$
- Johansson-Meier-Muller, 2006: cryptanalysis via the linear approximation $g\left(x_{1}, \ldots, x_{8}\right)=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{6}$, satisfying $\mathrm{wt}(f \oplus g)=64(p(f=g)=3 / 4, \epsilon=0.25)$

The notion of nonlinearity

- The minimum distance between f and all affine functions is the nonlinearity of f :

$$
\mathrm{nl}(f)=\min _{l \in \mathbb{B}_{n}: \operatorname{deg}(l)=1} \mathrm{wt}(f \oplus l)
$$

- Relathionship with Walsh transform

$$
\mathrm{nl}(f)=2^{n-1}-\frac{1}{2} \max _{a \in \mathbb{F}_{2}^{n}}\left|\widehat{\chi}_{f}(a)\right|
$$

- \Rightarrow Nonlinearity is computed via the Fast Walsh Transform
- High nonlinearity is prerequisite for thwarting attacks based on affine (linear) approximations

Known results on nonlinearity of Boolean functions

- For even n, the maximum possible nonlinearity is $2^{n-1}-2^{n / 2-1}$, achieved by the so-called bent functions
- Many constructions are known (not fully classified yet)
- But bent functions are never balanced!
- For odd n, the maximum possible nonlinearity is still unknown
- By concatenating bent functions, we can get nonlinearity $2^{n-1}-2^{\frac{n-1}{2}}$. Can we impove this?
- For $n \leq 7$, the answer is no
- For $n \geq 15$, the answer is yes (Patterson-Wiedemann, 1983 Dobbertin, 1995 - Maitra-Sarkar, 2002)
- For $n=9,11,13$, such functions have been found (Kavut, 2006)
- Several constructions of balanced functions with high nonlinearity exist (e.g. Dobbertin, 1995). However:
- Finding the highest possible nonlinearity of balanced Boolean functions is still an open problem

Higher-order nonlinearity

- Approximating a function by a low-order function (not necessarily linear) may also lead to cryptanalysis (Non-linear cryptanalysis -Knudsen-1996, low-order approximation attacks - Kurosawa et. al. 2002)
- The r th order nonlinearity of a Boolean function $f \in \mathbb{B}_{n}$ is given by

$$
\mathrm{nl}_{r}(f)=\min _{g \in \mathbb{B}_{n}: \operatorname{deg}(g) \leq r} \mathrm{wt}(f \oplus g)
$$

- The r th order nonlinearity remains unknown for $r>1$
- Recursive lower bounds on $\mathrm{nl}_{r}(f)$ (Carlet, 2008)
- Specific lower and upper bounds for $\mathrm{nl}_{2}(f)$ (Cohen, 1992 - Carlet, 2007)
- More recent lower bounds for 2-nd order nonlinearity: Gangopadhyay et. al. - 2010, Garg et. al. - 2011, Singh - 2011, Singh et. al. - 2013

Computing best low order approximations

- Computing even the best 2-nd order approximations is a difficult task
- Efficient solution for specific class of 3-rd degree functions (Kolokotronis-Limniotis-Kalouptsidis, 2009)
- For the Achterbahn's combiner function: $q(x)=x_{5} x_{7} \oplus x_{6} x_{8} \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}$ is a best 2 -nd approximation ((Limniotis, 2007))
- $\mathrm{wt}(f+q)=32(p(f=q)=7 / 8>3 / 4, \epsilon=0.375)$
- No much is known regarding constructions of functions with high r-th nonlinearity, for $r \geq 2$
- Even if a high lower bound on the nonlinearity is proved, best r-th order approximations cannot be computed
- A class of highly nonlinear 3-rd degree functions satisfying $\mathrm{nl}_{2}(f)=\mathrm{nl}(f)$ (Kolokotronis-Limniotis, 2012)

Approximation by a function depending on fewer variables

- Exploiting an approximation of a cryptographic Boolean function by a function of fewer variables may result in specific attacks, such as divide-and-conquer attacks (Canteaut et. al., 2002)
- If $f \in \mathbb{B}_{n}$ depends only on $k<n$ variables, then we say that $f \in \mathbb{B}_{n}(k)$
- Linearly equivalent to a function g depending on $x_{1}, x_{2}, \ldots, x_{k}$
- The linear kernel of f has dimension $n-k$ (if $g \in \mathbb{B}_{k}$ has no linear structures).
- A function with high nonlinearity cannot be efficiently approximated by other function depending on a small subset of its input variables (Canteaut et. al., 2002)
- If $f \in \mathbb{B}_{n}$ is a t-resilient function, then:

$$
d_{H}\left(f, \mathbb{B}_{n}(k)\right) \geq 2^{n-1}-\frac{\max _{\boldsymbol{a} \in \mathbb{F}_{2}^{n}}\left|\widehat{\chi}_{f}(\boldsymbol{a})\right|}{2}\left(\sum_{i=t+1}^{k}\binom{k}{i}\right)^{1 / 2}
$$

Annihilators and algebraic immunity

Definition

Given $f \in \mathbb{B}_{n}$, we say that $g \in \mathbb{B}_{n}$ is an annihilator of f if and only if g lies in the set

$$
\mathcal{A N}(f)=\left\{g \in \mathbb{B}_{n}: f * g=0\right\}
$$

Definition

The algebraic immunity $\mathrm{Al}_{n}(f)$ of $f \in \mathbb{B}_{n}$ is defined by

$$
\mathrm{Al}_{n}(f)=\min _{g \neq 0}\{\operatorname{deg}(g): g \in \mathcal{A N}(f) \cup \mathcal{A} \mathcal{N}(f \oplus 1)\}
$$

- A high algebraic immunity is prerequisite for preventing algebraic attacks (Meier-Pasalic-Carlet, 2004)
- Well-known upper bound: $\mathrm{Al}_{n}(f) \leq\left\lceil\frac{n}{2}\right\rceil$

Fast algebraic attacks

- An extension of the conventional algebraic attacks
- Maximum AI does not imply resistance to fast algebraic attacks

Definition

The fast algebraic immunity $\operatorname{FAI}_{n}(f)$ of $f \in \mathbb{B}_{n}$ is defined by

$$
\operatorname{FAI}_{n}(f)=\min _{1 \leq \operatorname{deg}(g) \leq \mathrm{Al}_{n}(f)}\left\{2 \mathrm{Al}_{n}(f), \operatorname{deg}(g)+\operatorname{deg}(f * g)\right\}
$$

- Upper bound: $\operatorname{FAl}_{n}(f) \leq n$
- If $\mathrm{FAI}_{n}(f)=n$, then f is a perfect algebraic immune function

The Carlet-Feng construction

- Carlet-Feng, 2008: $\operatorname{supp}(f)=\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{2^{n-1}-2}\right\}$, where α a primitive element of the finite field $\mathbb{F}_{2^{n}}$.
- Degree $n-1$ (i.e. the maximum possible)
- High (first-order) nonlinearity is ensured
- Lower bound (Tang et. al., 2013:)

$$
\mathrm{nl}(f) \geq 2^{n-1}-\left(\frac{n \ln (2)}{\pi}+0.74\right) 2^{n / 2}-1
$$

- Experiments show that the actual values of nonlinearities may be higher enough
- Optimal against fast algebraic attacks, as subsequently shown (Liu-Zhang-Lin, 2012)
- Several generalizations of the Carlet-Feng construction
- The most recent is based on exploiting properties of punctured Reed-Muller codes (Limniotis-Kolokotronis, 2018)

Predictability of sequences: Linear complexity

Several criteria to measure pseudorandomness of a sequences s

- Widely studied:
- Linear complexity $\mathrm{c}(s)$ of a sequence s (the length of the shortest Linear Feedback Shift Register that generates s)
- Berlekamp-Massey algorithm
- Games-Chan algorithm (for 2^{n}-periodic binary sequences)
- Linear complexity profile (how linear complexity increases as the sequence length grows)
- Generalized complexity measures:
- k-error linear complexity $\mathrm{c}_{k}(s): \min _{\mathrm{wt}}(e) \leq k \mathrm{c}(s+e)$ (how the linear complexity can be reduced if at most k errors are introduced)
- k-error linear complexity spectrum (how linear complexity decreases as the error weight k increases)

The Games-Chan algorithm

A recursive algorithm

- $s=\left[\begin{array}{ll}L & R\end{array}\right]$
- $B(s)=L \oplus R\left(\right.$ of period $\left.2^{n-1}\right)$
- Is $B(s)$ different from the all-zeroes sequence?
- If yes, then $\mathrm{c}(s)=2^{n-1}+\mathrm{c}(B(s))$;
- otherwise, $\mathrm{c}(s)=\mathrm{c}(L)$

Example

- $s=01000111$
- $B(s)=0011, \mathrm{c}(s)=4+\mathrm{c}(B(s))$
- $B(B(s))=11, \mathrm{c}(B(s))=2+\mathrm{c}(B(B(s)))=2+1=3$
- $\mathrm{c}(s)=4+3=7$

Critical Error Linear Complexity Spectrum

2^{n}-periodic binary sequences attracted great attention, due to special properties implied by the Games-Chan algorihm

- Critical Error Linear Complexity Spectrum (CELCS): the ordered set of points $\left(k, \mathrm{c}_{k}(s)\right)$ satisfying $\mathrm{c}_{k}(s)>\mathrm{c}_{k^{\prime}}(s)$, for $k^{\prime}>k$.
- Each point in CELCS is called critical point (CP)

Milestones

- Stamp-Martin, 1993: an algorithm for computing $c_{k}(s)$,
- Kurosawa et. al., 2000: the minimum number of bits that should be altered in order to reduce the complexity: $2^{\mathrm{wt}\left(2^{n}-\mathrm{c}(s)\right)}$,
- Lauder-Paterson, 2003: generalization of the Stamp-Martin algorithm, to compute the entire CELCS
- Etzion-Kalouptsidis-Kolokokotronis-Limniotis-Paterson, 2009:

Detailed study on the properties of the CELCS

The Lauder-Paterson algorithm

Example (Cont.)

- The sequence $s=01000111$ has 3 CPs
- $(0,7)$
- $(2,2)$
- $s^{\prime}=01010101$
- The sequence $e=00010010$ such that $\mathrm{c}(s \oplus e)=\mathrm{c}_{2}(s)$ is a critical error sequence
- $(4,0)$
- For length $N=2^{n}, \mathcal{O}\left(N \log (N)^{2}\right)$ bit operations
- The Lauder-Paterson algorithm computes all the CPs, but appropriately modified can also compute the critical error sequences
- For any 2^{n}-periodic binary sequence s, the minimum possible number of $C P s$ is two:
- $(0, \mathrm{c}(s)),(\mathrm{wt}(s), 0)$ (the trivial CPs)
- Etzion et. al., 2009: Full characterization of sequences with 2 CPs

A bijection between sequences and functions

Definition

If $s=\left(s_{0}, s_{1}, \ldots, s_{2^{n}-1}\right)$ is the vector corresponding to a periodic binary sequence s with period 2^{n}, then we define the corresponding n-variable Boolean function f, denoted by f_{s}, to be the function whose truth table equals $\boldsymbol{f}_{\boldsymbol{s}}=\left(s_{0}, s_{1}, \ldots, s_{2^{n}-1}\right)$

- We write $s \leftrightarrow f_{s}$.
- Conversely, for any function $f^{\prime} \in \mathbb{B}_{n}$, there is a unique 2^{n}-periodic binary sequence s^{\prime} such that $s^{\prime} \leftrightarrow f^{\prime}$.

Proposition

Let s be a 2^{n}-periodic binary sequence, with linear complexity $c(s)$. It holds $2^{n-\ell-1} \leq c(s)<2^{n-\ell}$ for some $1 \leq \ell<n-1$ if and only if the ANF of $f_{s}\left(x_{1}, \ldots, x_{n}\right)$ depends only on $x_{1}, \ldots, x_{n-\ell}$.

"Linear complexity" of Boolean functions

- Due to the aforementioned bijection, the linear complexity of a sequence s reflects the number of variables that appear in the ANF of the corresponding Boolean function f_{s}
- Similarly, we may proceed with the CELCS of f_{s}

Theorem

- Let $\left(k, c_{k}(s)\right)$ be a CP of s satisfying $2^{n-\ell-1} \leq c_{k}(s)<2^{n-\ell}$ for some integer $\ell \geq 1$
- Let k be the least integer with this property
- $f_{s} \leftrightarrow s$.
- Let e be a critical error sequence of s such that $\mathrm{wt}(e)=k$
- \Rightarrow The function $h=f_{s}+f_{e}$ depends on the first $n-\ell$ variables and, moreover, there is no function $g \in \mathbb{B}_{n}$ with $\mathrm{wt}(g)<k$ such that $f_{s}+g$ depends on at most the first $n-\ell-1$ variables.

The CELCS of a Boolean function

- The CELCS provides info on how well a function can be approximated by another function with fewer number of variables
- \Rightarrow Use of the Lauder-Paterson algorithm for efficient computation Example - The function f of the first version of the Achterbahn cipher Use of the Lauder-Paterson algorithm for finding approximations of f depending on $k<8$ variables

k	distance	Bias
7	32	0.375
6	64	0.25
5	96	0.125

- There exist functions depending on 7 and 6 variables that approximate $f \in \mathbb{B}_{8}$ with bias 0.375 (equal to the bias of the best 2nd-order approximation of f) and 0.25 (equal to the bias of the best affine approximation of f) respectively.

Other examples

- The Lauder-Paterson also provides useful results for the 2nd version of the Achterbahn, having a function with 13 variables
- For the 3 rd-order resilient function $f \in \mathbb{B}_{10}$ of the LILI-128 cipher, we found out function depending on 4 variables, whose distance from f is very close to the relative lower bound proved in (Canteaut et. al., 2002)
- The Carlet-Feng function $f_{C F} \in \mathbb{B}_{9}$ (perfect algrebraic immune)

k	distance	CP	Bias
8	$\mathbf{1 3 0}$	$(130,97)$	0.2461
7	$\mathbf{1 6 2}$	$(162,99)$	0.1836
6	$\mathbf{1 9 2}$	$(192,57)$	0.1250
5	$\mathbf{2 2 0}$	$(220,26)$	0.0703
4	$\mathbf{2 3 2}$	$(232,9)$	0.0469
3	246	$(246,5)$	0.0195

What if the number of CPs is only two?

- If s has two CPs, then it seems that the Lauder-Paterson algorithm does non provide useful information - in terms of the previous analysis - on the Boolean function f_{s}
- However, in such a case, f_{s} is not of cryptographic strength

Lemma

- If s has two CPs, it is "highly probable" that the linear kernel of f_{s} has dimension at least 1
- Conversely, if $f_{s}\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{1}, \ldots, x_{n-1}\right) \oplus \epsilon x_{n}, \epsilon \in\{0,1\}$ then its linear kernel has dimension at least 1 and s has exactly two CPs.

An interesting observation

- Permuting the variables of f_{s} result in a linearly-equivalent function $f_{s^{\prime}}$
- Actualy, $f_{s^{\prime}}$ is the same with f_{s}, having changed the names of the variables
- The CELCS of s^{\prime} is generally different from the CELCS of s

Definition

Let $f \in \mathbb{B}_{n}$. Then, for any $0 \leq k \leq n$, the k-error linear complexity of f, denoted as $c_{k}(f)$ is defined as

$$
c_{k}(f)=\min _{A \in P_{n}}\left\{c_{k}(s): s \leftrightarrow f(A \boldsymbol{x})\right\}
$$

where P_{n} is the set of all permutation matrices over \mathbb{F}_{2} of order n.
The CELCS of f is similarly defined

The Lauder-Paterson algorithm for computing low-order approximations

- The Lauder-Paterson algorithm finds out critical error vectors
- If e is a critical error sequence of s, when it holds

$$
\operatorname{deg}\left(f_{s \oplus e}\right)<\operatorname{deg}\left(f_{s}\right) ?
$$

Proposition

Let $s=\left[\begin{array}{ll}L_{1} & R_{1}\end{array}\right], s^{\prime}=\left[\begin{array}{ll}L_{2} & R_{2}\end{array}\right]$ be two binary sequences of length 2^{n}. If $R_{1}=R_{2}$ and $\operatorname{deg}\left(f_{B(s)}\right)<\operatorname{deg}\left(f_{B\left(s^{\prime}\right)}\right)$, then it holds $\operatorname{deg}\left(f_{s}\right) \leq \operatorname{deg}\left(f_{s^{\prime}}\right)$.

- The proof of this Proposition illustrates that $\operatorname{deg}\left(f_{s}\right)<\operatorname{deg}\left(f_{s^{\prime}}\right)$ with high probability (i.e. equality is not expected to be common)

The Lauder-Paterson algorithm for computing low-order approximations (Cont.)

Proposition
Let s be a binary sequence with period 2^{n} such that

$$
2^{n-2}<\mathrm{wt}(B(s))<2^{n-1}
$$

. Then, there exists a non-trivial critical error sequence e of s such that $\operatorname{deg}\left(f_{s \oplus e}\right) \leq \operatorname{deg}\left(f_{s}\right)$.

- Hence, the Lauder-Paterson algorithm also finds out low-order approximations
- Experiments illustrate that, in some cases, best low-order approximations are obtained

Conclusions - Open problems

- Via defining a bijection between 2^{n}-periodic binary sequences and Boolean functions on n variables, information on pseudorandomness properties of sequences also reflect cryptographic properties of functions
- Known algorithms on sequences may be used for efficient computation of cryptographic properties of functions (known to be hard to be computed otherwise)
- The Lauder-Paterson algorithm for determining approximations:
- depending on fewer number of variables
- of lower degree

Open problems (not an exhaustive list...)

- When are these approximations the best?
- How to use these results for constructing cryptographically strong functions?
T. Etzion, N. Kalouptsidis, N. Kolokotronis, K. Limniotis and K. G. Paterson, Properties of the error linear complexity spectrum, IEEE Trans. Inform. Theory, vol. 55, pp. 4681-4686, Oct. 2009.
N. Kolokotronis, K. Limniotis and N. Kalouptsidis, Best affine and quadratic approximations of particular classes of Boolean functions', IEEE Trans. Inform. Theory, vol. 55, pp. 5211-5222, Nov. 2009.
N. Kolokotronis and K. Limniotis, On the second-order nonlinearity of cubic Maiorana-McFarland Boolean functions, Int. Symp. on Inform. Theory and its Applications (ISITA), pp. 596-600, 2012.K. Limniotis and N. Kolokotronis, Boolean functions with maximum algebraic immunity: further extensions of the Carlet-Feng construction, Designs, Codes and Cryptography, vol. 86, pp. 1685-1706, Springer, 2018.K. Limniotis and N. Kolokotronis, The error linear complexity spectrum as a cryptographic criterion of Boolean Functions. Submitted to IEEE Trans. Inform. Theory (under review).

Questions \& Answers

Thank you for your attention!

