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Symmetric ciphers

A typical cryptosystem

Plaintext
Encryption

Ciphertext
Decryption

Plaintext
� � �

Sender Receiver

� �

�

Encryption Key Decryption Key

Eavesdropper

Symmetric cryptography

Encryption Key = Decryption Key

The key is only shared between the two parties

The security rests with the secrecy of the key (Kerchoffs principle)

Post-quantum resistant (for appropriate key sizes)

Two types of symmetric ciphers

Stream ciphers

Block ciphers
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Stream ciphers

Simplest Case: Binary additive stream cipher
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Suitable in environments characterized by a limited computing power

or memory, and the need to encrypt at high speed

The seed of the keystream generators constitutes the secret key

Security depends on

Pseudorandomness of the keystram ki

Properties of the underlying functions that form the keystream

generator
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Block ciphers

Simplest Case: Electronic Codebook Mode of operation (ECB)
Plaintext

. . . Block Mi−1 Block Mi Block Mi+1
. . .

?

Encryption

E

-
Key K

?
. . . Block Ci−1 Block Ci Block Ci+1

. . .

Ciphetext

Encryption on a per-block basis (typical block size: 128 bits)

Several drawbacks of the ECB - Other modes of operation are being

used in practice (CTR, GCM etc.)

Some modes resemble the operation of stream ciphers - the

encryption function E stands as a keystream generator

Current research trend: Authenticated cipher (CAESAR)
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A common approach for block and stream ciphers

Despite their differences, a common study is needed for their

building blocks (multi-output and single-output Boolean functions)

The attacks in block ciphers are, in general, different from the

attacks in stream ciphers and vice versa. However:

For both cases, almost the same cryptographic criteria of functions

should be in place

Challenges:

There are tradeoffs between several cryptographic criteria

The relationships between several criteria are still unknown

How to construct functions that are mathematically bound to satisfy

all the main criteria

New attacks ⇒ New criteria
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Boolean Functions

A Boolean function f on n variables (f ∈ Bn) is a mapping from Fn
2

onto F2

The vector f =
(
f(0, 0, . . . , 0), f(1, 0, . . . , 0), . . . , f(1, 1, . . . , 1)

)
of

length 2n is the truth table of f

The Hamming weight of f is denoted by wt(f)

f is balanced if and only if wt(f) = 2n−1

The support supp(f) of f is the set {b ∈ Fn
2 : f(b) = 1}

Example: Truth table of balanced f with n = 3

x1 0 1 0 1 0 1 0 1

x2 0 0 1 1 0 0 1 1

x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

A vectorial Boolean function F is a mapping from Fn
2 onto Fm

2 , m > 1
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Algebraic Normal Form and degree of functions

Algebraic Normal Form (ANF) of f :

f(x) =
∑

v∈Fn
2

avx
v, where xv =

n∏

i=1

xvii

.

The sum is performed over F2 (XOR addition)

The degree deg(f) of f is the highest number of variables that

appear in a product term in its ANF.

If deg(f) = 1, then f is called affine function

If, in addition, the constant term is zero, then the function is called

linear

In the previous example: f(x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x1.

deg(f) = 2
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Univariate representation of Boolean functions

Fn
2 is isomorphic to the finite field F2n ,

⇒ Any function f ∈ Bn can also be represented by a univariate

polynomial, mapping F2n onto F2, as follows

f(x) =

2n−1∑

i=0

βix
i

where β0, β2n−1 ∈ F2 and β2i = β2
i ∈ F2n for 1 ≤ i ≤ 2n − 2

The coefficients of the polynomial determine the Discrete Fourier

Transform of f

The degree of f can be directly deduced by the univariate

representation

The univariate representation is more convenient in several cases
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Walsh transform

Definition

The Walsh transform χ̂f (a) at a ∈ Fn
2 of f : Fn

2 → F2 is

χ̂f (a) =
∑

x∈ Fn
2

(−1)f(x)⊕axT

= 2n − 2wt(f ⊕ φa)

where φa(x) = axT = a1x1 ⊕ · · · ⊕ anxn
Computational complexity: O(n2n) (via fast Walsh transform)

Parseval’s theorem:
∑

a∈ Fn
2
χ̂f (a)

2 = 22n
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Cryptographic properties

Apart from the balancedness and the high algebraic degree, other

important cryptographic criteria are the following:

Correlation immunity

Existence of linear structures

Nonlinearity

Higher-order nonlinearity

Minimum Hamming distance from a function with fewer number of

variables

(Fast) algebraic immunity

More recently, the structure of specific ciphers (e.g. the FLIP stream

cipher) necessitates the study of appropriate modifications of (some of)

the above criteria (Carlet, 2017).
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Correlation immunity

If the output of a Boolean function f is correlated to at least one of

its inputs, then it is vulnerable to correlation attacks (Siegenthaler,

1984).

The f ∈ Bn is t-th correlation immune if it is not correlated with

any t-subset of {x1, . . . , xn}; namely if

Pr(f(x) = 0|xi1 = bi1 , . . . , xit = bit) = Pr(f(x) = 0)

for any t positions xi1 , . . . , xit and any bi1 , . . . , bit ∈ F2

If a t-th order correlation immune function is also balanced, then it

is called t-th order resilient.
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Properties of correlation immunity

Siegenthaler, 1984: A known trade-off: If f is k-th order resilient for

1 ≤ k ≤ n− 2, then deg(f) ≤ n− k − 1.

Xiao-Massey, 1988: A function f ∈ Bn is t-th order correlation

immune iff its Walsh transform satisfies

χ̂f (a) = 0,∀ 1 ≤ wt(a) ≤ t

Note that f is balanced iff χ̂f (0) = 0.

⇒ A function f ∈ Bn is t-th order resilient iff its Walsh transform

satisfies χ̂f (a) = 0,∀ 0 ≤ wt(a) ≤ t

Siegenthaler also proposed a recursive procedure to construct m-th

order resilient Boolean functions, for any desired m, with the

maximum possible degree

Several other constructions are currently known
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Linear structures

The derivative of f in the direction of the vector a ∈ Fn
2 is given by

Da(f(x)) = f(x)⊕ f(x⊕ a).

A vector a ∈ Fn
2 is called a linear structure of f if the derivative

Da(f) is constant.

Boolean functions used in symmetric ciphers should avoid nonzero

linear structures.

To thwart, e.g. differential cryptanalysis
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The linear kernel of f

The set of linear structures of f constitutes the so-called linear

kernel of f , being a subspace of Fn
2 .

A Boolean function admits a nonzero linear structure if and only if it

is linear equivalent to a function of the form

f(x1, . . . , xn) = g(x1, . . . , xn−1)⊕ εxn.

More generally, its linear kernel has dimension at least k if and only

if it is linearly equivalent to a function of the form:

f(x1, . . . , xn) = g(x1, . . . , xn−k)⊕ εn−k+1xn−k+1 ⊕ . . .⊕ εnxn ,
εn−k+1, . . . , εn ∈ F2.
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Linear approximation attacks

The maximum possible degree of a balanced Boolean function with

n variables is n− 1

High degree though is not adequate to prevent linear cryptanalysis

(in block ciphers - Matsui, 1992) or best affine approximation

attacks (in stream ciphers - Ding et. al., 1991)

A function should not be well approximated by a linear/affine

function

Any function of degree 1 that best approximates f is a best

affine/linear approximation of f

An equivalent notion of describing the Hamming distance between

two Boolean functions f , g is the so-called bias ε:

ε = |p(f(x) = g(x))− 1/2|
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Example of approximation attacks

The Achterbahn cipher [Gammel-Göttfert-Kniffler,2005] (candidate in

eSTREAM project)

NLFSR 8
xn
j

�
�
��.

.

.

NLFSR i xi
j
-

.

.

.

NLFSR 1
x1
j

@
@
@R

Boolean function f - yj

Lengths of nonlinear FSRs: 22-31

f(x1, . . . , x8) =
∑4

i=1 xi ⊕ x5x7 ⊕ x6x7 ⊕ x6x8 ⊕ x5x6x7 ⊕ x6x7x8
Johansson-Meier-Muller, 2006: cryptanalysis via the linear

approximation g(x1, . . . , x8) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6, satisfying

wt(f ⊕ g) = 64 (p(f = g) = 3/4, ε = 0.25)
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The notion of nonlinearity

The minimum distance between f and all affine functions is the

nonlinearity of f :

nl(f) = min
l∈Bn:deg(l)=1

wt(f ⊕ l)

Relathionship with Walsh transform

nl(f) = 2n−1 − 1

2
max
a∈Fn

2

|χ̂f (a)|

⇒ Nonlinearity is computed via the Fast Walsh Transform

High nonlinearity is prerequisite for thwarting attacks based on affine

(linear) approximations
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Known results on nonlinearity of Boolean functions

For even n, the maximum possible nonlinearity is 2n−1 − 2n/2−1,

achieved by the so-called bent functions

Many constructions are known (not fully classified yet)

But bent functions are never balanced!

For odd n, the maximum possible nonlinearity is still unknown

By concatenating bent functions, we can get nonlinearity

2n−1 − 2
n−1
2 . Can we impove this?

For n ≤ 7, the answer is no

For n ≥ 15, the answer is yes (Patterson-Wiedemann, 1983 -

Dobbertin, 1995 - Maitra-Sarkar, 2002)

For n = 9, 11, 13, such functions have been found (Kavut, 2006)

Several constructions of balanced functions with high nonlinearity

exist (e.g. Dobbertin, 1995). However:

Finding the highest possible nonlinearity of balanced Boolean

functions is still an open problem
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Higher-order nonlinearity

Approximating a function by a low-order function (not necessarily

linear) may also lead to cryptanalysis (Non–linear cryptanalysis -

Knudsen-1996, low-order approximation attacks - Kurosawa et. al. -

2002)

The rth order nonlinearity of a Boolean function f ∈ Bn is given by

nlr(f) = min
g∈Bn:deg(g)≤r

wt(f ⊕ g)

The rth order nonlinearity remains unknown for r > 1

Recursive lower bounds on nlr(f) (Carlet, 2008)

Specific lower and upper bounds for nl2(f) (Cohen, 1992 - Carlet,

2007)

More recent lower bounds for 2-nd order nonlinearity: Gangopadhyay

et. al. - 2010, Garg et. al. - 2011, Singh - 2011, Singh et. al. - 2013
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Computing best low order approximations

Computing even the best 2-nd order approximations is a difficult

task

Efficient solution for specific class of 3-rd degree functions

(Kolokotronis-Limniotis-Kalouptsidis, 2009)

For the Achterbahn’s combiner function:

q(x) = x5x7 ⊕ x6x8 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 is a best 2-nd

approximation ((Limniotis, 2007))

wt(f + q) = 32 (p(f = q) = 7/8 > 3/4, ε = 0.375)

No much is known regarding constructions of functions with high

r-th nonlinearity, for r ≥ 2

Even if a high lower bound on the nonlinearity is proved, best r-th

order approximations cannot be computed

A class of highly nonlinear 3-rd degree functions satisfying

nl2(f) = nl(f) (Kolokotronis-Limniotis, 2012)
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Approximation by a function depending on fewer variables

Exploiting an approximation of a cryptographic Boolean function by

a function of fewer variables may result in specific attacks, such as

divide-and-conquer attacks (Canteaut et. al., 2002)

If f ∈ Bn depends only on k < n variables, then we say that

f ∈ Bn(k)

Linearly equivalent to a function g depending on x1, x2, . . . , xk

The linear kernel of f has dimension n− k (if g ∈ Bk has no linear

structures).

A function with high nonlinearity cannot be efficiently approximated

by other function depending on a small subset of its input variables

(Canteaut et. al., 2002)

If f ∈ Bn is a t-resilient function, then:

dH(f,Bn(k)) ≥ 2n−1 − maxa∈ Fn
2
|χ̂f (a)|

2

( k∑

i=t+1

(
k
i

))1/2
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Annihilators and algebraic immunity

Definition
Given f ∈ Bn, we say that g ∈ Bn is an annihilator of f if and only if g

lies in the set

AN (f) = {g ∈ Bn : f ∗ g = 0}

Definition

The algebraic immunity AIn(f) of f ∈ Bn is defined by

AIn(f) = min
g 6=0
{deg(g) : g ∈ AN (f) ∪ AN (f ⊕ 1)}

A high algebraic immunity is prerequisite for preventing algebraic

attacks (Meier-Pasalic-Carlet, 2004)

Well-known upper bound: AIn(f) ≤ dn2 e
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Fast algebraic attacks

An extension of the conventional algebraic attacks

Maximum AI does not imply resistance to fast algebraic attacks

Definition

The fast algebraic immunity FAIn(f) of f ∈ Bn is defined by

FAIn(f) = min
1≤deg(g)≤AIn(f)

{2AIn(f),deg(g) + deg(f ∗ g)}

Upper bound: FAIn(f) ≤ n
If FAIn(f) = n, then f is a perfect algebraic immune function
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The Carlet-Feng construction

Carlet-Feng, 2008: supp(f) = {0, 1, α, α2, . . . , α2n−1−2}, where α a

primitive element of the finite field F2n .

Degree n− 1 (i.e. the maximum possible)

High (first-order) nonlinearity is ensured

Lower bound (Tang et. al., 2013:)

nl(f) ≥ 2n−1 − (
n ln(2)

π
+ 0.74)2n/2 − 1

Experiments show that the actual values of nonlinearities may be

higher enough

Optimal against fast algebraic attacks, as subsequently shown

(Liu-Zhang-Lin, 2012)

Several generalizations of the Carlet-Feng construction

The most recent is based on exploiting properties of punctured

Reed-Muller codes (Limniotis-Kolokotronis, 2018)
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Predictability of sequences: Linear complexity

Several criteria to measure pseudorandomness of a sequences s

Widely studied:

Linear complexity c(s) of a sequence s (the length of the shortest

Linear Feedback Shift Register that generates s)

Berlekamp-Massey algorithm

Games-Chan algorithm (for 2n-periodic binary sequences)

Linear complexity profile (how linear complexity increases as the

sequence length grows)

Generalized complexity measures:

k-error linear complexity ck(s): minwt(e)≤k c(s+ e) (how the linear

complexity can be reduced if at most k errors are introduced)

k-error linear complexity spectrum (how linear complexity decreases

as the error weight k increases)
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The Games-Chan algorithm

A recursive algorithm

s = [L R]

B(s) = L⊕ R (of period 2n−1)

Is B(s) different from the all-zeroes sequence?

If yes, then c(s) = 2n−1 + c(B(s));

otherwise, c(s) = c(L)

Example

s = 01000111

B(s) = 0011, c(s) = 4 + c(B(s))

B(B(s)) = 11, c(B(s)) = 2 + c(B(B(s))) = 2 + 1 = 3

c(s) = 4 + 3 = 7
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Critical Error Linear Complexity Spectrum

2n-periodic binary sequences attracted great attention, due to special

properties implied by the Games-Chan algorihm

Critical Error Linear Complexity Spectrum (CELCS): the ordered set

of points
(
k, ck(s)

)
satisfying ck(s) > ck′(s), for k′ > k.

Each point in CELCS is called critical point (CP)

Milestones

Stamp-Martin, 1993: an algorithm for computing ck(s),

Kurosawa et. al., 2000: the minimum number of bits that should be

altered in order to reduce the complexity: 2wt(2n−c(s)),

Lauder-Paterson, 2003: generalization of the Stamp-Martin

algorithm, to compute the entire CELCS

Etzion-Kalouptsidis-Kolokokotronis-Limniotis-Paterson, 2009:

Detailed study on the properties of the CELCS
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The Lauder-Paterson algorithm

Example (Cont.)

The sequence s = 01000111 has 3 CPs

(0, 7)

(2, 2)

s′ =01010101

The sequence e = 00010010 such that c(s⊕ e) = c2(s) is a critical

error sequence

(4, 0)

For length N = 2n, O(N log(N)2) bit operations

The Lauder-Paterson algorithm computes all the CPs, but

appropriately modified can also compute the critical error sequences

For any 2n-periodic binary sequence s, the minimum possible

number of CPs is two:

(0, c(s)), (wt(s), 0) (the trivial CPs)

Etzion et. al., 2009: Full characterization of sequences with 2 CPs
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A bijection between sequences and functions

Definition

If s = (s0, s1, . . . , s2n−1) is the vector corresponding to a periodic binary

sequence s with period 2n, then we define the corresponding n-variable

Boolean function f , denoted by fs, to be the function whose truth table

equals fs = (s0, s1, . . . , s2n−1)

We write s↔ fs.

Conversely, for any function f ′ ∈ Bn, there is a unique 2n-periodic

binary sequence s′ such that s′ ↔ f ′.

Proposition

Let s be a 2n-periodic binary sequence, with linear complexity c(s). It

holds 2n−`−1 ≤ c(s) < 2n−` for some 1 ≤ ` < n− 1 if and only if the

ANF of fs(x1, . . . , xn) depends only on x1, . . . , xn−`.
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“Linear complexity” of Boolean functions

Due to the aforementioned bijection, the linear complexity of a

sequence s reflects the number of variables that appear in the ANF

of the corresponding Boolean function fs

Similarly, we may proceed with the CELCS of fs

Theorem

Let (k, ck(s)) be a CP of s satisfying 2n−`−1 ≤ ck(s) < 2n−` for

some integer ` ≥ 1

Let k be the least integer with this property

fs ↔ s.

Let e be a critical error sequence of s such that wt(e) = k

⇒ The function h = fs + fe depends on the first n− ` variables

and, moreover, there is no function g ∈ Bn with wt(g) < k such

that fs + g depends on at most the first n− `− 1 variables.
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The CELCS of a Boolean function

The CELCS provides info on how well a function can be

approximated by another function with fewer number of variables

⇒ Use of the Lauder-Paterson algorithm for efficient computation

Example - The function f of the first version of the Achterbahn cipher

Use of the Lauder-Paterson algorithm for finding approximations of f

depending on k < 8 variables

k distance Bias

7 32 0.375

6 64 0.25

5 96 0.125

There exist functions depending on 7 and 6 variables that

approximate f ∈ B8 with bias 0.375 (equal to the bias of the best

2nd-order approximation of f) and 0.25 (equal to the bias of the

best affine approximation of f) respectively.
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Other examples

The Lauder-Paterson also provides useful results for the 2nd version

of the Achterbahn, having a function with 13 variables

For the 3rd-order resilient function f ∈ B10 of the LILI-128 cipher,

we found out function depending on 4 variables, whose distance

from f is very close to the relative lower bound proved in (Canteaut

et. al., 2002)

The Carlet-Feng function fCF ∈ B9 (perfect algrebraic immune)

k distance CP Bias

8 130 (130, 97) 0.2461

7 162 (162, 99) 0.1836

6 192 (192, 57) 0.1250

5 220 (220, 26) 0.0703

4 232 (232, 9) 0.0469

3 246 (246, 5) 0.0195
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What if the number of CPs is only two?

If s has two CPs, then it seems that the Lauder-Paterson algorithm

does non provide useful information - in terms of the previous

analysis - on the Boolean function fs

However, in such a case, fs is not of cryptographic strength

Lemma

If s has two CPs, it is “highly probable” that the linear kernel of fs

has dimension at least 1

Conversely, if fs(x1, . . . , xn) = g(x1, . . . , xn−1)⊕ εxn, ε ∈ {0, 1}
then its linear kernel has dimension at least 1 and s has exactly two

CPs.
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An interesting observation

Permuting the variables of fs result in a linearly-equivalent function

fs′

Actualy, fs′ is the same with fs, having changed the names of the

variables

The CELCS of s′ is generally different from the CELCS of s

Definition
Let f ∈ Bn. Then, for any 0 ≤ k ≤ n, the k-error linear complexity of f ,

denoted as ck(f) is defined as

ck(f) = min
A∈Pn

{
ck(s) : s↔ f(Ax)

}

where Pn is the set of all permutation matrices over F2 of order n.

The CELCS of f is similarly defined
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The Lauder-Paterson algorithm for computing low-order

approximations

The Lauder-Paterson algorithm finds out critical error vectors

If e is a critical error sequence of s, when it holds

deg(fs⊕e) < deg(fs)?

Proposition

Let s = [L1 R1], s
′ = [L2 R2] be two binary sequences of length 2n. If

R1 = R2 and deg(fB(s)) < deg(fB(s′)), then it holds

deg(fs) ≤ deg(fs′).

The proof of this Proposition illustrates that deg(fs) < deg(fs′)

with high probability (i.e. equality is not expected to be common)
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The Lauder-Paterson algorithm for computing low-order

approximations (Cont.)

Proposition

Let s be a binary sequence with period 2n such that

2n−2 < wt(B(s)) < 2n−1

. Then, there exists a non-trivial critical error sequence e of s such that

deg(fs⊕e) ≤ deg(fs).

Hence, the Lauder-Paterson algorithm also finds out low-order

approximations

Experiments illustrate that, in some cases, best low-order

approximations are obtained
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Conclusions - Open problems

Via defining a bijection between 2n-periodic binary sequences and

Boolean functions on n variables, information on pseudorandomness

properties of sequences also reflect cryptographic properties of

functions

Known algorithms on sequences may be used for efficient

computation of cryptographic properties of functions (known to be

hard to be computed otherwise)

The Lauder-Paterson algorithm for determining approximations:

depending on fewer number of variables

of lower degree

Open problems (not an exhaustive list...)

When are these approximations the best?

How to use these results for constructing cryptographically strong

functions?
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Questions & Answers

Thank you for your attention!
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