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Cryptography in practice

e-democracy: Need to build citizens’ trust

Without trust, citizens will not visit portals, will not exchange data,...

Security challenges: confidentiality (privacy), integrity,

authentication, transparency

Cryptographic primitives have a crucial role

Confidentiality of the transmitted data is mainly ensured by

symmetric cryptography

Characteristic example: SSL/TLS protocol (underlying in the https

connections)

Symmetric cryptography is also used in several other cases (wireless

networks, mobile networks, RFID applications etc.)

Aim of this talk: Overview of recent developments and current

research trends
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Symmetric ciphers

A typical cryptosystem

Plaintext
Encryption

Ciphertext
Decryption

Plaintext
� � �

Sender Receiver

� �

�

Encryption Key Decryption Key

Eavesdropper

Symmetric cryptography

Encryption Key = Decryption Key

The key is only shared between the two parties

The security rests with the secrecy of the key (Kerchoffs principle)

Two types of symmetric ciphers

Stream ciphers

Block ciphers
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Attacks models

Ciphertert-only attack

The attacker knows only the ciphertext

Known-plaintext attack

The attacker also knows part of the plaintext

Chosen-plaintext attack

It is assumed that the attacker is able to choose plaintexts to

encrypt and, then, to observe the corresponding ciphertexts

Chosen-ciphertext attack

It is assumed that the attacker is able to choose ciphertexts to

decrypt and, then, to observe the corresponding plaintexts

The last two types of attacks are more theoretical than practical.

However, a cipher is being considered as (computationally) secure

only if all types of attacks require prohibitive computational cost
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Stream ciphers

Typical Case: Binary additive stream cipher
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Suitable in environments characterized by a limited computing power

or memory, and the need to encrypt at high speed

The seed of the keystream generators constitutes the secret key

Security depends on

Pseudorandomness of the keystram ki

Properties of the underlying functions that form the keystream

generator
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The optimal cipher: one-time pad

Description

If M = m1m2 . . .mn, then k = k1k2 . . . kn satisfying

k is trully random

k is aperiodic

For each different message, we use different key

Encryption: ci = mi ⊕ ki, i = 1, 2, . . . , n

Decryption: mi = ci ⊕ ki, i = 1, 2, . . . , n

Such cipher is perfectly secure (Claude Shannon - 1949)

p(M |C) = p(M) for any pair M, C

However both randomness as well as aperiodicity can not be ensured

in a realistic model

Designing of stream ciphers strives to resemble the one-time pad
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Keystream Generators in stream ciphers

Basic building block: Linear Feedback Shift Register (LFSR)
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Output sequence:

yi+n = an−1yi+n−1+· · ·+a1yi+1+a0yi, aj ∈ {0, 1} ∀ j = 0, 1, . . . , n−1

Easy implementation

Nice mathematic properties

But: The derived keystreams are easily predictable and, thus,

cryptographically weak
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Predictability of keystreams: Linear complexity

Linear complexity of a sequence: The length of the shortest LFSR

that generates the sequence

If the length of the keystream is N and its linear complexity is L,

then the shortest LFSR is unique if and only if L ≤ N
2

Berlekamp-Massey algorithm: Efficient recursive computation of the

shortest LFSR that generates a given sequence (Total complexity:

O(N2))

The same algorithm is also used for decoding famous error-control

codes (BCH/Reed-Solomon codes)

Knowledge of 2L consecutive bits of the keystream suffices to

generate the remainder!!

⇒ High linear complexity is prerequisite in keystreams

Appropriate use of nonlinear functions
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Classical Keystream Generators

nonlinear filter function g

xi+n−1 xi+n−2 · · ·

· · ·

xi

output sequence
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(a) Nonlinear filter generator

LFSR 1

LFSR 2

...

LFSR n

�

�
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f �
output sequence

the N LFSRs are pairwise different,
of different lengths

(b) Nonlinear combiner generator

High linear complexity is

ensured by appropriately

choosing the underlying

Boolean functions

If these functions though

do not satisfy certain

properties, the system may

be vulnerable to attacks

More recently, nonlinear

FSRs are preferred

(although their

mathematics are not

well-known)
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Known stream ciphers

RC4

Used in WEP, WPA, SSL/TLS

A5/1

Used in mobile telephony (GSM)

E0

Used in Bluetooth protocol

eStream project (2004–2008): Effort to promote the design of efficient

and compact stream ciphers suitable for widespread adoption.

Finalists:

Software implementation: HC-128, Rabbit, Salsa20/12,

SOSEMANUK

Hardware implementation: Grain v1, MICKEY 2.0, Trivium
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Block ciphers

Typical Case: Electronic Codebook Mode (ECB)
Plaintext

. . . Block Mi−1 Block Mi Block Mi+1
. . .

?

Encryption

E

-
Key K

?
. . . Block Ci−1 Block Ci Block Ci+1

. . .

Ciphetext

Encryption on a per-block basis (typical block size: 128 bits)

The encryption function E performs key-dependent substitutions

and permutations (Shannon’s principles)

Security depends on

Generation of the sub-keys used in E

Properties of the underlying functions of E
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The encryption function E in a block cipher

Iterative structure

Several rounds occur

A sub-key is being used in each round

The round function f performs substitution and permutations, via

multi-output Boolean functions (S-boxes, P-boxes)

S-boxes and P-boxes provide the cryptographic properties of diffusion

and confusion respectively (Claude Shannon - 1949)
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Modes of operations for block ciphers

In ECB mode, two identical message blocks are encrypted into

identical ciphetext clocks

Other modes of operation alleviate this issue: CBC, CFB, OFB,

CTR modes

CBC may also used for constructing hash functions

CFB, OFB and CTR transform a block cipher into a (powerful)

stream cipher

CipherBlock Chaining Mode of operation (CBC)
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ECB vs CBC

 

Repeated patterns in a plainxtext is a

realistic assumption, as shown in the

example (obtained from a Bart Preneel’s

presentation, available online (MITACS,

Toronto, 2010))

Hence, ECB mode is of limited use
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Known block ciphers

Advanced Encryption Standard (AES)

NIST’s standard since 2001 (initial submission: Rijndael cipher)

Supported key lengths: 128, 192, 256 bits

Widespread adoption (SSL/TLS, IPSec, commercial products,...)

Data Encryption Standard (DES)

The predecessor of AES (1976-1996)

Official withdrawing: 2004 (although it is still being met today)

Key size: 56 bits (actually, the only flaw of the algorithm)

3DES

Modification of DES, to use key of 112 or 168 bit length

Still in use today - although not very efficient

Other block ciphers: IDEA, MARS, RC6, Serpent, Twofish
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A common approach for block and stream ciphers

Despite their differences, a common study is needed for their

building blocks (multi-output and single-output Boolean functions

respectively)

The attacks in block ciphers are, in general, different from the

attacks in stream ciphers and vice versa. However:

For both cases, almost the same cryptographic criteria of functions

should be in place

Challenges:

There are tradeoffs between several cryptographic criteria

The relationships between several criteria are still unknown

Constructing functions satisfying all the main criteria is still an open

problem
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Boolean Functions

A Boolean function f on n variables is a mapping from Fn
2 onto F2

The vector f =
(
f(0, 0, . . . , 0), f(1, 0, . . . , 0), . . . , f(1, 1, . . . , 1)

)
of

length 2n is the truth table of f

The Hamming weight of f is denoted by wt(f)
f is balanced if and only if wt(f) = 2n−1

The support supp(f) of f is the set {b ∈ Fn
2 : f(b) = 1}

Example: Truth table of balanced f with n = 3

x1 0 1 0 1 0 1 0 1
x2 0 0 1 1 0 0 1 1
x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

A vectorial Boolean function f on n variables is a mapping from Fn
2 onto

Fm
2 , m > 1
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Algebraic Normal Form and degree of functions

Algebraic Normal Form (ANF) of f :

f(x) =
∑

v∈Fn
2

avx
v, where xv =

n∏

i=1

xvi
i

.

The sum is performed over F2 (XOR addition)

The degree deg(f) of f is the highest number of variables that

appear in a product term in its ANF.

If deg(f) = 1, then f is called affine function

If, in addition, the constant term is zero, then the function is called

linear

In the previous example: f(x1, x2, x3) = x1x2 + x2x3 + x1.

deg(f) = 2
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Univariate representation of Boolean functions

Fn
2 is isomorphic to the finite field F2n ,

⇒ Any function f ∈ Bn can also be represented by a univariate

polynomial, mapping F2n onto F2, as follows

f(x) =
2n−1∑

i=0

βix
i

where β0, β2n−1 ∈ F2 and β2i = β2
i ∈ F2n for 1 ≤ i ≤ 2n − 2

The coefficients of the polynomial determine the Discrete Fourier

Transform of f

The univariate representation is more convenient in several cases
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Correlation immunity

If the output of a Boolean function f is correlated to at least one of

its inputs, then it is vulnerable to correlation attacks.

The f ∈ Bn is t-th correlation immune if it is not correlated with

any t-subset of {x1, . . . , xn}; namely if

Pr(f(x) = 0|xi1 = bi1 , . . . , xit = bit) = Pr(f(x) = 0)

for any t positions xi1 , . . . , xit and any bi1 , . . . , bit ∈ F2

If a t-th order correlation immune function is also balanced, then it

is called t-th order resilient.

A known trade-off: If f is k-th order resilient for 1 ≤ k ≤ n− 2,

then deg(f) ≤ n− k − 1.
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Linear approximation attacks

Cryptographic functions need to be balanced, as well as of high

degree

The maximum possible degree of a balanced Boolean function with

n variables is n− 1

High degree though is not adequate to prevent linear cryptanalysis

(in block ciphers - Matsui, 1992) or best affine approximation

attacks (in stream ciphers - Ding et. al., 1991)

A function should not be well approximated by a linear/affine

function

Any function of degree 1 that best approximates f is a best

affine/linear approximation of f
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Example of approximation attacks

The Achterbahn cipher [Gammel-Göttfert-Kniffler,2005] (candidate in

eSTREAM project)

NLFSR 8
xn

j

�
�
��.

.

.

NLFSR i xi
j
-

.

.

.

NLFSR 1
x1

j

@
@
@R

Boolean function f - yj

Lengths of nonlinear FSRs: 22-31

f(x1, . . . , x8) =
∑4

i=1 xi + x5x7 + x6x7 + x6x8 + x5x6x7 + x6x7x8

Johansson-Meier-Muller, 2006: cryptanalysis via the linear

approximation g(x1, . . . , x8) = x1 + x2 + x3 + x4 + x6, satisfying

wt(f + g) = 64 (p(f = g) = 3/4)
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The notion of nonlinearity

The minimum distance between f and all affine functions is the

nonlinearity of f :

nl(f) = min
l∈Bn:deg(l)=1

wt(f + l)

Nonlinearity is computed via the Fast Walsh Transform

High nonlinearity is prerequisite for thwarting attacks based on affine

(linear) approximations

Constructions of correlation-immune functions with high nonlinearity

exist (Maiorana-McFarland class (Camion-Carlet-Charpin-Sendrier,

1992),...)
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Known results on nonlinearity of Boolean functions

For even n, the maximum possible nonlinearity is 2n−1 − 2n/2−1,

achieved by the so-called bent functions

Several constructions of bent functions are known

But bent functions are never balanced!

For odd n, the maximum possible nonlinearity is still unknown
By concatenating bent functions, we can get nonlinearity

2n−1 − 2
n−1

2 . Can we impove this?

For n ≤ 7, the answer is no

For n ≥ 15, the answer is yes (Patterson-Wiedemann, 1983 -

Dobbertin, 1995 - Maitra-Sarkar, 2002)

For n = 9, 11, 13, such functions have been found more recently

(Kavut, 2006)

Several constructions of balanced functions with high nonlinearity

exist. However:

Finding the highest possible nonlinearity of balanced Boolean

functions is still an open problem
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Higher-order nonlinearity

Approximating a function by a low-order function (not necessarily

linear) may also lead to cryptanalysis (Non–linear cryptanalysis -

Knudsen-1996, low-order approximation attacks - Kurosawa et. al. -

2002)

The rth order nonlinearity of a Boolean function f ∈ Bn is given by

nlr(f) = min
g∈Bn:deg(g)≤r

wt(f + g)

The rth order nonlinearity remains unknown for r > 1
Recursive lower bounds on nlr(f) (Carlet, 2008)

Specific lower and upper bounds for nl2(f) (Cohen, 1992 - Carlet,

2007)

More recent lower bounds for 2-nd order nonlinearity: Gangopadhyay

et. al. - 2010, Garg et. al. - 2011, Singh - 2011, Singh et. al. - 2013
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Computing best low order approximations

Computing even the best 2-nd order approximations is a difficult

task

Efficient solution for specific class of 3-rd degree functions

(Kolokotonis-Limniotis-Kalouptsidis, 2009)

The problem is appropriately reduced in computing best affine

approximation attacks of the underlying 2-nd degree sub-functions

For the Achterbahn’s combiner function:

q(x) = x5x7 +x6x8 +x1 +x2 +x3 +x4 is a best 2-nd approximation

wt(f + q) = 32 (p(f = q) = 7/8 > 3/4)

No much is known regarding constructions of functions with high

r-th nonlinearity, for r ≥ 2
A class of highly nonlinear 3-rd degree functions satisfying

nl2(f) = nl(f) (Kolokotronis-Limniotis, 2012)
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More recent attacks: Algebraic attacks

Milestones

Algebraic attacks (Courtois-Meier, 2003)

Fast algebraic attacks (Courtois, 2003)

The basic idea is to reduce the degree of the mathematical

equations employing the secret key

Known cryptographic Boolean functions failed to thwart these

attacks

Some applications of algebraic attacks

Six rounds of DES, with only one known plaintext (Courtois-Bard,

2006)

Keeloq block cipher (Courtois-Bard-Wagner, 2008)

Hitag2 stream cipher (Courtois et. al., 2009)
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Algebraic attacks

Example

Stream cipher based on a nonlinear filter generator
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ki = f(Li(x0, x1, . . . , xN−1)) - the filter function f has high degree

Assume that there exists g ∈ Bn of low degree such that f ∗ g = h,

where h is also of low degree. Then,

kig(Li(x0, x1, . . . , xN−1)) = h(Li(x0, x1, . . . , xN−1))

Several other proper choices of g, h may also reduce the degree of

the system
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An example: The Toyocrypt cipher

A submission to a Japanese government call
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The nonlinear filter function is

f(x1, . . . , x128) = q(x1, . . . , x128) + x10x23x32x42 +
62∏

i=1

xi+

+ x1x2x9x12x18x20x23x25x26x28x33x38x41x42x51x53x59

where deg(q) = 2.

By multiplying f with the affine functions 1 + x23 or 1 + x42, we get

two functions of degree only 3
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How to proceed with algebraic attacks

Once the degree of the equations have been reduced, several

algebraic techniques have been proposed for solving the (still

nonlinear) system:

Linearization of the system

Use of Gröbner bases

More specific techniques: XL, XSL

Hence, the core of the algebraic attacks is the transformation of the

initial system to a new one having low degree
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Annihilators and algebraic immunity

Definition
Given f ∈ Bn, we say that g ∈ Bn is an annihilator of f if and only if g

lies in the set

AN (f) = {g ∈ Bn : f ∗ g = 0}

Definition

The algebraic immunity AIn(f) of f ∈ Bn is defined by

AIn(f) = min
g 6=0
{deg(g) : g ∈ AN (f) ∪ AN (f + 1)}

A high algebraic immunity is prerequisite for preventing algebraic

attacks (Meier-Pasalic-Carlet, 2004)

Well-known upper bound: AIn(f) ≤ dn
2 e
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Some properties of algebraic immunity

Low nonlinearity implies low algebraic immunity: (Carlet et. al., 2006)

nlr(f) ≥
AIn(f)−r−1∑

i=0

(
n
i

)

Especially for r = 1: (Lobanov, 2005)

nl(f) ≥ 2
AIn(f)−2∑

i=0

(
n−1

i

)

Rizomiliotis, 2010: Improvements on the above bounds

The notion of partial algebraic immunity is defined
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Fast algebraic attacks

Consider again the filter generator: ki = f(Li(x0, x1, . . . , xN−1))

Assume that there exists a low degree g ∈ Bn such that h = f ∗ g is

of reasonable degree. Then again,

kig(Li(x0, x1, . . . , xN−1)) = h(Li(x0, x1, . . . , xN−1))

There exists a linear combination of the first
∑deg(h)

i=0

(
N
i

)
equations

that sum the right-hand part to zero ⇒ We get one equation of

degree at most deg(g)

Comparison with conventional algebraic attacks

g+ h ∈ AN (f)⇒ the degree of g+ h may be greater than AIn(f),

Maximum AI does not imply resistance to fast algebraic attacks

But: Knowledge of consecutive keystream bits is required
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Fast Algebraic Immunity

Known result: For any pair of integers (e, d) such that e+ d ≥ n, there

exists a nonzero function g of degree at most e such that f ∗ g has

degree at most d.

Definition

The fast algebraic immunity FAIn(f) of f ∈ Bn is defined by

FAIn(f) = min
1≤deg(g)≤AIn(f)

{2 AIn(f),deg(g) + deg(f ∗ g)}

Upper bound: FAIn(f) ≤ n
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Constructions of functions with maximum AI

Dalai-Maitra-Sarkar, 2006: Majority function

For even n, a slight modification of the majority function also

preserves maximum AI

Carlet-Dalai-Gupta-Maitra-Sarkar, 2006: Iterative construction

Li-Qi, 2006: Modification of the majority function

Sarkar-Maitra, 2007: Rotation Symmetric functions of odd n

Carlet, 2008: Based on properties of affine subspaces

Further investigation in Carlet-Zeng-Li-Hu, 2009

Generalization (for odd n) in Limniotis-Kolokotronis-Kalouptsidis,

2011

Balanceness and/or high nonlinearity are not always attainable,

whereas their fast algebraic immunity remains unknown
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Constructions of functions with maximum AI (Cont.)

Carlet-Feng, 2008: supp(f) = {0, 1, α, α2, . . . , α2n−1−2}, where α a

primitive element of the finite field F2n .

Balanceness and high (first-order) nonlinearity are ensured

Optimal against fast algebraic attacks, as subsequently shown

(Liu-Zhang-Lin, 2012)

Generalizations: Rizomiliotis (2010), Zeng-Carlet-Shan-Hu (2011)

Proper modifications of the Carlet-Feng construction (via the

univariate representation of the function)

Further generalizations in Limniotis-Kolokotronis-Kalouptsidis

(2013)

Finding swaps between supp(f) and supp(f + 1) that preserve

maximum AI

Still room for research regarding fast algebraic immunity (and r-th

order nonlinearity for r ≥ 2)
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Current status

Open problems in the area

Relationships between (fast) algebraic immunity and correlation

immunity

The trade-off between correlation immunity and degree directly

implies a trade-off between correlation immunity and fast algebraic

immunity

Evaluation of known families of cryptographic functions in terms of

resistance against (fast) algebraic attacks

Construction of functions with maximum (fast) algebraic immunity

Much progress on constructing functions with maximum AI, but the

case of maximum FAI is much more difficult

Nonlinear FSRs (or other nonlinear structures) have not been

studied to the same extent
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Design principles of AES

AES operation (key size=128 bits) - (Daemen-Rijmen, 1997)
 

The S-box (SubByte) is a highly nonlinear function

Designed to be resistant against all known cryptanalytic attacks

The inherent algebraic structures (Murphy-Robshaw, 2002) do not

allow mounting algebraic attacks
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Recent attacks on AES

The most important: A related-key attack for key lengths 192 and

256 bits (Biryukov et. al. - 2009)

Practical attacks for reduced number of rounds

Although such attacks are generally more theoretical than practical

It raises concern about the security margin of the AES

B. Schneier (2009): ”(...) for new applications I suggest that people

don’t use AES-256. AES-128 provides more than enough security

margin for the foreseeable future. But if you’re already using

AES-256, there’s no reason to change”.
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Side-channel cryptanalysis

Timing attacks in AES

Cryptanalysis using additional information from the implementation

of the algorithm

The MixColumns function of AES may have different execution

times, depending on the corresponding values

Measuring the execution time provides information for the secret key

Most powerful timing attack on AES: Bernstein, 2005

Conclusion: Not only mathematics, but implementation issues also

need to be considered
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Weaknesses depending on algorithm’s parameters

The RC4 cipher (Rivest, 1987)

 

i, j are updated via a specific procedure

The weaknesses mainly stem from the keystream generator

The first bytes of K do not possess pseudorandom characteristics

Proper choice of parameters is needed (key size, discarding first

bytes of keystream,...)

Academically not secure (distinguishing attacks)

Still secure though in practice (under a proper choice of parameters)

But....
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Secure cipher does not imply secure protocol

RC4 in encryption protocols

WEP is not considered as secure (see e.g. Tews et. al. - 2007:

Breaking 104 bit WEP in less than 60 seconds)

Flaws rest with implementation (e.g. not proper choices of

Initilization Vectors)

AlFardan, Bernstein, Paterson, Poettering, Schuldt - 2013: Security

of RC4 encryption in TLS and WPA/TKIP has been compromised

From www.isg.rhul.ac.uk/tls:

The attacks in TLS arise from statistical flaws in the keystream

generated

Most effective countermeasure: Stop using RC4 in TLS

One of the attacks also applies to WPA/TKIP

Most effective countermeasure: Upgrade to WPA2

K. Limniotis Cryptanalytic attacks on symmetric ciphers 43/46

www.isg.rhul.ac.uk/tls


Talk overview
Introduction - Definitions

Properties of cryptographic functions
Security of modern ciphers

Conclusions

AES
RC4
Ciphers in security protocols

Even AES may not provide a secure protocol

Attacks in IPSec

IPSec provides security at the IP Layer (mainly used in Virtual

Private Networks)

Paterson-Yau, 2006 - Degabriel-Paterson, 2007: Active

ciphertext-only attacks, if only encryption (and not data

authentication) is implemented

Encryption with AES

Even following RFCs may not be enough!

The attacks rest with the CBC mode of AES

Flipping bits in a ciphertext block leads to controlled changes in the

subsequent decrypted plaintext block

Example: Appropriate modification of headers so that error

messages, carrying plaintext data, are sent to attacker’s machine
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Conclusions

Mathematics for ensuring cryptographic properties that are

prerequisite to withstand any type of known attacks

Always leave a security margin - the attacks are getting better and

better

A secure cipher does not imply secure protocol

A proper design of the protocol is needed

B. Schneier, Sep. 2013 (after disclosures of NSA eavesdropping on

the Internet):

”(...) Remember this: The math is good, but math has no agency.

Code has agency, and the code has been subverted (...)”

”(...) Trust the math. Encryption is your friend. Use it well, and do

your best to ensure that nothing can compromise it (...)”
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Questions & Answers

Thank you for your attention!
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