
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.?, NO.?, AUGUST 2006 1

Logic and Computational Complexity for Boolean
Information Retrieval

Manolis Koubarakis, Spiros Skiadopoulos, and Christos Tryfonopoulos

Abstract— We study the complexity of query satisfiability and
entailment for the Boolean Information Retrieval models WP
and AWP using techniques from propositional logic and com-
putational complexity. WP and AWP can be used to represent
and query textual information under the Boolean model using the
concept of attribute with values of type text, the concept of word,
and word proximity constraints. Variations of WP and AWP
are in use in most deployed digital libraries using the Boolean
model, text extenders for relational database systems (e.g., Oracle
10g), search engines and P2P systems for information retrieval
and filtering.

Index Terms— Boolean Information Retrieval, computational
complexity, data models, query languages, satisfiability, entail-
ment, proximity

I. INTRODUCTION

WE study two well-known data models of Information
Retrieval (IR) [2] and digital libraries [9], [10], [8]

which we have called WP and AWP in [21], [19], [30],
[29], [28], [20]. Data model WP is based on free text and
its query language is based on the Boolean model for word
patterns. Word patterns are formulas that enable the expression
of constraints on the existence, non-existence or proximity of
words in a text document. Data model AWP extends WP
with named attributes with free text as values. The query
language of AWP is also a simple extension of the query
language of WP so that attributes are included.

Models such as WP that are based on word patterns were
introduced in the early days of IR and have been implemented
in many digital library systems in wide use today [2]. Word
patterns are also used in (a) all current search engines, (b)
advanced IR models such as the model of proximal nodes [22]
which allows proximity operators between arbitrary structural
components of a document (e.g., paragraphs or sections), and
(c) recent full-text extensions to XML-based languages e.g.,
TeXQuery [1].

The model AWP has been used recently in our systems
DIAS, P2P-DIET, DHTrie and LibraRing [17], [19], [30], [29],
[28]. DIAS [19] is a distributed alert service for digital libraries
which utilises a P2P architecture and protocols similar to that
of the event dissemination system SIENA [7]. DIAS uses WP

M. Koubarakis is with the Dept. of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia,
Athens 15784 Greece. E-mail: koubarak@di.uoa.gr. This work was performed
while the author was with the Technical University of Crete.

S. Skiadopoulos is with the Dept. of Computer Science and Technology,
University of Peloponnese, Karaiskaki Str., 22100, Tripolis, Greece. E-mail:
spiros@uop.gr

C. Tryfonopoulos is with the Dept. of Electronic and Computer Engineer-
ing, Technical University of Crete, University Campus, 73100 Chania, Crete,
Greece. E-mail: trifon@intelligence.tuc.gr

and AWP as an expressive data model and query language
for textual information. P2P-DIET [17] is the ancestor of
DIAS and uses AWP as a metadata model for describing
and querying digital resources. An extension of model AWP ,
called AWPS, that introduces a similarity operator based on
the IR vector space model, is used in the P2P systems DHTrie
[29] and LibraRing [28] that are built on top of distributed hash
tables [3].

In the database literature, word patterns have been studied
by Chang and colleagues in the context of integrating hetero-
geneous digital libraries [9], [10], [8]. The model AWP is
essentially the model of [8] but with a slightly different class
of word patterns. Text extensions of commercial relational
database products (e.g., Oracle 10g) also offer full support
for word patterns.

Even though many deployed systems are using WP and
AWP and many papers have appeared on their variations,
only [9], [10], [8], [21], [19] have studied in depth the logical
foundations of these data models. As we have previously
discussed in [21], we would like to develop information
retrieval and filtering systems in a principled and formal way.
With this motivation and the architectures of [19], [17], [30],
[29], [28] in mind, we have posed the following requirements
for models and languages to be used in information retrieval
and filtering systems [21]:

1) Expressivity. The languages for documents and queries
must be rich enough to satisfy the demands of in-
formation consumers and capabilities of information
providers.

2) Formality. The syntax and semantics of the proposed
models and languages must be defined formally.

3) Computational efficiency. The following problems
should be defined formally and algorithms must be
provided for their efficient solution (keeping in mind
that there will be a trade-off with the expressivity
requirement):

a) The satisfiability problem: Deciding whether a
query can be satisfied by any document at all.

b) The satisfaction problem: Deciding whether a doc-
ument satisfies a query.

c) The filtering problem: Given a collection of queries
Q and an incoming document d, find all queries
q ∈ Q that satisfy d.

d) The entailment problem: Deciding whether a query
is more or less “general” than another.

In previous work, we have defined formally the models
WP and AWP [19] and presented efficient centralized and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.?, NO.?, AUGUST 2006 2

distributed algorithms for the filtering problem [30], [29]. In
this paper, we continue our formal work in this area and
concentrate on model-theoretic questions for the logics of WP
and AWP that have been ignored in previous papers. We
study the model theory of WP and AWP and especially
questions related to satisfiability and entailment. We show that
the satisfiability problem for queries in WP and AWP is
NP-complete and the entailment problem is coNP-complete.
We also discuss cases where these problems can be solved in
polynomial time. Our results are original and complement the
studies of [8], [21] where no such complexity questions were
posed.

The rest of the paper is organized as follows. In the next
section we present the models WP and AWP . Sections III
and IV presents our complexity results on satisfiability and
entailment. Then, Section V discusses related work. The last
section concludes the paper and discusses our plans for future
work.

II. THE MODELS WP AND AWP
Let us start by presenting the data model WP and its query

language. WP has been inspired by [10]. It assumes that
textual information is in the form of free text and can be
queried by word patterns (hence the acronym for the model).

We assume the existence of a finite alphabet Σ. A word is a
finite non-empty sequence of letters from Σ. We also assume
the existence of a (finite or infinite) set of words called the
vocabulary and denoted by V . A text value s of length n over
vocabulary V is a total function s : {1, 2, . . . , n} → V . In
other words, a text value s is a finite sequence of words from
the assumed vocabulary and s(i) gives the i-th element of s.
| s | will denote the length of text value s (i.e., its number of
words).

We now give the definition of word pattern. We assume the
existence of a set of (distance) intervals I = {[l, u] : l, u ∈
N, l ≥ 0 and l ≤ u} ∪ {[l,∞) : l ∈ N and l ≥ 0}. Let i be
an interval in I. We will denote the left-endpoint (respectively
right-endpoint) of i by inf (i) (respectively sup(i)).

Definition 1: Let V be a vocabulary. A word pattern over
vocabulary V is a formula in any of the following forms:

1) w, where w is a word of V .
2) w1 ≺i1 · · · ≺in−1 wn, where w1, . . . , wn are words of

V and i1, . . . , in−1 are intervals of I.
3) ¬φ, φ1 ∨ φ2 or φ1 ∧ φ2, where φ, φ1 and φ2 are word

patterns.
Example 1: The following are word patterns:

constraint ∧ (optimisation ∨ programming)

¬algorithms ∧ ((complexity ≺[1,5] satisfaction)∨
(complexity ≺[1,8] filtering))

Operators ≺i are called proximity operators and are gener-
alizations of the traditional IR operators kW and kN [10].
Proximity operators are used to capture the concepts of order
and distance between words in a text document. They can be
used to construct formulas of WP that we will call proximity
word patterns (Case 2 of Definition 1). The proximity word

pattern w1 ≺[l,u] w2 stands for “word w1 is before w2 and
is separated by w2 by at least l and at most u words”. The
interpretation of proximity word patterns with more than one
operator ≺i is similar.

Traditional IR systems have proximity operators kW and
kN where k is a natural number. The proximity word pattern
wp1 kW wp2 stands for “word pattern wp1 is before wp2

and is separated by wp2 by at most k words”. In our work
this can be captured by wp1 ≺[0,k] wp2. The operator kN
is used to denote distance of at most k words where the
order of the involved patterns does not matter. In WP the
expression wp1 kN wp2 can be approximated by wp1 ≺[0,k]

wp2 ∨ wp2 ≺[0,k] wp1. [10] gives an example (page 23) that
demonstrates why these two expressions are not equivalent
given the meaning of operator kN . The example involves a
text value and word patterns with overlapping positions in that
text value hence the difference.

The development of proximity word patterns in [9], [10], [8]
follows closely the IR tradition, i.e., operators kW and kN
(already mentioned above) are used together with the boolean
operators AND and OR. These operators can be intermixed in
arbitrary ways (e.g., ((w1 AND (w2 (8W) w3)) (10W) w4)
where w1, w2, w3, w4 are words is a legal expression), and the
result of their evaluation on document databases is defined in
an algebraic way. WP opts for an approach which is more
in the spirit of Boolean logic, allows negation and carefully
distinguishes word patterns with and without proximity oper-
ators. This leads to a simpler language because cumbersome
(and not especially useful) constructions such as the above
are avoided. In the spirit of Boolean logic, an atomic word
pattern (i.e., a word or a proximity word pattern) allows us to
distinguish between text values: those that satisfy it, and those
that do not. Boolean operators are then given their standard
semantics.

In addition to the above operators, WP allows the expres-
sion of simple order constraints between words using operators
≺[0,∞]. Order constraints of the form ≺[0,∞] between various
text structures are also present in more advanced text model
proposals such as the model of proximal nodes of [22].

Definition 2: A word pattern will be called positive if it
does not contain negation. A word pattern will be called
proximity-free if it does not contain formulas of the form
w1 ≺i1 · · · ≺in−1 wn. A word pattern will be called
conjunctive if it does not contain disjunction.

Example 2: The following are positive word patterns:

satisfiability,

local ∧ search ∧ algorithms,

information ∧ (retrieval ∨ dissemination),

logic ≺[0,1] computational ≺[0,0] complexity

The first three are proximity-free word patterns. The first,
second and fourth word pattern is conjunctive.

Definition 3: Let V be a vocabulary, s a text value over V
and wp a word pattern over V . The concept of s satisfying wp
(denoted by s |= wp) is defined as follows:

1) If wp is a word of V then s |= wp iff there exists p ∈

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.?, NO.?, AUGUST 2006 3

{1, . . . , |s|} and s(p) = wp.
2) If wp is a proximity word pattern of the form w1 ≺i1

· · · ≺in−1 wn then s |= wp iff there exist p1, . . . , pn ∈
{1, . . . , |s|} such that, for all j = 2, . . . , n we have
s(pj) = wj and pj − pj−1 − 1 ∈ ij−1.

3) If wp is of the form ¬wp1, wp1 ∧ wp2, wp1 ∨ wp2 or
(wp1) then s |= wp is defined exactly as satisfaction for
Boolean logic.

A word pattern wp is called satisfiable if there is a text value
s that satisfies it. Otherwise, it is called unsatisfiable.

Example 3: The word patterns of Examples 1 and 2 are
satisfiable. Word patterns

¬programming ∧ (constraint ≺[0,0] programming),

(constraint ≺[0,0] programming) ∧ ¬(constraint ≺[0,2]

programming)

are unsatisfiable.
Definition 4: Let wp1 and wp2 be word patterns. We will

say that wp1 entails wp2 (denoted by wp1 |= wp2) iff for
every text value s such that s |= wp1, we have s |= wp2. If
wp1 |= wp2 and wp2 |= wp1 then wp1 and wp2 are called
equivalent (denoted by wp1 ≡ wp2).

Example 4: Word pattern constraint ∧ programming
entails word pattern constraint. Word pattern

optimization ∧ (constraint ≺[0,0] programming)

entails constraint ≺[0,10] programming.
Finally, word patterns

constraint ≺[0,4] programming,

constraint ∧ (constraint ≺[0,4] programming)

are equivalent.
Proposition 1: Let wp1 and wp2 be two word patterns.

wp1 |= wp2 iff wp1 ∧ ¬wp2 is unsatisfiable.
Let us close this section by pointing out that proximity

word patterns have been considered as atomic formulas ofWP
(Definition 1) because, in general, negation cannot be moved
inside a proximity word pattern as in the case of Boolean
operators. The interested reader can be persuaded by trying to
do this for the following formula:

¬(luxurious ≺[0,3] hotel ≺[0,3] beach)

If we restrict our attention to proximity formulas with a single
proximity operator, this restriction can easily be lifted. For
example, the word pattern

¬(luxurious ≺[0,3] hotel)

is equivalent to the following:

¬luxurious ∨ ¬hotel ∨ hotel ≺[0,∞] luxurious∨
luxurious ≺[4,∞] hotel

Let us now use the machinery of WP to define data model
AWP . The new concept of AWP is the concept of attribute
with value free text (in the acronym AWP , the letter A stands
for “attribute”).

We assume the existence of a countably infinite set of
attributes U called the attribute universe. A document schema
D is a pair (A,V) where A is a subset of the attribute universe
U and V is a vocabulary. A document d over schema (A,V)
is a set of attribute-value pairs (A, s) where A ∈ A, s is a
text value over V , and there is at most one pair (A, s) for each
attribute A ∈ A.

Example 5: The following is a document over schema
({AUTHOR, TITLE, ABSTRACT},V):

{ (AUTHOR,“John Brown”),
(TITLE,“Local search and constraint programming”),

(ABSTRACT ,“In this paper we show . . . ”) }

The syntax of the query language of AWP is given by the
following recursive definition.

Definition 5: A query over schema (A,V) is a formula in
any of the following forms:

1) A w wp, where A ∈ A and wp is a word pattern over
V (this is read as “A contains word pattern wp”).

2) A = s, where A ∈ A and s is a text value over V .
3) ¬φ, φ1 ∨ φ2, φ1 ∧ φ2, where φ, φ1 and φ2 are queries.
Example 6: The following is a query over the schema

shown in Example 5:

AUTHOR w Brown ∧
TITLE w search ∧ (constraint ≺[0,0] programming)

Definition 6: Let D be a document schema, d a document
over D and φ a query over D. The concept of document d
satisfying query φ (denoted by d |= φ) is defined as follows:

1) If φ is of the form A w wp then d |= φ iff there exists
a pair (A, s) ∈ d and s |= wp.

2) If φ is of the form A = s then d |= φ iff there exists a
pair (A, s) ∈ d.

3) If φ is of the form ¬φ1 then d |= φ iff d 6|= φ1. Similarly
for ∧ and ∨.

Example 7: The query of Example 6 is satisfied by the
document of Example 5.

Proposition 2: Let A be an attribute and wp1, wp2 be word
patterns. Then, the following equivalences hold:

1) ¬A w wp ≡ A w ¬wp
2) A w (wp1 ∧ wp2) ≡ (A w wp1) ∧ (A w wp2)
3) A w (wp1 ∨ wp2) ≡ (A w wp1) ∨ (A w wp2)
4) ¬(A w (wp1 ∧ wp2)) ≡ (¬A w wp1) ∨ (¬A w wp2)
5) ¬(A w (wp1 ∨ wp2)) ≡ (¬A w wp1) ∧ (¬A w wp2)
Definition 7: A query is called atomic if it is of the form

A = t where t is a text value, or A w wp where wp is a word
or a proximity word pattern. A query is called conjunctive if
it does not contain disjunction.

Example 8: The following queries are atomic:

AUTHOR = “James Brown”,

T ITLE w search,

ABSTRACT w constraint ≺[0,0] programming

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.?, NO.?, AUGUST 2006 4

Proposition 3: Every query is equivalent to a Boolean com-
bination of atomic queries.
Proof: Use the first three equivalences of Proposition 2
repeatedly.

III. SATISFIABILITY AND ENTAILMENT IN WP
An instance of the satisfiability problem for proximity-

free word patterns can be considered as an instance of the
satisfiability problem for Boolean logic (SAT) and vice versa
(by interchanging the roles of words and Boolean variables).
Thus, we have to consider only any complications that might
arise due to proximity word patterns.

In what follows, we will need the binary operation of
concatenation of two text values.

Definition 8: Let s1 and s2 be text values over vocabulary
V . Then, the concatenation of s1 and s2 is a new text value
denoted by s1s2 and defined by the following:

1) |s1s2| = |s1|+ |s2|

2) s1s2(x) =





s1(x) for all x ∈ {1, . . . , |s1|}
s2(x− |s1|) for all x ∈ {|s1|+ 1, . . . ,

|s2|+ |s1|}
.

We will also need the concept of the empty text value which
is denoted by ε and has the property |ε| = 0. The following
properties of concatenation are easily seen:

1) (s1s2)s3 = s1(s2s3), for all text values s1, s2 and s3.
2) sε = εs = s for every text value s.

The associativity of concatenation allows us to write concate-
nations of more than two text values without using parenthe-
ses.

The following variant of the concept of satisfaction captures
the notion of a set of positions in a text value containing
exactly the words that contribute to the satisfaction of a
positive proximity-free word pattern. This variant is used in
Lemma 1 below and in Proposition 4.

Definition 9: Let V be a vocabulary, s a text value over V ,
wp a positive proximity-free word pattern over V , and P a
subset of {1, . . . , |s|}. The concept of s satisfying wp with set
of positions P (denoted by s |=P wp) is defined as follows:

1) If wp is a word of V then s |=P wp iff there exists
x ∈ {1, . . . , |s|} such that P = {x} and s(x) = wp.

2) If wp is of the form wp1 ∧wp2 then s |=P wp iff there
exist sets of positions P1, P2 ⊆ {1, . . . , |s|} such that
s |=P1 wp1, s |=P2 wp2 and P = P1 ∪ P2.

3) If wp is of the form wp1 ∨ wp2 then s |=P wp iff
s |=P wp1 or s |=P wp2.

4) If wp is of the form (wp1) then s |=P wp iff s |=P wp1.
We also need the following notation. Let P be a subset of

the set of natural numbers N, and x ∈ N. We will use the
notation P + x to denote the set of natural numbers {p + x :
p ∈ P}.

Lemma 1: Let s and s′ be text values, wp be a positive
proximity-free word pattern and P ⊆ {1, . . . , |s|}. If s |=P wp
then ss′ |=P wp and s′s |=P+|s′| wp.

Positive proximity-free word patterns are satisfiable as we
show below.

Proposition 4: If wp is a positive proximity-free word
pattern then wp is satisfiable. In fact, there exists a text value
s0 such that

1) |s0| ≤ |wp | · ops(wp), where ops(wp) is the number of
operators of wp (or 1 if wp has no operators).

2) Every word of s0 is a word of wp.
3) s0 |={1,...,|s0|} wp.

Proof: The proof is by induction on the structure of wp.
Base case: Let wp be a word w ∈ V . In this case, wp

is satisfiable because we can form a text value s0 such that
s0 |={1} w where |s0| = 1 and s0(1) = w. The conclusion of
the lemma is now obviously satisfied.

Inductive step: Let wp be a positive proximity-free word
pattern of the form wp1 ∧wp2, and assume that the inductive
hypothesis holds for wp1 and wp2. Then, we can form
text values s1

0 and s2
0 such that s1

0 |={1,...,|s1
0|} wp1 and

s2
0 |={1,...,|s2

0|} wp2. Then, from Lemma 1 we have

s1
0s

2
0 |={1,...,|s1

0|} wp1

and
s1
0s

2
0 |={1,...,|s2

0|}+|s1
0| wp2.

Finally, from Definition 9 we have

s1
0s

2
0 |={1,...,|s1

0|,|s1
0|+1, ...,|s1

0|+|s2
0|} wp1 ∧ wp2

as required. It is also easy to see that
∣∣s1

0s
2
0

∣∣ =
∣∣s1

0

∣∣ +
∣∣s2

0

∣∣ ≤
| wp1 | · ops(wp1) + | wp2 | · ops(wp2) <

[ops(wp1) + ops(wp2)] · | wp | < ops(wp) · | wp |.
The ∨ case is done similarly.

Obviously, proximity word patterns are also satisfiable.
Proposition 5: Let wp be a proximity word pattern of the

form w1 ≺i1 · · · ≺in−1 wn. Then, wp is satisfied by the text
value s = w1z1 · · · zn−1wn where zl, l = 1, . . . , n − 1 are
text values of the following form. If inf (il) > 0 then zl is
formed by inf (il) successive occurrences of the special word
which is not contained in wp. Otherwise, if inf (il) = 0
then zl is the empty text value ε.

Moreover, any text value satisfying a proximity word pattern
is of a very special form.

Proposition 6: Let wp be a proximity word pattern of the
form w1 ≺i1 · · · ≺in−1 wn. If s |= wp then s is of the form.

s = ? · · · ?︸ ︷︷ ︸
i0 times

w1 ? · · · ?︸ ︷︷ ︸
i1 times

w2 · · · wn−1 ? · · · ?︸ ︷︷ ︸
in−1 times

wn ? · · · ?︸ ︷︷ ︸
in times

where 0 ≤ i0, i1 ∈ i1, . . ., in−1 ∈ in−1, 0 ≤ in and each
occurrence of the symbol ? represents an arbitrary (and not
necessarily the same) word.

Example 9: Let us consider the proximity word pattern

wp = constraint ≺[0,0] programming ≺[0,∞] methods.

It is easy to verify that text value “many applications use
constraint programming algorithms and methods to solve
interesting problems” (a) is of the form set by Proposition

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.?, NO.?, AUGUST 2006 5

6 and (b) satisfies word pattern wp.
Finally, we show that any positive word pattern is satisfiable.
Proposition 7: If wp is a positive word pattern then wp is

satisfiable.
Proof: We will construct a text value t such that t |= wp. If
wp contains m proximity word patterns φ1, . . . , φm, text value
t is of the form s0s1 · · · sm where:
• s0 is a sequence formed by the juxtaposition of all words

appearing in wp in any order, and
• for every j = 1, . . . ,m, sj is a text value, formed as in

Proposition 5, such that sj |= φj .

Lemma 2: Let wp1 and wp2 be proximity word patterns of
the following form:

wp1 = a1 ≺i1 · · · ≺in−1 an and

wp2 = b1 ≺j1 · · · ≺jm−1
bm

Word pattern wp1 entails wp2 iff the following conditions
hold:

Condition 1.
Word pattern wp2 is equal to ap1 ≺j1 · · · ≺jm−1

apm , where
1 ≤ p1 < · · · < pm ≤ n.

Condition 2.
For every v = 1, . . . , m− 1, we have:

inf (jv) ≤ inf (ipv) + · · ·+ inf (ipv+1) + pv+1 − pv − 1

sup(jv) is





≥



sup(ipv) + · · ·+
sup(ipv+1)+
pv+1 − pv − 1




if all sup(ipv), . . . ,
sup(ipv+1) are diffe-
rent than ∞

∞ otherwise

Proof: The “if” case is obvious. For the “only if” part, let us
assume that wp1 |= wp2 holds. We will prove that wp2 is of
the form set by the lemma. The proof is in three steps.

Step 1 (Condition 1).
We will first prove that the words of wp2 are a subset of the
words in wp1, i.e.,

{b1, . . . , bm} ⊆ {a1, . . . , an}.
By contradiction, let us assume that there exists a word bv ,
1 ≤ v ≤ m, of wp2 such that bv 6∈ {a1, . . . , an}. Let us now
consider text value τ defined as:

τ = a1 # · · ·#︸ ︷︷ ︸
i1 times

a2 · · · an−1 # · · ·#︸ ︷︷ ︸
in−1 times

an (1)

where # is a special word which is not contained in wp1

and wp2 and i1 ∈ i1, . . . , in ∈ in. It is easy to verify that
τ satisfies wp1 but, since τ does not include word bv , it
does not satisfies wp2. Thus, we have wp1 6|= wp2 which
contradicts our initial assumption.

Step 2 (Condition 1).
We will now prove that the words of wp1 that appear in
wp2 actually appear in the same order as they do in wp1,
i.e., word pattern wp2 = ap1 ≺j1 · · · ≺jm−1

apm
, where

1 ≤ p1 < · · · < pm ≤ n. By contradiction, let us assume
that there exist two distinct words bv = apv

and bv′ = apv′ ,
1 ≤ v < v′ ≤ m, of wp2 such that pv ≥ pv′ . In other words,

wp1 = a1 ≺i1 · · · ≺ip
v′−1

apv′ ≺ip
v′
· · · ≺ipv−1

apv
≺ipv

· · · ≺in−1 an,

wp2 = ap1 ≺j1 · · · ≺jv−1

apv
≺jv · · · ≺jv′−1

apv′ ≺jv′ · · · ≺jm−1
apm

.

It is easy to verify that text value τ (defined in Equation 1)
satisfies wp1 but it does not satisfies wp2; a contradiction.

Step 3 (Condition 2).
Finally, we will prove that for every v = 1, . . . , m − 1, we
have:

inf (jv) ≤ inf (ipv
) + · · ·+ inf (ipv+1) + pv+1 − pv − 1

sup(jv) is





≥



sup(ipv) + · · ·+
sup(ipv+1)+
pv+1 − pv − 1




if all sup(ipv), . . . ,
sup(ipv+1) are diffe-
rent than ∞

∞ otherwise

By contradiction, let us assume that there exists a subformula
apv ≺jv apv+1 of wp2 such that

inf (jv) > inf (ipv) + · · ·+ inf (ipv+1) + pv+1 − pv − 1 (2)

From Step 2, word patterns wp1 and wp2 are of the following
form:

wp1 = a1 ≺i1 · · · ≺ipv−1

apv ≺ipv
· · · ≺ipv+1−1

apv+1 ≺ipv
· · · ≺in−1 an,

wp2 = ap1 ≺j1 · · · ≺jv−1

apv ≺jv
apv+1 ≺jv+1

· · · ≺jm−1
apm .

Let us now construct a text value τ ′ defined as:

τ ′ = a1 # · · ·#︸ ︷︷ ︸
i1 times

a2 · · ·

apv # · · ·#︸ ︷︷ ︸
ipv times

apv+1 · · ·

apv+1−1 # · · ·#︸ ︷︷ ︸
ipv+1−1 times

apv+1 · · ·

an−1 # · · ·#︸ ︷︷ ︸
in−1 times

an

(3)

where # is a special word which is not contained in wp1 and
wp2, and for every s, 1 ≤ s ≤ n − 1, is = inf (is) holds.
It is easy to verify that τ ′ satisfies wp1. Notice that between

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.?, NO.?, AUGUST 2006 6

words apv and apv+1 in τ ′ there are exactly inf (ipv) + · · ·+
inf (ipv+1)+pv+1−pv−1 words. Therefore, since Expression 2
holds, τ ′ does not satisfy the subformula apv

≺jv apv+1 of wp2

and thus, it does not satisfy wp2. Thus, we have wp1 6|= wp2

which contradicts our initial assumption.
The proof involving sup(jv) is similar. It differs only in the

way we construct text value τ ′ (Expression 3) and specifically
in the values of i1, . . . , in−1. We now require that i1 ∈
i1, . . . , in−1 ∈ in−1 and for every s, pv ≤ s ≤ pv+1, we
define:

is =





sup(is) if sup(is) is different
than ∞

sup(jv) + 1 otherwise

Proposition 8: Let wp1 and wp2 be proximity word pat-
terns with n and m words respectively. Deciding whether
wp1 |= wp2 can be done in O(n + m) time.

Let SAT (WP) denote the satisfiability problem for for-
mulas of WP . The following two propositions show that
the problems SAT and SAT (WP) are equivalent under
polynomial time reductions.

Proposition 9: SAT is polynomially reducible to
SAT (WP).
Proof: Trivial by considering propositional variables to be
words.

Proposition 10: SAT (WP) is polynomially reducible to
SAT.
Proof: Let φ be a formula of WP . We transform φ into an
instance φ′ of SAT as follows. We start with φ′ being φ
(words of φ play the role of propositional variables in φ′).
Then, we substitute each proximity word pattern wp of φ′ by
a brand new propositional variable vwp. Finally, we conjoin
to φ′ the following formulas:

• vwp =⇒ w, for each proximity word pattern wp and
word w of wp.

• vwp1 =⇒ vwp2 , for each pair of proximity word patterns
wp1, wp2 such that wp1 |= wp2.

The above steps can be done in polynomial time because
entailment of proximity word patterns can be done in poly-
nomial time (Proposition 8). It is also easy to see that φ is
a satisfiable formula of WP iff φ′ is a satisfiable formula of
Boolean logic. Then, the result holds.

Propositions 9 and 10 have the following corollary.
Corollary 1: Deciding whether a word pattern is satisfiable

is a NP-complete problem. Deciding whether a word pattern
entails another is a coNP-complete problem.

Let us close this section by pointing out that satisfiability
and entailment of conjunctive word patterns can be done in
PTIME.

Proposition 11: The satisfiability and entailment problems
for conjunctive word patterns can be solved in polynomial
time.
Proof: This is easy to see given Proposition 8.

IV. SATISFIABILITY AND ENTAILMENT IN AWP
Let SAT (AWP) denote the satisfiability problem for

queries of AWP . The following two propositions show that
the problems SAT and SAT (AWP) are equivalent under
polynomial time reductions.

Proposition 12: SAT is polynomially reducible to
SAT (AWP).
Proof: Let φ be an instance of SAT (i.e., a Boolean formula).
For every propositional variable p in φ introduce an attribute
Ap. Then, substitute every occurrence of p in φ by Ap =
“true” to arrive at an instance ψ of SAT (AWP). Obviously,
φ is satisfiable iff ψ is satisfiable.

Proposition 13: SAT (AWP) is polynomially reducible to
SAT.
Proof: Let φ be a query of AWP . Using Proposition 2, φ can
easily be transformed into a formula θ which is a Boolean
combination of atomic queries. This transformation can be
done in time linear in the size of the formula.

The next step is to substitute in θ atomic formulas A = s
and A w wp (where wp is a word or a proximity word pattern)
by propositional variables pA=s and pAwwp respectively to ob-
tain formula θ′. Finally, the following formulas are conjoined
to θ′ to obtain ψ:

1) If A = s1 and A = s2 are conjuncts of θ′ and s1 6= s2

then conjoin pA=s1 ≡ ¬pA=s2 .
2) If A = s and A w wp are conjuncts of θ′ and s |= wp

then conjoin pA=s =⇒ pAwwp.
3) If A = s and A w wp are conjuncts of θ′ and s 6|= wp

then conjoin pA=s =⇒ ¬pAwwp.
4) If A w wp1 and A w wp2 are conjuncts of θ′ and

wp1 |= wp2 then conjoin pAwwp1 =⇒ pAwwp2 .
The above step can be done in polynomial time because
satisfaction and entailment of word patterns in θ can be done
in polynomial time. The result for satisfaction is obvious and
the result for entailment is from Proposition 8. It is also easy
to see that φ is a satisfiable query iff ψ is a satisfiable formula
of Boolean logic. Then, the result holds.

Propositions 12 and 13 have the following corollary.
Corollary 2: Deciding whether a query of AWP is satis-

fiable is a NP-complete problem. Deciding whether a query
of AWP entails another is a coNP-complete problem.

The following proposition shows that, as in the case of WP ,
satisfiability and entailment of conjunctive queries in AWP
can be done in PTIME. This is good news given that conjunc-
tive AWP queries are typically utilized in implementations
such as [19], [17], [28].

Proposition 14: The satisfiability and entailment problems
for conjunctive AWP queries can be solved in polynomial
time.

To obtain a more accurate picture of the tractable vs. in-
tractable classes of queries in AWP one can profitably utilize
such results from the propositional satisfiability literature. For
example, it is easy to see now that each tractable class C
of SAT formulas has a corresponding class C ′ of tractable
formulas of WP or AWP if the 2-variable propositional
formulas used in the proofs of Propositions 10 and 13 belong

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.?, NO.?, AUGUST 2006 7

to C (e.g., this holds for C being the class of propositional
formulas with at most two variables using the tractability of
2-SAT).

V. RELATED WORK

In this section we discuss related research. Since formal
analysis based on logic and complexity as done in this paper
is not common in Information Retrieval research, this section
briefly surveys other data models (and systems) related to the
ones studied in this paper.

A. WP
To the best of our knowledge, the papers by Chang and

colleagues [9], [10], [8] and the present paper are the only
comprehensive formal treatments of proximity word patterns
in the literature.

Search engines use models similar to WP and AWP . The
most common support for word patterns in search engines
includes the ability to combine words using the Boolean
operators ∧,∨ and ¬. However, search engines support a
version of negation in the form of binary operator AND-NOT
which is essentially set difference, and therefore safe in the
database sense of the term [26]. For example, a search engine
query wp1 AND-NOT wp2 will return the set of documents
that satisfy wp1 minus these that satisfy wp2. Note also that
the previous work of [10] has not considered negation in its
word pattern language but has considered negation in the query
language which supports attributes (the one that corresponds
to our model AWP).

Proximity operators are a useful extension of the concept
of “phrase search” used in current search engines. Limited
forms of proximity operators have been offered in the past by
various search engines of the pre-Google era (e.g., Altavista
had an operator NEAR which meant word-distance 10, Lycos
had an operator NEAR which meant word-distance 25, and
Infoseek used to have a more sophisticated facility). Google
supports proximity by the use of operator “∗” which, when
used between two keywords, specifies a minimum distance of
one word between them (multiple occurences of ∗ can also be
used to specify a larger minimum distance). The search engine
Exalead1 has an operator NEAR which returns documents that
contain given keywords in a vicinity of a fixed number of
words, but no ordering of words is supported.

The need to change their index structures and the high
computational cost of proximity search, is probably the reason
that makes current search engines to limit proximity support
to less general operators compared to those used in models
WP and AWP .

Proximity operators have also been implemented in other
systems such as freeWAIS [23] and INQUERY [5]. There are
also advanced IR models such as the model of proximal nodes
[22] with proximity operators between arbitrary structural
components of a document (e.g., paragraphs or sections). Data
models and query languages for full-text extensions to XML

1Exalead (http://www.exalead.com/) is a search engine developed in France.
We mention it here because Exalead is involved in the Quaero project launched
in Europe in the summer of 2005 as the European response to Google.

e.g., TeXQuery [1] is the most recent area of research where
proximity operators have been used.

Proximity word patterns can also be viewed as a particular
kind of order constraints in the sense of constraint networks
[14] and databases [25]. There are many papers that discuss al-
gorithms and complexity of various kinds of order constraints
e.g., gap-order constraints [24] or temporal constraints [18],
[15]. The algorithms and complexity results regarding WP
can also be viewed as a contribution to this research area.

B. AWP
The data model AWP discussed in Section II comple-

ments recent proposals for representing and querying textual
information in publish/subscribe systems [7], [6] by using
linguistically motivated concepts such as word and traditional
IR operators (instead of strings and operators such as string
containment [7], [6]). The methodology and techniques of this
paper can be used to study the complexity of satisfiability and
entailment for the subscription query language of [6] and we
expect the complexity results to be similar.

In [21], [19] we have extended the model AWP by
introducing a “similarity” operator based on the IR vector
space model [2]. The similarity concept of this model, called
AWPS (where S stands for similarity), has in the past been
used in database systems with IR influences (e.g., WHIRL
[13]) and more recently in XML-based query languages e.g.,
ELIXIR [12], XIRQL [16] and XXL [27].

VI. OUTLOOK

We have studied the model theory of WP and AWP and
especially questions related to satisfiability and entailment. We
showed that the satisfiability problem for queries in WP and
AWP is NP-complete and the entailment problem is coNP-
complete. We also discussed cases where these problems can
be solved in polynomial time.

We would like to use the lessons learned in this paper to
study the complexity of query evaluation in RDBMS with text
functionalities, combinations of RDBMS and IR systems [11],
and proposals for full-text extensions to XML [1]. The recent
paper [4] is a good example of such a study where the authors
consider the concept of strings in various query languages.

REFERENCES

[1] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeXQuery: a full-
text search extension to Query. In Proceedings of WWW, pages 583–594.
ACM Press, 2004.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison Wesley, 1999.

[3] H. Balakrishnan, M. F. Kaashoek, D. R. Karger, R. Morris, and I. Stoica.
Looking up data in P2P systems. Communications of the ACM,
46(2):43–48, 2003.

[4] M. Benedikt, L. Libkin, T. Schwentick, and L. Segoufin. Definable
Relations and First-order Query Languages over Strings. Journal of
ACM, 50(5):694–751, 2003.

[5] J. Callan, W. Croft, and S. Harding. The INQUERY retrieval system.
In Proceedings of the 3rd International Conference on Database and
Expert Systems Applications, pages 78–83. Springer-Verlag, 1992.

[6] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficient
Filtering in Publish Subscribe Systems Using Binary Decision Diagrams.
In Proceedings of the 23rd International Conference on Software Enge-
neering (ICSE-01), pages 443–452, Los Alamitos, California, May12–19
2001. IEEE Computer Society.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.?, NO.?, AUGUST 2006 8

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability
and expressiveness in an internet-scale event notification service. In
Proceedings of the 19th ACM Symposium on Principles of Distributed
Computing (PODC’2000), pages 219–227, 2000.

[8] K. C.-C. Chang. Query and Data Mapping Across Heterogeneous
Information Sources. PhD thesis, Stanford University, January 2001.

[9] K. C.-C. Chang, H. Garcia-Molina, and A. Paepcke. Boolean Query
Mapping across Heterogeneous Information Sources. IEEE Transactions
on Knowledge and Data Engineering, 8(4):515–521, 1996.

[10] K. C.-C. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting
for Translating Boolean Queries in a Heterogeneous Information System.
ACM Transactions on Information Systems, 17(1):1–39, 1999.

[11] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB and
IR Technologies: What is the Sound of One Hand Clapping? In CIDR,
pages 1–12, 2005.

[12] T. Chinenyanga and N. Kushmerick. Expressive retrieval from XML
documents. In Proceedings of SIGIR’01, September 2001.

[13] W. W. Cohen. WHIRL: A word-based information representation
language. Artificial Intelligence, 118(1-2):163–196, 2000.

[14] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[15] R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. Arti-

ficial Intelligence, 49(1-3):61–95, 1991. Special Volume on Knowledge
Representation.

[16] N. Fuhr and K. Großjohann. XIRQL: An XML Query Language Based
on Information Retrieval Concepts. ACM Transactions on Information
Systems, 22(2):313–356, Apr. 2004.

[17] S. Idreos, C. Tryfonopoulos, M. Koubarakis, and Y. Drougas. Query
Processing in Super-Peer Networks with Languages Based on Informa-
tion Retrieval: the P2P-DIET Approach. In Proceedings of the Interna-
tional Workshop on Peer-to-peer Computing and Databases (P2P&DB),
volume 3268 of LNCS, Herakion, Greece, March 2004. Springer.

[18] M. Koubarakis. The Complexity of Query Evaluation in Indefinite
Temporal Constraint Databases. Theoretical Computer Science, 171:25–
60, January 1997. Special Issue on Uncertainty in Databases and
Deductive Systems, Editor: L.V.S. Lakshmanan.

[19] M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou.
Information Alert in Distributed Digital Libraries: The Models, Lan-
guages, and Architecture of DIAS. In Proceedings of the 6th European
Conference on Research and Advanced Technology for Digital Libraries
(ECDL), volume 2458 of LNCS, pages 527–542, Rome, Italy, September
2002. Springer.

[20] M. Koubarakis, C. Tryfonopoulos, S. Idreos, and Y. Drougas. Selective
Information Dissemination in P2P Networks: Problems and Solutions.
SIGMOD Record, Special Issue on Peer-to-Peer Data Management,
32(3):71–76, 2003.

[21] M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris.
Data Models and Languages for Agent-Based Textual Information
Dissemination. In Proceedings of the 6th International Workshop on
Cooperative Information Agents (CIA), volume 2446 of LNAI, pages
179–193, Madrid, Spain, September 2002. Springer.

[22] G. Navarro and R. Baeza-Yates. Proximal Nodes: A Model to Query
Document Databases by Content and Structure. ACM Transactions on
Information Systems, 15(4):400–435, 1997.

[23] U. Pfeifer, N. Fuhr, and T. Huynh. Searching Structured Documents
with the Enhanced Retrieval Functionality of freeWAIS-sf and SFgate.
Computer Networks and ISDN Systems, 27(6):1027–1036, 1995.

[24] P. Revesz. A Closed Form Evaluation for Datalog Queries with Integer
(Gap)-Order Constraints. Theoretical Computer Science, 116(1):117–
149, 1993.

[25] P. Revesz. Introduction to Constraint Databases. Springer, 2002.
[26] S. Abiteboul and R. Hull and V. Vianu. Foundations of Databases.

Addison Wesley, 1995.
[27] A. Theobald and G. Weikum. Adding Relevance to XML. In WebDB

(Selected Papers), pages 105–124, 2000.
[28] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. LibraRing: An

Architecture for Distributed Digital Libraries Based on DHTs. In
Proceedings of the 9th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL), volume 3652 of LNCS, pages
25–36, Vienna, Austria, September 2005. Springer.

[29] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/Subscribe
Functionality in IR Environments using Structured Overlay Networks. In
Proceedings of the 28th Annual International ACM SIGIR Conference,
pages 322–329, Salvador, Brazil, August 2005.

[30] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas. Filtering Algorithms
for Information Retrieval Models with Named Attributes and Proximity
Operators. In Proceedings of the 27th Annual International ACM SIGIR
Conference, pages 313–320, Sheffield, UK, July 2004.

Manolis Koubarakis has a degree in Mathematics
from the University of Crete, an M.Sc. in Com-
puter Science from the University of Toronto, and
a Ph.D. in Computer Science from the National
Technical University of Athens. He joined the Dept.
of Informatics and Telecommunications, National
and Kapodistrian University of Athens in October
2005. Before coming to Athens he held positions
at the Dept. of Electronic and Computer Engineer-
ing, Technical University of Crete, where he was
an Assistant and Associate Professor and Director

of the Intelligent Systems Laboratory (www.intelligence.tuc.gr), at UMIST,
Manchester, where he was a lecturer and at Imperial College, London as
a research associate. Prof. Koubarakis has published papers in the areas of
database and knowledge-base systems, constraint programming, intelligent
agents, semantic web and peer-to-peer computing. More information is
available at www.di.uoa.gr/ koubarak.

Spiros Skiadopoulos is an assistant professor at the
University of Peloponnese. He received the diploma
and PhD degree from the National Technical Uni-
versity of Athens and the MSc degree from UMIST.
His research interests include spatial and temporal
databases, constraint databases, query evaluation and
optimization, and constraint reasoning and optimiza-
tion. He has published more than 25 papers in
international refereed journals and conferences.

Christos Tryfonopoulos is currently pursuing a
Ph.D. at the Technical University of Crete. Christos
received a B.Sc. in Computer Science from the Uni-
versity of Crete in 2000, and an M.Sc. in Computer
Engineering from the Technical University of Crete
in 2002. His research interests include information
retrieval and filtering over wide-area networks, P2P
and Grid computing, publish/subscribe systems and
multi-agent systems. He has published more than 20
research papers in journals, international conferences
and workshops and his work has been cited by

more than 45 research papers. He has received two scholarships from the
Greek Ministry of Education and a best student paper award at ECDL 2005.
Christos has also worked as a research assistant in European IST FET projects
DIET and Evergrow. More details on his research work can be found at
http://www.intelligence.tuc.gr/ trifon.

