
10

Information Filtering and Query Indexing
for an Information Retrieval Model

CHRISTOS TRYFONOPOULOS

Max-Planck Institute for Informatics

MANOLIS KOUBARAKIS

National and Kapodistrian University of Athens

and

YANNIS DROUGAS

University of California Riverside

In the information filtering paradigm, clients subscribe to a server with continuous queries or pro-

files that express their information needs. Clients can also publish documents to servers. Whenever

a document is published, the continuous queries satisfying this document are found and notifica-

tions are sent to appropriate clients. This article deals with the filtering problem that needs to be

solved efficiently by each server: Given a database of continuous queries db and a document d , find

all queries q ∈ db that match d . We present data structures and indexing algorithms that enable

us to solve the filtering problem efficiently for large databases of queries expressed in the model

AWP. AWP is based on named attributes with values of type text, and its query language includes

Boolean and word proximity operators.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content Anal-

ysis and Indexing—Indexing methods; H.3.3 [Information Storage and Retrieval]: Information

Search and Retrieval—Information filtering

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Information filtering, selective dissemination of information,

query indexing algorithms, performance evaluation

This work was supported in part by the European Commission projects DIET (5th Framework

Programme IST/FET). C. Tryfonopoulos was partially supported by a Ph.D. fellowship from the

program Heraclitus of the Greek Ministry of Education.

This work was performed while the authors were with the Technical University of Crete. This is a

revised and extended version of the paper Tryfonopoulos et al. [2004].

Authors’ address: C. Tryfonopoulos, Databases and Information Systems Department,

Max-Planck Institute for Informatics, Saarbrücken 66123 Germany; email: trifon@mpi-inf.mpg.de;

M. Koubarakis, Department of Informatics and Telecommunications, National and Kapodistrian

University of Athens, Panepistimiopolis, Ilisia, Athens 15784 Greece; email: koubarak@di.uoa.gr;

Y. Drougas, Department of Computer Science and Engineering, University of California, Riverside,

Riverside, CA 92521; email: drougas@cs.ucr.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 1046-8188/2009/02-ART10 $5.00 DOI 10.1145/1462198.1462202 http://doi.acm.org/

10.1145/1462198.1462202

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:2 • C. Tryfonopoulos et al.

ACM Reference Format:
Tryfonopoulos, C., Koubarakis, M., and Drougas, Y. 2009. Information filtering and query indexing

for an information retrieval model. ACM Trans. Inform. Syst. 27, 2, Article 10 (February 2009), 47

pages. DOI = 10.1145/ 1462198.1462202 http://doi.acm.org/10.1145/1462198.1462202

1. INTRODUCTION

In the information filtering paradigm, clients subscribe to a server with contin-
uous queries or profiles that are expressed in some well-defined language and
capture their information needs. Clients can also publish documents to servers.
When a document is published, the continuous queries satisfying the document
are found and notifications are sent to appropriate clients.

This article deals with the filtering problem that needs to be solved efficiently
by each server: Given a database of continuous queries db and a document d ,
find all queries q ∈ db that match d . This functionality is crucial for a server
because we expect deployed information filtering systems to handle millions
of client queries. We concentrate on filtering of textual information using a
data model which is well-understood in Information Retrieval and has been
called AWP (Attributes with Word Patterns) by us in [Koubarakis et al. 2002,
2003]. Data model AWP is based on named attributes with values of type text,
and its query language includes attributes, comparison operators “equals” and
“contains” and word proximity operators from the Boolean model of Information
Retrieval (IR) [Chang et al. 1999].

As main memory has become cheaper and a memory chip of a few gigabytes
is now affordable for a commodity PC, main memory applications have gained
higher popularity, as they are able to provide orders-of-magnitude improve-
ment in response times compared to secondary memory approaches. An exam-
ple of this type of memory-resident applications are MMDBs (Main Memory
Database Systems) [Garcia-Molina and Salem 1992; Severance and Pramanik
1990; DeWitt et al. 1984], in which the whole database is kept in main mem-
ory, and backups may be stored on disk to avoid data loss. Naturally, not all
applications are perfect candidates for MMDBs, and this decision depends on
the specifics of the application. In some real-time applications (such as tele-
phony) the database must be entirely memory resident, while in others (such
as banking applications) the data may not fit in main memory. Even when the
database is too big for main memory, cluster computing and networked worksta-
tions are able to provide useful solutions that allow splitting the database into
several smaller ones that may fit in a single memory chip, so that parallel pro-
cessing techniques may then be utilized. These solutions render main-memory
algorithms an appealing approach for both mid- and large-scale information
providers that emphasize the timeliness of information delivery. Thus, in this
article, we develop and evaluate efficient main-memory data structures that are
used to index continuous AWP queries, and algorithms that are able to filter
incoming documents against millions of indexed queries in just a few hundred
milliseconds.

Our algorithms are the first in the literature that deal with IR models like
AWP supporting Boolean queries, named attributes with values of type text,

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:3

and word proximity operators. The main idea behind our algorithms is to use
tries to capture common elements of queries. In this way clustering of queries
is improved and smaller filtering times are achieved. The algorithms clos-
est to ours are the ones employed in the Boolean version of SIFT [Yan and
Garcia-Molina 1994b] where documents are free text and queries are conjunc-
tions of keywords. SIFT has been the inspiration for this work, and the re-
sults presented in Sections 4 and 6 extend and improve the results of Yan and
Garcia-Molina [1994b]. In particular, we experimentally evaluate algorithms
BF, SWIN and PrefixTrie that are extensions of the algorithms BF, Key and
Tree of Yan and Garcia-Molina [1994b] for the model AWP. We also discuss in
detail the new algorithms BestFitTrie and LCWTrie as alternatives to Prefix-
Trie, and compare them under various experimental settings. Finally, we study
the problem of reorganizing the query database in order to achieve greater ef-
ficiency at filtering time. We introduce the algorithm ReTrie, an extension of
BestFitTrie, which reorganizes the query database based on a clustering qual-
ity criterion, and evaluate it against algorithm Periodic, a baseline algorithm
that reorganizes the queries periodically.

Preliminary results of this research have appeared in Tryfonopoulos et al.
[2004]. The current article revises Tryfonopoulos et al. [2004] and presents the
following extensions and additional contributions. We study the problem of re-
organizing queries in the database to achieve better clustering and thus shorter
filtering times, and present two efficient algorithms for this problem (Section 5).
We also include more detailed descriptions of the data model and algorithms
of Tryfonopoulos et al. [2004] and their respective data structures, extend the
experimental section (Section 6) with new experiments, and give more details
for the experiments presented in Tryfonopoulos et al. [2004]. Whereas Try-
fonopoulos et al. [2004] used a single corpus of documents to evaluate the pro-
posed algorithms, this article uses two corpora: a small focused corpus of papers
about neural networks (called NN corpus), and a bigger and more diverse cor-
pus of documents crawled from the Web (the .GOV corpus). The NN corpus
was chosen because it provides a thematically focused setting that matches the
requirements and assumptions of our algorithms, while the .GOV corpus was
used to assess the limitations of our approach, in a thematically diverse setting.
These corpora are representative of digital library scenarios and are also used
by other researchers in the area of information retrieval and filtering. Finally,
we provide an extensive survey of related work ranging from background on
tries, to information filtering methods and other data models and query lan-
guages related to AWP.

In work presented in Koubarakis et al. [2002] and Koubarakis et al. [2003],
we discuss the distributed alert system DIAS and its ancestor, the peer-to-peer
system P2P-DIET [Koubarakis et al. 2003; Idreos et al. 2004a, 2004b]. DIAS
and P2P-DIET use AWP as their metadata model for describing and querying
digital resources and the filtering algorithm BestFitTrie for matching incoming
documents against stored continuous queries. The algorithms presented here
are also utilized in systems DHTrie [Tryfonopoulos et al. 2005b] and LibraRing
[Tryfonopoulos et al. 2005a], in the context of information filtering and digital
library applications built on top of Distributed Hash Tables (DHTs). In all of

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:4 • C. Tryfonopoulos et al.

these distributed systems, the algorithms of this article are used locally in each
server, while appropriate protocols (not discussed in this article) guarantee
successful distributed operation.

The rest of the article is organized as follows. Section 2 presents related work.
Section 3 presents the model AWP, and Section 4 presents the filtering algo-
rithms we developed. Two algorithms for the reorganization of stored queries
are presented in Section 5. Section 6 presents our document corpora and the
query creation methodology and evaluates the algorithms experimentally un-
der various parameters. Finally, Section 7 concludes the article and hints at
our current work.

2. RELATED WORK

In this section we survey related work. We first provide background on tries
and their variations. Then, we give an extensive survey of information filtering
in various research areas, including IR, databases, distributed systems, and
P2P systems. Finally, we compare the expressiveness of the model AWP with
related data models and query languages.

2.1 Tries

The concept of tries was initially conceived by de la Briandais [1959], but the
actual term was coined by Fredkin [1960], who derived the name from the
term retrieval used in information retrieval systems. Tries are widely used in a
number of different application domains ranging from dictionary management
[Aho et al. 1983; Aoe et al. 1992; Knuth 1973a] and text compression [Bell et al.
1990] to natural language processing [Baeza-Yates and Gonnet 1996; Peterson
1980], pattern matching [Flajolet and Puech 1986; Rivest 1976], IP routing
[Nilsson and Karlsson 1999] or searching for reserved words in a compiler
[Aho et al. 1986]. The broad applicability of tries has resulted in considering
them a general-purpose data structure with properties that are now well un-
derstood due to a series of studies [Devroye 1992; Flajolet 1983; Jacquet and
Szpankowski 1991; Knuth 1973a; Regnier and Jacquet 1989; Rivest 1976].

There are several ways to implement a trie node depending on the applica-
tion in mind, but the two most common ways are using arrays in the size of the
alphabet (array tries) [Fredkin 1960] and using lists with nonempty elements
as roots of subtrees (list tries) [de la Briandais 1959; Knuth 1973b]. Array tries
are better suited when the alphabet is relatively small, whereas the list imple-
mentation is best suited for large alphabets or trie nodes with few children, as
opposed to a fixed size array consisting mainly of null pointers.

There are generally two ways to reduce the size of a trie, reducing the size
of each one of the nodes and reducing the number of nodes needed to repre-
sent a set of strings. Compact tries [Sussenguth 1963] are variants that are
used to reduce the number of nodes needed to represent a certain string, by
compacting chains of nodes that lead to a leaf without branching to a single
node. Another idea for size reduction in a trie is to view the indexed strings
as a set, rather than as a sequence. In this way the size of the resulting trie
can be influenced, leading to the smallest trie. However, Comer showed that

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:5

the problem of determining the smallest trie is NP-complete [Comer and Sethi
1977]; thus, several works have proposed heuristics to minimize a static trie
(e.g., the O-Trie [Comer 1981]).

In our approach we extend the concept of a list trie to implement the
data structures used to store user queries in main memory. The algorithm
BestFitTrie (and its variations LCWTrie and ReTrie), which we present in this
work, utilize variations of list tries and techniques from compact tries to allow
for the late creation of trie nodes in order to explore commonalities between
user queries.

2.2 Information Filtering

Information retrieval and information filtering are often referred as two sides
of the same coin [Belkin and Croft 1992]. Although many of the underlying
issues are similar in retrieval and filtering, since they share the common goal of
information delivery to information seekers, the design issues (e.g., timeliness
of data, identification and representation of user needs) and also the techniques
and algorithms devised to satisfy these information needs differ significantly.

Historically, work on selective dissemination of information started by a 1958
article of Luhn [Luhn 1958], where a “Business Intelligence System” is de-
scribed. In his concept, individual users would have their interests described
in profiles, and a text selection system would produce lists of new documents
that would allow users to choose between ordering a new document or not. At
that day, the selection module was described using the terms selective dissem-
ination of new information. The term information filtering was coined later by
Denning [1982], where he described the need to filter incoming mail messages
to sort them in order of urgency. Here we will discuss only the papers that are
more relevant to our work and mainly those referring to content filtering (now
commonly referred as content-based filtering).

Early approaches to information filtering by IR researchers focused more on
appropriate representations of user interests [Morita and Shinoda 1994] and
on improving filtering effectiveness Hull et al. [1996]. In Morita and Shinoda
[1994] behavior monitoring and a substring indexing method is proposed in
order to decide which documents are of interest to the user. In [Hull et al.
1996] filtering is addressed using ensemble methods from machine learning,
where combinations of strategies are explored as a means to increase filtering
effectiveness. Other approaches include statistical filtering systems such as
LSI-SDI [Foltz and Dumais 1992], that uses the LSI method to filter incoming
documents.

One of the first papers in this area to address performance is Bell and Moffat
[1996], where an information filtering system capable of scaling up to large fil-
tering tasks is described. The authors assume a server that receives documents
at a high rate, and propose algorithms that support vector space queries by im-
proving the algorithm SQI of Yan and Garcia-Molina [1994a]. InRoute [Callan
1996] was another influential system based on inference networks with empha-
sis on filtering efficiency. InRoute creates documents and query networks and
uses belief propagation techniques to filter incoming documents. Other works
in the area mainly focus on adaptive filtering [Callan 1998; Zhang and Callan

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:6 • C. Tryfonopoulos et al.

2001] and how vector space queries and their dissemination thresholds are
adapted based on documents processed in the past.

Apart from the statistical filtering approaches we have described, filtering
systems based on the Boolean model have also been developed. A representative
example is LMDS [Yochum 1985], that uses least frequent trigrams to allow for
fast processing of incoming documents. In LMDS, profiles are indexed under the
least frequent trigram, whereas documents are represented as a sequence of
trigrams. At filtering time a table lookup determines which profiles match the
incoming document. Since false positives may incur, a second stage is necessary
to determine the actual matches.

Most of the work on information filtering in the database literature has its
origins in Franklin and Zdonik [1998] which also used the term selective dis-
semination of information (SDI). Their preliminary work on the system DBIS
appears in Altinel et al. [1999]. The term publish/subscribe (pub/sub) sys-
tem, which comes from distributed systems, has also been used in this con-
text by database researchers. Another influential system is SIFT [Yan and
Garcia-Molina 1994b, 1999b], where publications are documents in free text
form and queries are conjunctions of keywords. SIFT was the first system to
emphasize query indexing as a means to achieve scalability in pub/sub systems
[Yan and Garcia-Molina 1994b]. Later on, similar work concentrated on pub/sub
systems with data models based on attribute-value pairs and query languages
based on attributes with arithmetic and string comparison operators (e.g., Le
Subscribe [Fabret et al. 2001], the monitoring subsystem of Xyleme [Nguyen
et al. 2001] and others). [Campailla et al. 2001] is also notable because it con-
siders a data model based on attribute-value pairs but goes beyond conjunctive
queries—the standard class of queries considered by other systems [Fabret
et al. 2001]. More recent work has concentrated on publications that are XML
documents and queries that are subsets of XPath or XQuery (e.g., XFilter [Al-
tinel and Franklin 2000], YFilter [Diao et al. 2003], Xtrie [Chan et al. 2002]
and xmltk [Green et al. 2003]). All these papers discuss sophisticated filtering
algorithms based on indexing queries.

In the area of distributed systems and networks various pub/sub systems
have been developed over the years over. Researchers have utilized here vari-
ous data models based on channels, topics and attribute-value pairs (exactly like
the models of the database papers discussed above) [Carzaniga et al. 2001]. The
latter systems are called content-based like in the IR literature, as attribute-
value data models are flexible enough to express the content of messages in var-
ious applications. The query languages of these systems are based on Boolean
combinations of arithmetic and string operations. Work in this area has con-
centrated not only on filtering algorithms as in the database papers previously
surveyed, but also on distributed pub/sub architectures [Aguilera et al. 1999;
Carzaniga et al. 2001] based on unstructured networks. SIENA [Carzaniga et al.
2001] is probably the most elegant example of a system to be developed in this
area. SIENA uses a data model and language based on attribute-value pairs
and demonstrates how to express notifications, subscriptions and advertise-
ments in this language. The core ideas of SIENA have recently been used in
the pub/sub systems DIAS [Koubarakis et al. 2002] and P2P-DIET [Koubarakis

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:7

et al. 2003; Idreos et al. 2004b], but now the data models AWP and AWPS
utilized were inspired from Information Retrieval. DIAS and P2P-DIET have
also emphasized the use of sophisticated subscription indexing at each server
to facilitate efficient forwarding of notifications [Tryfonopoulos et al. 2004].
In some sense, the approach of DIAS and P2P-DIET puts together prominent
ideas from the database and distributed systems tradition in a single unify-
ing framework. Another important contribution of P2P-DIET is that it demon-
strates how to support by very similar protocols the traditional ad-hoc or one-
time query scenarios of typical super-peer systems [Yang and Garcia-Molina
2003] and the pub/sub features of SIENA [Carzaniga et al. 2001]. Lately, the
iClusterDL system [Raftopoulou et al. 2008] has showed how to exploit a spe-
cial form of unstructured networks, called Semantic Overlay Networks [Crespo
and Garcia-Molina 2002], to support both IR and IF functionality in a Digital
Libary domain.

With the advent of DHTs such as CAN [Ratnasamy et al. 2001], Chord [Stoica
et al. 2001] and Pastry [Rowstron and Druschel 2001], a new wave of pub/sub
systems based on structured networks has appeared. Scribe [Rowstron et al.
2001] is a topic-based publish/subscribe system based on Pastry [Rowstron and
Druschel 2001]. Hermes [Pietzuch and Bacon 2002] is similar to Scribe because
it uses the same underlying DHT (Pastry) but it allows more expressive sub-
scriptions by supporting the notion of an event type with attributes. Each event
type in Hermes is managed by an event broker, which is a rendezvous node for
subscriptions and publications related to this event. Related ideas appear in
Tam et al. [2003] and Terpstra et al. [2003]. PeerCQ [Gedik and Liu 2003] is
another notable pub/sub system implemented on top of a DHT infrastructure.
The most important contribution of PeerCQ is that it takes into account peer
heterogeneity and extends consistent hashing [Karger et al. 1997] with simple
load balancing techniques based on appropriate assignment of peer identifiers
to network nodes.

Meghdoot [Gupta et al. 2004] is a very recent pub/sub system implemented
on top of a CAN-like DHT [Ratnasamy et al. 2001]. Meghdoot supports an
attribute-value data model and offers new ideas for the processing of subscrip-
tions with range predicates (e.g., the price is between 20 and 40 Euros) and load
balancing. A P2P system with a similar attribute-value data model that has
been utilized in the implementation of a publish-subscribe system for network
games is Mercury [Bharambe et al. 2002, 2004]. A recent paper [Aekaterinidis
and Triantafillou 2005] implements a DHT-agnostic solution to support prefix
and suffix operations over string attributes in a pub/sub environment.

Recently, several systems that employed an IR-based query language to sup-
port information filtering on top of structured overlay networks have been
deployed. pFilter [Tang and Xu 2003] uses a hierarchical extension of the
CAN DHT to store user queries and relies on multicast trees to notify sub-
scribers, while DHTrie [Tryfonopoulos et al. 2005b] extends the Chord proto-
col to achieve exact information filtering functionality and applied document-
granularity dissemination to achieve the recall of a centralized system. In the
same spirit, LibraRing [Tryfonopoulos et al. 2005a] presents a framework to
provide information retrieval and filtering services in two-tier digital library

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:8 • C. Tryfonopoulos et al.

environments. Contrary to DHTrie and LibraRing, the MinervaDL [Zimmer
et al. 2007] and MAPS [Tryfonopoulos et al. 2007; Zimmer et al. 2008] systems
suggest using the Chord DHT to disseminate and store statistics about the
document providers rather than the documents themselves. In this way, only a
few carefully selected, specialized, and promising peers store the user queries
and are monitored for new publications. This approximate information filtering
relaxes the assumption—which holds in most pub/sub systems—of potentially
delivering notifications from every producer and amplifies scalability.

2.3 Data Models and Query Languages Related to AWP
In the database literature, word patterns have been studied by Chang and
colleagues in the context of integrating heterogeneous digital libraries [Chang
et al. 1996; Chang et al. 1999; Chang 2001]. The model AWP is essentially the
model of Chang [2001] but with a slightly different class of word patterns.

Limited forms of proximity operators as we use them in AWP have been
offered in the past by various search engines (e.g., Altavista had an opera-
tor NEAR that meant word-distance 10, Lycos had an operator NEAR that
meant word-distance 25, and Infoseek used to have a more sophisticated fa-
cility). Proximity operators have also been implemented in other systems such
as freeWAIS [Pfeifer et al. 1995] and InQuery [Callan et al. 1992]. There are
also advanced IR models such as the model of proximal nodes [Navarro and
Baeza-Yates 1997] with proximity operators between arbitrary structural com-
ponents of a document (e.g., paragraphs or sections). Data models and query
languages for full-text extensions to XML, for example, TeXQuery [Amer-Yahia
et al. 2004] is the most recent area of research where proximity operators have
been used.

The data model AWP is also related to recent proposals for representing and
querying textual information in publish/subscribe systems [Carzaniga et al.
2000; Campailla et al. 2001]. However, AWP uses linguistically motivated con-
cepts such as word and traditional IR operators instead of strings and string op-
erators used in the publish/subscribe models [Carzaniga et al. 2000; Campailla
et al. 2001].

In Koubarakis et al. [2002] we have extended the model AWP by introducing
a “similarity” operator based on the IR vector space model [Baeza-Yates and
Ribeiro-Neto 1999]. The similarity concept of this model, called AWPS (where
S stands for similarity), has in the past been used in database systems with
IR influences (e.g., WHIRL [Cohen 2000]) and more recently in XML-based
query languages, for example, ELIXIR [Chinenyanga and Kushmerick 2001],
XIRQL [Fuhr and Großjohann 2004], XXL [Theobald and Weikum 2000] and
TopX [Theobald et al. 2005].

3. THE DATA MODEL AWP
In this section we present the data model AWP for specifying documents and
queries [Koubarakis et al. 2002]. Documents in AWP are defined using named
attributes with values of type text. The query language of AWP offers Boolean
and proximity operators on attribute values as in Chang et al. [1999].

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:9

3.1 Defining Documents

Let � be a finite alphabet. A word is a finite nonempty sequence of letters from
�. Let V be a finite set of words called the vocabulary. In the examples of this
article, V will be the vocabulary of the English language.

Definition 3.1. A text value s of length n is a total function s : {1, 2, . . . , n}
→ V.

In other words, a text value s is a finite sequence of words from the assumed
vocabulary and s(i) gives the i-th element of s. Text values can be used to
represent finite-length strings consisting of words separated by blanks. The
length of a text value s (i.e., its number of words) will be denoted by |s|.

Example 3.2. The string “this paper is about data structures” can be rep-
resented by a text value s of length 6 with s(1) = this, s(2) = paper etc.

In the rest of this section, we use the intuitive string notation to give examples
of text values while our definitions use the mathematical definition given above.

Let A be a countably infinite set of attributes called the attribute universe. In
practice attributes will come from namespaces appropriate for the application
at hand e.g., from the set of Dublin Core Metadata Elements1.

Definition 3.3. A document d is a set of attribute-value pairs (A, s) where
A ∈ A, s is a text value, and all attributes are distinct.

In the rest of this article, we will often use the intuitive notation A(d) to refer
to the unique text value s such that (A, s) ∈ d .

Example 3.4. The following set of pairs is a document:

d = { (AUTHOR, “John Smith”),
(TITLE, “Selective dissemination of information in peer-to-peer systems”),

(ABSTRACT, “In this paper we show that ...”) }
Obviously, AUTHOR(d) = “John Smith”.

3.2 Defining Queries

To define queries in AWP, we start with the concept of word defined earlier and
use it, together with the concept of interval to be defined immediately, to define
proximity formulas and word patterns. Finally, using the concept of attributes
as well, we define queries.

Let I be a set of (distance) intervals

I = {[l , u] : l , u ∈ N, l ≥ 0 and l ≤ u} ∪ {[l , ∞) : l ∈ N and l ≥ 0}.
Definition 3.5. A proximity formula is an expression of the form

w1 ≺i1 · · · ≺in wn

where w1, . . . , wn are words of V and i1, . . . , in are intervals of I.

1http://purl.org/dc/elements/1.1/

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:10 • C. Tryfonopoulos et al.

The operators ≺i used in a proximity formula are called proximity operators.
Proximity operators are used to capture the concepts of order and distance
between words in a text document, using intervals that impose lower and upper
bounds on distances between words. The proximity word pattern w1 ≺[l ,u] w2

stands for “word w1 is before w2 and is separated by w2 by at least l and at
most u words”. The interpretation of proximity formulas with more than one
operator ≺i is similar.

Example 3.6. The following are proximity formulas:

information ≺[0,0] retrieval, Web ≺[0,0] information ≺[0,0] retrieval,

topics ≺[0,5] information ≺[0,0] retrieval

In this example, the proximity formula information ≺[0,0] retrieval denotes
that the word “information” appears exactly before word “retrieval” so this is
a way to encode the string “information retrieval” in AWP. We can also have
arbitrarily longer sequences of proximity operators with similar meaning. In
the proximity formula

topics ≺[0,5] information ≺[0,0] retrieval

the word “topics” is constrained to precede the word “information” by at least
0 words and at most 5 words. Similarly, the word “information” should appear
exactly before the word “retrieval”.

Definition 3.7. A word pattern is a conjunction of words of V and proximity
formulas.

Example 3.8. The following expression is a word pattern:

applications ∧ (selective ≺[0,0] dissemination ≺[0,3] information).

In the following definition, the symbol � should be read as “contains.” The
notation B � wp is a formal way of saying that the value of attribute B contains
the pattern of words specified by word pattern wp.

Definition 3.9. A query is a conjunction of the form

A1 = s1 ∧ . . . ∧ An = sn ∧ B1 � wp1 ∧ . . . ∧ Bm � wpm

where each Ai, Bi ∈ A, each si is a text value and each wpi is a word pattern.

Example 3.10. The following formula is a query:

AUTHOR = “John Smith” ∧
TITLE � (selective ≺[0,0] dissemination ≺[0,3] information) ∧ peer-to-peer

3.3 Semantics of Query Answering

Let us now define the semantics of query answering in AWP. In the informa-
tion filtering scenario studied in this article, query answering is equivalent to
knowing when a document satisfies or matches a user query. This notion is now
defined formally in two steps. First, Definition 3.11 defines when a text value
satisfies a word pattern. Then, this concept is used by Definition 3.13 to capture
when a document satisfies a query.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:11

Definition 3.11. Let s be a text value and wp a word pattern. The concept
of s satisfying wp (denoted by s |= wp) is defined as follows:

(1) If wp is a word then s |= wp iff there exists p ∈ {1, . . . , |s|} and s(p) = wp.

(2) If wp is a proximity formula of the form w1 ≺ i1
· · · ≺ in−1

wn then s |= wp iff
there exist p1, . . . , pn ∈ {1, . . . , |s|} such that, for all j = 2, . . . , n we have
s(pj) = wj and pj − pj−1 − 1 ∈ i j−1.

(3) If wp is of the form wp1 ∧ wp2 then s |= wp iff s |= wp1 and s |= wp2.

Example 3.12. The text value “applications of selective dissemination of
information” satisfies the word pattern of Example 3.8.

Definition 3.13. Let d be a document and φ be a query. The concept of
document d satisfying query φ (denoted by d |= φ) is defined as follows:

(1) If φ is of the form A � wp then d |= φ iff there exists a pair (A, s) ∈ d and
s |= wp.

(2) If φ is of the form A = s then d |= φ iff there exists a pair (A, s) ∈ d .

(3) If φ is of the form φ1 ∧ φ2 then d |= φ iff d |= φ1 and d |= φ2.

Example 3.14. The value of attribute AUTHOR of document d in Example
3.4 is “John Smith” and the value of attribute TITLE satisfies word pattern

(selective ≺[0,0] dissemination ≺[0,3] information) ∧ peer-to-peer

according to Definition 3.11. Thus, d satisfies the query of Example 3.10
according to Definition 3.13.

3.4 The Expressive Power of Proximity Operators in AWP
We have already surveyed models related to AWP in Section 2.3. Here we
discuss in more detail the expressive power of proximity operators which are
a powerful feature of AWP. In this respect, we compare AWP with the model
of Chang et al. [1999] where the most detailed formal analysis of proximity
operators that exists in the literature has been given, and XQuery Full-Text,2

the most recent query language with sophisticated proximity operators.
The proximity operators we use in this article are more expressive than the

traditional IR proximity operator kW with meaning “the first operand must
precede the second by no more than k words” used in Chang et al. [1999] and
other papers. More precisely, expression w1 kW w2 in the model of Chang et al.
[1999] is equivalent to expression w1 ≺[0,k] w2 in our model. In addition, the op-
erators kW of Chang et al. [1999] are not powerful enough to express proximity
formulas such as w1 ≺[l ,u] w2 of our model when l > 0 or u = ∞.

The operator kN of [Chang et al. 1999] with meaning “the operands must
have a distance of k words but the order does not matter” cannot be expressed
in our model. However, notice that if we introduce disjunction w1 kN w2 can be
approximated by w1 ≺[0,k] w2 ∨ w2 ≺[0,k] w1. Chang et al. [1999] give an exam-
ple (page 23) that demonstrates why these two expressions are not equivalent

2http://www.w3.org/TR/xpath-full-text-10/

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:12 • C. Tryfonopoulos et al.

given the meaning of operator kN . The example involves a text value and word
patterns with overlapping positions in that text value hence the difference.

Similar comments hold with respect to the predicates

with distance range words or within window range words

of XQuery Full Text, where range is exactly x or at most x or at least x or
from x to x and x, y ≥ 0. The proximity operators of AWP have exactly the
same expressive power with the with distance predicate but are less expres-
sive than the within window predicate.

Because operator kN of Chang et al. [1999] and predicate within window of
XQuery Full Text can be useful in implemented information filtering systems,
Section 4.1.5 explains that it is straightforward to extend the indexing and
filtering algorithms of this article to deal with them.

We have now completed the formal presentation of model AWP used in this
article. The reader is invited to read Koubarakis et al. [2006], where more
results on the “logic” of AWP are presented.

4. FILTERING ALGORITHMS

In this section, we present four main memory algorithms that solve the filter-
ing problem for conjunctive queries in AWP. Because our work extends and
improves previous algorithms from SIFT [Yan and Garcia-Molina 1994b], we
adopt terminology from SIFT in many cases.

4.1 The Algorithm BestFitTrie

In a filtering setting, contrary to the retrieval scenario, queries are indexed
and matched against incoming documents. To speed up the matching proce-
dure, documents and queries need to be represented in an appropriate form,
by utilizing appropriate data structures. In the following, we describe the data
structures used for representing incoming documents and indexing queries,
and present the query insertion and filtering mechanisms.

4.1.1 Data Structures for Documents. When a document is published in
the system, it has to be represented by appropriate data structures that will
facilitate the matching process. BestFitTrie uses two data structures to repre-
sent each published document d : the occurrence table OT(d) and the distinct
attribute list DAL(d) (shown graphically in Figure 1(a)). OT(d) is a hash ta-
ble that uses words as keys, and is used for storing all the attributes of the
document in which a specific word appears, along with the positions that each
word occupies in the attribute text. DAL(d) is a linked list with one element for
each distinct attribute of d . The element of DAL(d) for each attribute A points
to another linked list, the distinct word list for A (denoted by DWL(A)) which
contains all the distinct words that appear in A(d).

4.1.2 Data Structures for Queries. To index queries BestFitTrie utilizes an
array, called the attribute directory (AD), that stores pointers to word directories
and proximity arrays. AD has one element for each distinct attribute B in the
query database. Each element of AD is a word directory for attribute B that

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:13

Fig. 1. Document and query data structures.

indexes the set of words in wp (denoted by words(wp)) for each atomic formula
B � wp in a query. Technically, a word directory WD(B) for attribute B is a
hash table that uses words as keys and provides fast access to roots of tries in a
forest that is used to organize the sets of words that result from words(wp). The
proximity formulas contained in wp are stored in an array called the proximity
array (denoted by PA(B)). PA(B) stores pointers to trie nodes (words) that are
operands in proximity formulas along with the respective proximity intervals
for each formula. Thus for a proximity formula of the form w1 ≺[l1,u1] · · · ≺[ln,un]

wn, array PA(B) will contain pointers to the words w1, · · · , wn stored in WD(B),
and also all the integers l1, u1, · · · , ln, un representing the distance intervals
in the proximity formula. Finally a hash table, called equality table (ET), that
indexes, under key s, all text values s that appear in formulas of the form A = s
is also used. Figure 1(b) illustrates the AD, the WD(B) and the PA(B) used to
index submitted user queries.

4.1.3 Query Insertion. When a new query q of the form

A1 = s1 ∧ . . . ∧ An = sn ∧ B1 � wp1 ∧ . . . ∧ Bm � wpm

arrives, the index structures are populated as follows. For each attribute Ai, 1 ≤
i ≤ n, we hash the text value si to obtain a slot in ET that will index this
text value. For each attribute Bj , 1 ≤ j ≤ m, we compute words(wpj) and
insert them in one of the tries with roots indexed by WD(Bj). Finally, we visit

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:14 • C. Tryfonopoulos et al.

Table I. An Example with Identifying Subsets

k Query B � wpj Identifying Subsets

1 B � databases {databases}
2 B � relational ≺[0,2] databases {databases, relational}
3 B � databases ∧ relational {databases, relational}
4 B � (software ≺[0,2] neural ≺[0,0] networks) ∧

(software ≺[0,3] relational ≺[0,0] databases)

{databases, relational, neural},
{databases, relational, software},
{databases, relational, networks},
...

5 B � optimal ∧ (artificial ≺[0,0] intelligence) ∧
relational ∧ databases

{optimal}, {optimal, databases},
{databases, relational, artificial,

intelligence, optimal}, ...

6 B � artificial ∧ relational ∧ intelligence ∧ da-

tabases ∧ knowledge

{knowledge}, {knowledge,

databases}, {databases, relational,

artificial, knowledge}, ...

PA(Bj) and store pointers to trie nodes and proximity intervals for the proximity
formulas contained in wpj .

Let us now explain how each word directory WD(Bj) and its forest of tries
are organized. The main idea behind this data structure is to store sets of words
compactly by exploiting their common elements. In this way, memory space is
optimized and filtering can be efficiently carried out as we will see below. To
understand how WD(Bj) is constructed, we need the following definition.

Definition 4.1. Let S be a set of nonempty sets of words and s1, s2 ∈ S with
s2 ⊆ s1. We say that s2 is an identifying subset of s1 with respect to S iff s2 = s1

or there is no r ∈ S, such that r �= s1 and s2 ⊆ r.

The sets of identifying subsets of two sets of words s1 and s2 with respect to a
set S is the same if and only if s1 is identical to s2.

Example 4.2. Table I shows some examples that clarify these concepts. In
each row of the table, we give query B � wpj and some identifying subsets of
words(wpj) with respect to S = {words(wpk) : 1 ≤ k ≤ j − 1}.

Notice that in some entries of the table we do not give the complete set of
identifying subsets due space considerations.

For each formula B � wpj in a user query, the sets of words words(wpj) are
incrementally organized in the word directory WD(B) as follows. Let S be the
set of sets of words currently in WD(B). When a new set of words s arrives,
BestFitTrie selects the best trie T in the forest of tries of WD(B), and the best
location in that trie to insert s. The algorithm for choosing T takes into account
the current organization of the word directory and will be presented below.

Throughout its existence, each trie T of WD(B) has the following properties.
The nodes of T store sets of words and other data items related to these sets.
Let sets-of-words(T) denote the set of all sets of words stored by the nodes of
T . A node of T stores more than one set of words if and only if these sets are
identical. The root of T (at depth 0) stores sets of words with an identifying
subset of cardinality one. In general, a node n of T at depth i stores sets of
words with an identifying subset of cardinality i + 1. A node n of T at depth i

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:15

storing sets of words equal to s is implemented as a structure consisting of the
following fields:

—Word(n): the (i + 1)-th word wi of identifying subset {w0, . . . , wi−1, wi} of s
where w0, . . . , wi−1 are the words of nodes appearing earlier on the path
from the root to node n.

—Query(n): a linked list containing the identifier of query q that contained word
pattern wp for which {w0, . . . , wi} is the identifying subset of sets-of-words(T).

—Remainder(n): if node n is a leaf, this field is a linked list containing the words
of s that are not included in {w0, . . . , wi}. If n is not a leaf, this field is empty.

—Children(n): a linked list of pairs (wi+1, ptr), where wi+1 is a word such that
{w0, . . . , wi, wi+1} is an identifying subset for the sets of words stored at a
child of wi and ptr is a pointer to the node n′, where Word(n′) = wi+1.

The sets of words stored at node n of T are equal to {w0, . . . , wn} ∪
Remainder(n), where w0, . . . , wn are the words on the path from the root of
T to n. An identifying subset of these sets of words is {w0, . . . , wn}. Figure 4(a)
shows an example of a trie created by BestFitTrie for the queries of Table I, to-
gether with the Query(n) and Remainder(n) lists. The purpose of Remainder(n)
is to allow for the delayed creation of nodes in a trie. This delayed creation lets
us choose which word from Remainder(n) will become the child of current node
n depending on the sets of words that will arrive later on.

To continue with the algorithm for inserting a new set of words s in a word
directory, we will first need to define the concept of clustering ratio.

Definition 4.3. Let s be a set of words indexed at node n of trie T . For this set
of words, we have that s = {w0, . . . , wn} ∪ Remainder(n), where w0, . . . , wn are
the words in the path from the root of T to node n. The clustering ratio of s in T ,
denoted as ClusteRat(s, T), is ClusteRat(s, T) = |{w0,... ,wn}|

|s| , where |{w0, . . . , wn}|
and |s| denote the number of words in the corresponding sets of words.

ClusteRat(s, T) is used to quantify how well the set of words s is clustered in
trie T . From the definition, it follows that 0 < ClusteRat(s, T) ≤ 1. Generally
when ClusteRat(s, T) is near 0, the set of words s is considered badly clustered,
whereas when ClusteRat(s, T) is near 1, the set of words is considered highly
clustered.

The algorithm for inserting a new set of words s in a word directory is as
follows. The first set of words to arrive will create a trie with a randomly chosen
word as the root and the rest stored as the remainder. The second set of words
will consider being stored at the existing trie or create a trie of its own. In
general, to insert a new set of words s, BestFitTrie iterates through the words
in s and utilizes the hash table implementation of the word directory to find all
candidate tries T ′ for storing s: the tries with a word of s as root. To store sets
as compactly as possible, BestFitTrie then looks for a trie node n in trie T ′ such
that, if s was indexed there, ClusteRat(s, T ′) would be maximized.

To identify the optimal node n, BestFitTrie performs a depth-first search
down to depth |s|−1 in all candidate tries. If more than one nodes that maximize
ClusteRat(s, T) are found, BestFitTrie randomly chooses one. The path from

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:16 • C. Tryfonopoulos et al.

Fig. 2. Pseudocode for query insertion under algorithm BestFitTrie.

the root to n is then extended with new nodes containing the words in τ = (s \
{w0, . . . , wn}) ∩ Remainder(n). If s ⊆ {w0, . . . , wn} ∪ Remainder(n), then the last
of these nodes l becomes a new leaf in the trie with Query(l) = Query(n)∪{q} (q is
the new query from which s was extracted) and Remainder(l) = Remainder(n)\
τ . Otherwise, the last of these nodes l points to two child nodes l1 and l2. Node l1

will have Word(l1) = u, where u ∈ Remainder(n) \ τ, Query(l1) = Query(n) and
Remainder(l1) = Remainder(n)\(τ ∪{u}). Similarly node l2 will have Word(l2) =
v, where v ∈ s \ ({w0, . . . , wn} ∪ τ), Query(l2) = q and Remainder(l2) = s \
({w0, . . . , wn} ∪ τ ∪ {u}).

Figure 2 presents the pseudocode for query indexing under algorithm Best-
FitTrie. The complexity of inserting a set of words in a word directory is linear
in the size of the word directory.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:17

4.1.4 Filtering Incoming Documents. The filtering procedure utilizes two
arrays named Total and Count. Total has one element for each query in the
database and stores the number of atomic formulas contained in that query.
Array Count is used for counting how many of the atomic formulas of a query
match the corresponding attributes of a document. Each element of array Count
is set to zero at the beginning of the filtering algorithm. If at algorithm termi-
nation, a query’s entry in array Total equals its entry in Count, then the query
matches the published document, since all of its atomic formulas match the
corresponding document attributes.

When a document d is published at the server, filtering proceeds as follows.
BestFitTrie hashes the text value C(d) contained in each document attribute
C and probes the ET to find matching atomic formulas with equality and in-
creases the corresponding query element in array Count by one. Then for each
attribute C in DAL(d) and for each word w in DWL(C), the trie of WD(C) with
root w is traversed in a depth-first manner. Only subtrees having as root a word
contained in C(d) are examined, and hash table OT(d) is used to identify them
quickly. At each node n of the trie, the list Query(n) gives implicitly all atomic
formulas C � wpi that can potentially match C(d) if the proximity formulas in
wpi are also satisfied. This is repeated for all the words in DWL(C), to identify
all the qualifying atomic formulas for attribute C. Then the proximity formulas
for each qualifying query are examined using a straight forward polynomial-
time algorithm that takes a proximity formula and a text value as an input,
and decides whether the proximity formula is satisfied by the text value (see
Koubarakis et al. [2002] for details). For each atomic formula satisfied by C(d),
the corresponding query element in array Count is increased by one. At the
end of the filtering algorithm, arrays Total and Count are traversed and the
values stored for each query are compared. The equal entries in the two arrays
give us the queries satisfied by d . Figure 3 presents the pseudocode for filtering
incoming documents in BestFitTrie.

4.1.5 Dealing with Other Proximity Operators. It is straightforward to ex-
tend the indexing and filtering algorithms of this article to deal with the kN
operator of Chang et al. [1999] and predicate within window of XQuery Full
Text. Similarly to the current approach, the words that are operands to the
proximity formulas will be indexed in the appropriate trie of the respective
WD(B), and the values of the proximity intervals will be stored at the PA(B).
At filtering time, the containment of the words of the proximity formula in the
incoming document will be checked using WD(B), and the proximity constraints
for each qualifying formula will be examined using an appropriate algorithm
similar to the one in Koubarakis et al. [2002].

4.2 Other Filtering Algorithms

To evaluate the performance of BestFitTrie, we have also implemented
algorithms BF, SWIN and PrefixTrie, which are modified versions of the
algorithms BF, Key and Tree developed for SIFT in Yan and Garcia-Molina
[1994b]. These modifications and extensions to the SIFT algorithms were
necessary for supporting our attribute-based data model and to efficiently

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:18 • C. Tryfonopoulos et al.

Fig. 3. Pseudocode for filtering incoming documents.

cope with the proximity operator that exists in our query language. BF (Brute
Force) has no indexing strategy and scans the query database sequentially to
determine matching queries. The BF algorithm stores the full query in a linked
list using an appropriate representation that also facilitates the evaluation
of the proximity operations. At publication time the incoming document is

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:19

matched against every single query in the list. The BF algorithm was mainly
implemented to serve as the baseline in the comparison.

SWIN (Single Word INdex) is an extension of algorithm Key of Yan and
Garcia-Molina [1994b]. It utilizes a two-level index for accessing queries in an
efficient way. A query of the form of Definition 3.9 is indexed by SWIN under all
its attributes A1, . . . , An, B1, . . . , Bm and also under n text values s1, . . . , sn and
m words selected randomly from wp1, . . . , wpm. SWIN utilizes an ET to index
equalities and an AD pointing to several WDs to index the atomic containment
queries. Queries of the form B � wp within a WD slot are stored in a linked list.

PrefixTrie is an extension of the algorithm Tree of Yan and Garcia-Molina
[1994b] appropriately modified to cope with attributes and proximity informa-
tion. This trie-based data structure was initially proposed based on the obser-
vation that users subscribing in the same area or topic, would probably use
similar words to describe their information need. This would likely result in
a large number of profiles with similar words. Using this observation, the au-
thors showed that tries are able to store queries more efficiently than lists (as
for example in SWIN). Tree was originally proposed for storing conjunctions of
keywords in secondary storage in the context of the SDI system SIFT. Following
Tree, PrefixTrie uses sequences of words sorted in lexicographic order for cap-
turing the words appearing in the word patterns of atomic formulas (instead of
sets used by BestFitTrie). This sorting of query words was a simple heuristic
utilized by the proposed algorithm of SIFT to increase the common prefixes
between submitted queries and enable the algorithm to store the queries more
compactly and retrieve them faster at filtering time. After sorting the queries,
a trie-based data structure was used to store the sorted sequences compactly
by exploiting their common prefixes [Yan and Garcia-Molina 1994b].

Algorithm BestFitTrie constitutes an improvement over PrefixTrie. Because
PrefixTrie examines only the prefixes of word sequences in lexicographic or-
der to identify common parts, it misses many opportunities for clustering (see
Figure 4). BestFitTrie keeps the main idea behind PrefixTrie but (a) handles
the words contained in a query as a set rather than as a sorted sequence and
(b) searches exhaustively the forest of tries to discover the best place to in-
troduce a new set of words. This allows BestFitTrie to achieve better cluster-
ing as shown by the example in Figures 4(a) and 4(b), where we can see that
BestFitTrie needs only one trie to store the set of words for the formulas of
Table I, whereas PrefixTrie introduces redundant nodes that are the result of
using a lexicographic order to identify common parts. This node redundancy
can be the cause of deceleration of the filtering process, as we will show in
Section 6. Additionally, variations of BestFitTrie (presented in Section 6.6),
also utilize the sorting heuristic to further improve query indexing by storing
the least frequent words towards the trie roots. This allows for pruning large
portions of the trie at filtering time, since these words are, most likely, not con-
tained in the incoming documents. Finally, all the trie-based algorithms use
heuristics to identify and cluster similar queries. These heuristics provide an
organization of queries that is dependent on the order of insertion of the queries
in the system. As we will show in Section 5, this causes the loss of clustering
opportunities, and algorithm ReTrie is proposed as a solution to this problem.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:20 • C. Tryfonopoulos et al.

Fig. 4. BestFitTrie vs. PrefixTrie for the atomic queries of Table I.

Notice that the common assumption among the trie-based algorithms
(PrefixTrie and BestFitTrie and all their variants) is the existence of many
queries that have similar words. This scenario is very realistic given that users
may share similar interests and have submitted their continuous queries to
a central server. Additionally, important scheduled events (e.g., football finals,
elections, etc.) or even unpredicted incidents (e.g., an earthquake or a terrorist
act) can also cause the submission of lots of similar queries, by users interested
to subscribe to the flow of information available for these events. These scenar-
ios make the case for the usage of the trie-based algorithms even stronger, since
they could relieve the system of a significant processing load by exploiting the
similarities between queries to provide fast filtering times.

5. REORGANIZATION OF QUERIES

Most of the algorithms presented earlier use heuristics to identify and cluster
similar queries, in order to achieve better performance during matching. These
heuristics provide an organization of queries that is dependent on the order of
insertion of the queries in the system. Taking BestFitTrie as an example, we
can notice that for a given set of user queries Q , and two different orderings
of these queries, the resulting clustering that is achieved is different. In other
words, if we consider the clustering problem as a search problem over the search
space of all possible query organizations, then BestFitTrie actually provides us
with a greedy heuristic that results in a possibly nonoptimal solution (but yet
a fairly good one, as we will see in Section 6). An alternative to organizing
the user queries in a heuristic fashion is to search over the space of all possible
organizations for the optimal one. This is obviously prohibitively expensive and
will not be considered further in this article.

There are two main questions when trying to design an algorithm for reor-
ganizing the database. The first question is what to reorganize and the second
is when this reorganization should take place. We will discuss our approaches
to address these two questions.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:21

Fig. 5. Query insertions and reorganization achieved by ReTrie.

The straightforward approach is to reorganize the database after a fixed
number of query insertions or at fixed time intervals. This approach has the
advantage of bringing the database in a “good shape” as often as we want, but
has the drawback of ignoring the clustering criteria, and invokes reorganization
even at cases where there might not be much need for it. In addition, periodic
reorganization imposes a significant load in the system since queries have to
be repositioned at given intervals. Another option is defining a criterion for the
quality of clustering and reorganize when the clustering quality drops. One can
design various different approaches for defining this criterion. For example, we
can consider the quality of clustering in correlation with the number of redun-
dant nodes in the forest. This approach exploits the fact that badly clustered
queries introduce more redundant nodes (to see this consider the number of
nodes in Figures 4(a) and (b), or Figures 5(c) and (d)). Another approach is
to quantify the clustering quality in terms of the percentage of underclustered
queries in the system. A third approach would be to use the fan-out of trie nodes
to measure the clustering achieved by each algorithm. Trying to minimize node
fan-out would then have an impact at document filtering time, as less branch-
ing would be required and a high number of sub-tries would be pruned. In all
approaches discussed above, an appropriate threshold can be used to trigger
the reorganization process. Finally, a simple, effective and widely used (in other
related cases) approach is to consider reorganization when the system is idle.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:22 • C. Tryfonopoulos et al.

This approach, apart from the obvious benefits of not overloading the system,
offers the advantage that the reconstruction of the database can be done incre-
mentally, which is useful if we want to exploit even small time intervals to do
the heavy work of reorganization.

In this article we chose to implement and evaluate two of the approaches
previously presented: a baseline approach that reorganizes the query database
at given intervals (i.e., after a fixed number of query insertions), and an ap-
proach that uses a clustering criterion to decide when to reorganize the query
database. Thus, we modify algorithm BestFitTrie to consider the reorganiza-
tion of the query database and the modified algorithms we propose will be called
Periodic and ReTrie respectively. Periodic is straightforward to implement and
will serve as the baseline algorithm. The second approach, called ReTrie, uses
the percentage of underclustered queries as the clustering quality metric that
triggers the reorganization process. To describe ReTrie, we will need the fol-
lowing definition.

Definition 5.1. Let s be a set of words indexed at trie node n of trie T .
The set of words s is considered underclustered iff ClusteRat(s, T) < c, where
0 ≤ c ≤ 1 is a clustering threshold.

To keep track of the clustering ratio of each set of words s, ReTrie utilizes a
clustering array (CA) that contains an entry for every set of words inserted in
WD(B). Each CA entry contains a pointer to the position s is currently stored
at and a number representing ClusteRat(s, T). When a new set of words s is
indexed at node n of trie T , the clustering ratio of s in CA is initialized using
the formula from Definition 4.3. Additionally, if Remainder(n) is expanded to
create new nodes, then the clustering ratios of the other sets of words stored
at n should be updated, since they now have more of their words clustered. If
Remainder(n) is not expanded, no other update is necessary to array CA.

Algorithm ReTrie, presented in Figure 6, repositions badly clustered sets of
words based on clustering quality metrics to achieve better query clustering.
All underclustered sets of words (identified by scanning CA) are candidates for
moving when the algorithm is executed. For each underclustered set of words
s with clustering ratio ClusterRat(s, T), ReTrie searches the forest of tries of
WD(B) looking for all nodes that can store s. For each one of these positions,
ReTrie calculates the new clustering ratio for s and chooses the position that
results in the maximum clustering ratio, maxClu(s, T ′). s is moved to the new
position found only if ClusterRat(s, T) < maxClu(s, T ′). Moving s to a new
position results in updates to array CA. The update procedure is the same as
the one described in the previous paragraph for query insertions.

ReTrie is able to improve the clustering of queries because not all queries
have the same clustering opportunities when entering the query index with
BestFitTrie. This can be explained as follows. When a new set of words s
corresponding to formula B � wp needs to be indexed, the clustering al-
gorithm looks for a trie in the forest of tries of WD(B) and a node in that
trie, such that ClusterRat(s, T) is maximized. It is easy to see that the num-
ber of tries and the number of nodes in those tries affect the clustering op-
portunities of s: the higher the number of candidate positions to insert s,

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:23

Fig. 6. Pseudocode for algorithm ReTrie.

the higher the possibility for the algorithm to cluster s effectively (i.e., in
a position with a higher ClusterRat(s, T)). This is shown by the example of
Figure 5. Consider a forest consisting of a single trie T currently indexing
three sets of words: s0 = {databases}, s1 = {databases, relational, neural}
and s2 = {databases, relational, artificial} (Figure 5(a)). When a set of words
s3 = {databases, index, compression} arrives, it is inserted in the only po-
sition available and is clustered only under one word (Figure 5(b)). Now
ClusterRat(s3, T) = 0.33. Upon arrival of s4 = {index, compression}, a new trie
is created, since s4 cannot be indexed in the existing trie, so as to create a forest
of tries as the one shown in Figure 5(c). It is however obvious that there is a
better position to index s3 and this position is together with s4, as it is shown in
Figure 5(d) where ClusterRat(s3, T) = 0.66. Notice that in the forest of tries of
WD(B) shown in Figure 5(c), words index and compression appear in two nodes
each (this redundancy in nodes is one of the factors that slow down filtering),
whereas after the reorganization of the forest (Figure 5(d)) there are no redun-
dant nodes for these words (i.e., they appear only once in the forest). Generally,
it is not possible to remove all redundant nodes in a forest (notice for example
the word database in this example), so our effort concentrates on minimizing
these nodes by reorganization.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:24 • C. Tryfonopoulos et al.

Table II. Some Characteristics of the NN Corpus

Description Value

Number of documents 10,426

Document vocabulary size 641,242

Maximum document size (words) 248,609

Minimum word size (letters) 1

Maximum word size (letters) 35

Table III. Some Attribute Characteristics of the Corpus Documents

Attribute Percentage of Documents

TITLE 63%

AUTHORS 58%

ABSTRACT 88%

BODY 86%

YEAR 63%

of Attributes Percentage of Documents

1 7.9%

2 28.7%

3 2.4%

4 16.0%

5 45.0%

(a) (b)

6. EXPERIMENTAL EVALUATION

To carry out the experimental evaluation of the algorithms described in the
previous sections, we needed data to be used as incoming documents, as well
as user queries. It may not be difficult to collect data to use in the evaluation of
filtering algorithms for SDI scenarios. For the model AWP considered in this
article, there are various document sources that one could consider: metadata
for papers on various publisher Web sites (e.g., ACM or IEEE), electronic news-
paper articles, articles from news alerts on the Web3 etc. However, it is rather
difficult to find user queries except by obtaining proprietary data (e.g., from
CNN’s news alert system).

6.1 Dataset and Experimental Setup

For our experiments we chose to use two sets of documents. The first set is
composed of 10426 documents downloaded from ResearchIndex4 and originally
compiled in Dong [2002]. The documents are research papers in the area of
Neural Networks, and we will refer to them as the NN corpus.5 Table II sum-
marizes some key characteristics of the document corpus, where Tables III(a)
and III(b) give details on the fraction of documents that contain each attribute,
and on the fraction of documents that contain a specific number of attributes
respectively. This document set was chosen because it provides a focused setting
that allows us to exploit the common words between queries to achieve better
clustering. As also pointed out in Section 4.2, this scenario corresponds to users
that are interested in the same area and submit their continuous queries in a
central server that also publishes documents from this area. To assess the lim-
itations of our approach we have also conducted experiments with a wider and

3http://www.cnn.com/EMAIL
4http://www.researchindex.com
5We would like to thank Evangelos Milios and his group at Dalhousie University for providing us

the original Neural Network Corpus.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:25

more varied corpus consisting of documents that are web sites crawled from
the .gov domain (we will refer to this corpus as the .GOV corpus). All the ex-
periments shown in this section were carried out with both document corpora.
Since the NN corpus is closer to our assumptions about having a thematically
focused setting, Sections 6.2 to 6.7 describe the experiments carried out with
this corpus. The description of the .GOV corpus along with the most interesting
experiments is given in Section 6.8.

Because no database of queries was available to us, we developed a method-
ology for creating user queries using words and technical terms extracted au-
tomatically from the Research Index documents using the C-value/NC-value
approach of [Frantzi et al. 2000]. The extracted multiword technical terms are
used to create proximity formulas and also as conjunctions of keywords in user
queries. For the formulation of user queries, author names and words extracted
from paper abstracts are also used. The attribute universe for the experiments
presented in this section consists of attributes paper title, authors, abstract, and
body.

The basic concept for the query creation in our methodology is that of a unit.
Word patterns for atomic queries (i.e., queries of type C � wp) are created
as conjunctions of units selected uniformly from unit sets, whereas queries
are created as conjunctions of atomic queries with attributes selected from the
attribute universe with a probability pC. In our scenario four different types of
unit sets exist:

—Author unit set. This set contains the last names of authors appearing in the
full citation graph of ResearchIndex.6 Each author appears in the author unit
set as many times as the in-degree of the papers he has published. Thus the
probability P (α) of author α to appear in a query is P (α) = Nα/

∑
k∈Vα

Nk ,
where Nα is the number of papers in the citation graph that cite the work of
author α, and Vα is the author vocabulary obtained also by the full citation
graph.

—Proximity formulas unit set. This set contains proximity formulas created
using the extracted multiword terms. The technical terms with more than
five words were excluded since they were noise, and the set was produced
after applying upper and lower NC-value cut off thresholds for the remaining
terms. The proximity operators in this set contain distances according to the
number of words contained in each multiword term.

—Keywords from technical terms. This unit set contains keywords extracted
from technical terms. These keywords are used as conjuncts in the creation
of atomic queries.

—Nouns from abstracts. This set contains the nouns used in the corpus ab-
stracts after the cut-off of the most and least frequent words. The rationale
behind this is that abstracts are intended to be a comprehensive summary
of the publication content, thus nouns from abstracts are appropriate candi-
dates for use in queries.

6The citation graph contains information about the citations between research papers and was

compiled in Milios et al. [2003].

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:26 • C. Tryfonopoulos et al.

Table IV. Parameters Varied in Experiments and Their Descriptions

Parameter Description

W average # of words per document

Wd average # of distinct words per document

N # of queries in database

D # of incoming documents

m percentage of stored queries matching the incoming documents

c clustering threshold

An example of a user query created synthetically from the methodology
briefly sketched above is:

(AUTHOR � Riedel) ∧ (TITLE � implementation ∧ (RBF ≺[0,3] networks)).

For more details of the methodology the interested reader can refer to
Tryfonopoulos and Koubarakis [2002]. As a byproduct of our work on this topic,
we have a new corpus of documents and continuous queries which is represen-
tative of digital library scenarios, and can also be used by other researchers in
the area of information filtering.

All the algorithms were implemented in C/C++, and the experiments were
run on a PC, with a Pentium III 1.7GHz processor, with 1GB RAM, running
Linux. Time shown in the graphs is wall-clock time and the results of each ex-
periment are averaged over 10 runs to eliminate any fluctuations in the time
measurements. Table IV summarizes the parameters examined in our experi-
mental evaluation.

6.2 Varying the Database Size

The first experiment that we conducted to evaluate our algorithms targeted the
performance of the four algorithms under different sizes of the query database.
In this experiment we randomly selected one hundred documents from the NN
corpus and used them as incoming documents in query databases of different
sizes. The size and the matching percentage for each document used was dif-
ferent but the average document size was 6869 words, whereas on average 1%
of the queries stored matched the incoming documents.

As we can see in Figure 7, the time taken by each algorithm grows linearly
with the size of the query database. However SWIN, PrefixTrie and BestFitTrie
are less sensitive than Brute Force to changes in the query database size. The
trie-based algorithms outperform SWIN mainly due to the clustering technique
that allows the exclusion of more non-matching atomic queries at filtering time.
We can also observe that the better exploitation of the commonalities between
queries improves the performance of BestFitTrie over PrefixTrie, resulting in a
speedup in filtering time for large query databases. Additionally, Figure 8 con-
trasts the algorithms in terms of throughput where we can see that BestFitTrie
gives the best filtering performance managing to process a load of about 150KB
per second for a query database of 3 million queries.

In terms of memory requirements, BF needs about 50% less space than
the trie-based algorithms, due to the simple data structure that poses small

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:27

Fig. 7. Effect of the query database size in filtering time.

Fig. 8. Performance in terms of throughput for the algorithms of Section 4.

memory requirements. Additionally the rate of increase for the two trie-based
algorithms is similar to that of BF, requiring a fixed amount of extra space each
time. Figure 9 shows the memory requirements of the trie-based algorithms in
comparison to the BF and SWIN approaches. From the experiments above, it is
clear that BestFitTrie speeds up the filtering process with a small extra storage
cost, and proves faster than the rest of the algorithms, managing to filter as
much as 3 million queries in less the 200 milliseconds, which is about 1000%
times faster than the sequential scan method and 20% faster than PrefixTrie.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:28 • C. Tryfonopoulos et al.

Fig. 9. Memory requirements for the trie-based algorithms.

6.3 Varying the Matching Percentage

In this experiment we wanted to observe the sensitivity of each algorithm when
the number of queries that matched incoming documents varies. To do this, we
used five document sets, S1 to S5, that contained about the same number of dis-
tinct words and the same attributes, but the number of queries that matched
each document set was different. Document set S1 was used as the baseline and
the % increase in filtering time for the rest of the document sets was calculated
in relation to set S1. Notice that given the way the algorithms are designed,
the important parameter of a document is the number of distinct words con-
tained, rather than its size. This happens because the probing of the query
index uses the distinct words contained in the attribute text. Practically, the
increase in the number of distinct words increases the probability of a specific
word contained in a query, to be also contained in the incoming document. This
in turn increases the number of queries with proximity formulas that need to be
evaluated,7 which is a time-consuming process. The size of the document is of
smaller importance, since it only increases the number of positions of a specific
word in the document, and thus the number of checks at proximity evaluation
time. However due to the algorithm presented in Koubarakis et al. [2002], the
majority of the positions of a specific word in a document can be excluded from
the proximity evaluation.

Figure 10 shows the percent increase in matching time with respect to the
baseline document set S1, against the percentage of matching queries for all al-
gorithms, for document sets that match from 2% to 22% of the indexed queries.
All document sets contained three or four (attribute, value) pairs, and the query
database contained 3 million queries. Apart from BF, which showed an overall

7Remember that the evaluation of an atomic query is done in two phases; the existence

of keywords is checked first and the evaluation of the proximity formulas follows.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:29

Fig. 10. % increase in filtering time against the % increase in the number of matching queries.

97% increase in the matching time, BestFitTrie appears to be the most sen-
sitive to the increase in the matching percentage (showing an overall of 19%
increase in filtering time), in contrast to PrefixTrie and SWIN, which appear
to be less affected (with 13% and 9% increase respectively). This can be ex-
plained as follows. The trie structure of PrefixTrie and BestFitTrie forces them
to explore a big number of child nodes when a word node appears in a docu-
ment, in contrast to SWIN that searches in either case all the nodes that are
hashed under a specific word. This means that in higher matching percentages,
the trie-based algorithms loose some of the advantages offered by their sophis-
ticated data structures and show greater sensitivity to the matching degree.
However the trie-based algorithms are still faster, with BestFitTrie being the
faster algorithm of all four despite the high increase (the filtering time for the
algorithms was 771 msecs for SWIN, 322 msecs for PrefixTrie and 293 msecs
for BestFitTrie for set S5).

6.4 Varying the Document Size

The purpose of this experiment is to observe the behavior of the various al-
gorithms with respect to the incoming document’s size. This time four sets of
documents (S1 to S4), with sizes varying from about 7K words (1115 distinct
words) to 148K words (2304 distinct words), were chosen. These documents
had about the same number of queries matching them to allow for comparisons
with respect to document size in the performance of the four algorithms. Perfor-
mance differences are shown in Figure 11 and are below 5% in matching time
for SWIN, PrefixTrie, and BestFitTrie, whereas BF showed an increase of about
50%. The insensitivity of SWIN, PrefixTrie, and BestFitTrie in the document
size is mainly due to the hash representation of the document and the way the
matching process is carried out. During the matching process, we actually con-
sider only the distinct words of the document (that are obviously less than the

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:30 • C. Tryfonopoulos et al.

Fig. 11. Increase in filtering time when document size grows.

document itself for large documents), and check the existence of a word in the
document using a hash function, which provides fast answer times. Moreover
the proximity evaluation is not greatly affected from the large number of word
positions inside a document due to the well-designed proximity evaluation al-
gorithm of Koubarakis et al. [2002] that allows the omission of a large number
of word positions in a document.

Since in an SDI scenario one may not always have to deal with large doc-
uments (for example, if AWP is used for describing metadata about research
papers), we carried out experiments with documents of smaller size (see also
our evaluation with a different corpus of smaller documents in Section 6.8).
Experiments with documents of mean size of 551 words, show that BestFitTrie
performs even better in terms of filtering time, being 1.75 times faster that
PrefixTrie and about 86 times faster that BF (as opposed to 1.2 and about 10
times faster respectively for documents of mean size 6869 words).

6.5 Updating the Query Database

In this experiment we investigated the update time for the four different al-
gorithms. To measure the average time needed to insert a single query in the
database, we worked as follows. Starting with the empty database, we mea-
sured the total time needed to populate it with 500K queries, and proceeded in
a similar way by adding batches of 500K queries in our database and measur-
ing the total insertion time per batch. Subsequently the average insertion time
per query for a given batch of queries can be found simply by dividing the total
time measured with the population of the batch to produce a single point in the
graph of Figure 12.

It should be clear that for BF and SWIN the query insertion time will be
constant on average, since BF does a simple insertion at the end of a list, while
SWIN utilizes a hash table and inserts each atomic query in the beginning of

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:31

Fig. 12. Query insertion time for different query database sizes.

the list pointed to by the hash table slot. For the trie-based algorithms the query
insertion is a more complex process that involves the examination of lists at
every level of the trie. While PrefixTrie examines only a single path in a single
trie of the forest, BestFitTrie needs to examine several paths in the trie and
also several tries (in the usual case as many tries as the number of words in a
query). Our remarks are verified by the graph in Figure 12, which shows the
average insertion time in milliseconds for a query q for a given database size.
In this figure we can see that BestFitTrie needs about 20% more time than
PrefixTrie to insert a query in a database with 2.5 million queries. This is a
standard tradeoff where the algorithm spends some extra time at indexing to
save it at query execution.

6.6 Incorporating Ranking Information

To examine the performance of the two trie-based algorithms (namely
PrefixTrie and BestFitTrie), we modified them in order to take into account
information about the frequency of occurrence of words in documents. We use
the document frequency of a word wi (denoted by dfi), which represents the
number of documents in a collection that contain wi, to identify the frequent
and infrequent words among the documents. In an SDI scenario where no doc-
ument collection is available, we can compute dfi on the collection of recently
processed documents [Yan and Garcia-Molina 1999] (say k most recent docu-
ments arrived, where k is large enough). Using this information, we created
variations of the trie-based algorithms that use different heuristics for storing
user queries in tries.

The rank heuristic stores the most frequent words among the documents
(that is the words with the highest df) near the roots of the tries, while the
less frequent words (that is the words with the lowest df) are pushed deeper in
them resulting in relatively few big and “wide” tries (since their roots will exist

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:32 • C. Tryfonopoulos et al.

in more queries). The algorithms using the rank heuristic are PrefixTrie-rank
and BestFitTrie-rank.

Contrary to rank, the inverse rank heuristic (irank) [Yan and Garcia-Molina
1999] stores the least frequent words of the queries near the roots of the tries,
while the frequent ones are pushed deeper in the tries, resulting in many narrow
tries. Thus more queries are put in subtrees of words occurring less frequently,
resulting in less lookups during filtering time. The algorithms using the irank
heuristic are PrefixTrie-irank and BestFitTrie-irank.

The probability that any word wi appears in an incoming document d is
defined to follow probability distribution D(wi), where 0 ≤ D(wi) ≤ 1. The
number of nodes N that will be examined within each trie depends on the
clustering heuristic and is equal to

N = D(w1)N1 + D(w2)N2 + · · · + D(w|V |)N|V |, (1)

where Ni is the number of nodes in the trie that have word wi as root node, and
|V | is the size of our vocabulary. The sum

N1 + N2 + · · · + N|V | (2)

is positive and it is always less than or equal to the number of words in the
query database.

From Equations (1) and (2) we can see that the number N of nodes exam-
ined is minimized if we assign more words to WD slots pointing to words (trie
roots) with smaller probability to appear in a document. Based on the above
observation, we created a modification of BestFitTrie, called LCWTrie (Least
Common Word Trie) by limiting BestFitTrie to consider only one candidate trie
during insertion: the one that has the least frequent word of the atomic query
as root. In this way, the atomic query can only be inserted in that trie (or that
trie will be created if it does not exist), while the remainder of the words of the
atomic query will be organized following the insertion algorithm of BestFitTrie
(this will give us the best organization considering only this trie instead of the
whole forest).

In Figure 13 we present the performance of PrefixTrie and BestFitTrie and
their ranking variations. We can see that using the rank heuristic the perfor-
mance of both algorithms deteriorates, due to the creation of large tries that
need bigger exploration time. We can also observe that the irank heuristic im-
proves the performance of both trie-based algorithms, with the greater effect
shown on PrefixTrie that becomes faster than BestFitTrie-irank. This improve-
ment in performance for both algorithms was expected as shown earlier in this
section.

Figure 14 presents the performance of the three faster algorithms, namely
PrefixTrie-irank, BestFitTrie-irank and LCWTrie. BestFitTrie-irank priori-
tizes clustering over frequency information by examining all candidate tries
and choosing the one that has the most common words. Word frequency in-
formation plays a secondary role, allowing the algorithm to choose between
tries with the same common words the trie that has the highest ranked word
as a root. On the other hand, PrefixTrie-irank and LCWTrie are designed to
show a preference in frequency information against clustering. Both algorithms

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:33

Fig. 13. Incorporating word frequency information into the trie-based algorithms, and its effect

in filtering time.

Fig. 14. Performance of LCWTrie in comparison to the two faster filtering algorithms.

examine exactly one candidate trie, that with the least frequent word as root.
Additionally, LCWTrie organizes the query within that trie in the best possible
way, taking into account common words between the queries already stored. In
contrast, PrefixTrie-irank does not take clustering into account. Consequently,
it stores the query according to frequency information only, that is the word
with the lowest rank goes deeper in the trie.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:34 • C. Tryfonopoulos et al.

Fig. 15. Memory requirements of ranking variations of BestFitTrie and PrefixTrie.

Our observations about the significance of frequency information pre-
sented in the beginning of the section are verified. From the experiments of
Figure 14, we see that LCWTrie performs similarly with PrefixTrie-irank, al-
though it presents a slight advantage for large query databases, due to the
clustering within the trie. Additionally, both algorithms outperform BestFitTrie
that owes its performance mainly to clustering, giving little consideration to fre-
quency information. Figure 15 shows the memory requirements of the different
algorithms for varying database sizes. The improvement in clustering using the
heuristics discussed here is obvious. All algorithms that exploit frequency in-
formation need less space to store the same number of queries compared to
PrefixTrie. This difference in storage requirements comes from the existence of
less redundant nodes.

6.7 Reorganization of Queries

In the experiments described in this section, we ran the algorithm BestFitTrie
against the reorganization algorithms Periodic and ReTrie.8 Notice that the
ranking counterparts of BestFitTrie presented earlier (namely BestFitTrie-
rank and -irank) are not suitable for comparing with our reorganization al-
gorithms, because of the non flexible way of clustering they use. The rank and
irank heuristic do not allow for many alternatives to cluster a set of words,
resulting in the inapplicability of the ReTrie algorithm. For the same rea-
sons, ReTrie cannot be used in conjunction with PrefixTrie. Thus, in this sec-
tion we study the effect of our reorganization strategies to the performance of
the algorithms at filtering time by comparing algorithms ReTrie, Periodic and
BestFitTrie.

8We remind the reader that Periodic and ReTrie, use BestFitTrie as their filtering component.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:35

Fig. 16. Filtering time for different clustering thresholds.

6.7.1 Varying the Clustering Threshold. In this experiment we wanted to
determine a baseline value for the clustering threshold c to be used in the
evaluation of ReTrie. To do so, we populated the query database db with 2.5
million queries and invoked ReTrie with different reorganization thresholds
ranging from 0 to 0.6 with an increase step of 0.1. For each reorganization
threshold, a different reorganized database db′ was created, since different sets
of words were chosen to be moved. Then, we randomly selected one hundred
documents from the NN corpus as incoming documents to be matched against
each one of the different databases. The average filtering time for each one of
the different clustering thresholds is shown in Figure 16. We observe that after
a threshold value of around 0.4, the filtering time shows a slight increase. As we
move to even higher values of c, the increase in filtering time is even sharper.
This can be explained as follows. At high values of c, sets of words with a high
clustering ratio are also moved. These sets usually contain words that are often
in user queries, and thus create subtries that store a large number of such sets.
Moving highly clustered queries results in the perturbation of large tries that
need to recluster, probably in a position with a lower clustering ratio. In this
way, by moving some already highly clustered queries to an even better position,
we disturb the clustering of many other queries that subsequently cluster at a
position with lower clustering ratio. Based on the results shown in Figure 16, we
chose 0.4 as the clustering threshold to be used in the subsequent experiments.

6.7.2 The Effect of Reorganization. The second experiment targets the ef-
fect of the two reorganization strategies we have implemented and compares
their performance against BestFitTrie. In this experiment we populated the
query database db with different numbers of queries (ranging from 500K
to 3M). We then used algorithms Periodic (with a reorganization period of
10K query insertions) and ReTrie (with clustering thresholds 0.4 and 0.6) to

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:36 • C. Tryfonopoulos et al.

Fig. 17. Performance of algorithm ReTrie for different clustering thresholds and sets of documents.

reorganize the queries stored in the database db. Subsequently, we chose two
document sets and used them as incoming documents to test the efficiency of
the BestFitTrie against the reorganization algorithms Periodic an ReTrie for
databases of different size.

The two different sets of documents we used, namely S1 and S2, were chosen
from the NN corpus and contained one hundred documents each. Set S1 was cho-
sen so as to contain many words that are also contained in the under-clustered
queries that algorithm ReTrie has chosen to move. This set is used to
demonstrate the performance gain of algorithm ReTrie at times where similar
documents arrive at high rates, for example, imagine a scenario where the above
algorithms are used in a news alert system and a sudden crisis occurs (e.g.,
an earthquake or terrorist act). Set S2 is a randomly chosen set of documents
from the NN corpus. This set is used to demonstrate the performance of the
algorithm in the standard setting used to conduct the rest of the experiments.

Figure 17 shows the performance of ReTrie for two clustering thresholds
(c = 0.4 and c = 0.6) in comparison with BestFitTrie and Periodic de-
scribed above. Initially one can observe that the results of the experiments in
Section 6.7.1 and also our choice of 0.4 as a value for c are verified. The filtering
performance of algorithm ReTrie for c = 0.6 is worse not only from its coun-
terpart with c = 0.4, but also from algorithm BestFitTrie. The reasons for this
are explained in the previous section. The performance of the algorithms is also
affected by the document set used as publications. We can see that ReTrie is
better than BestFitTrie in cases where many similar documents get published
during a short time interval, whereas the gain in filtering performance is small
when a random document set is used. This can be explained as follows. In the
case of random documents the improvement in clustering that is achieved by
ReTrie is not exploited since not many of the reclustered subtries are used,
due to the statistical properties of the document set (many diverse subjects,
larger vocabulary, etc.). On the other hand, in the case of similar documents, the

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:37

clustering improvement leads to a performance benefit since the optimized sub-
tries are used more often and lookups in OT(d) are reduced. In general, from
the set of experiments we conducted with document sets of different statistical
properties, we observed improvements in filtering performance ranging from
2% to 18% for clustering thresholds ranging from 0.1 to 0.4 respectively. The
time needed to reposition an underclustered set of words was similar to the
update time shown in the experiments of Section 6.5.

Algorithm Periodic is marginally faster than ReTrie for both document sets.
This is attributed to the periodic reorganization of the query database that
better exploits the clustering opportunities. The more frequent these database
reorganizations are, the higher the clustering achieved and the shorter the
filtering time. In the runs shown in Figure 17, the Periodic algorithm was ex-
ecuted every 10K query insertions. This marginal benefit (compared to the
performance of ReTrie with c = 0.4) comes at the cost of extra computational
effort imposed to the system. The table of Figure 17 compares the algorithms
in terms of computational effort to reorganize the query database. There, for
each algorithm, we measure the total time over all reorganizations needed to
move the queries to a better position. Contrary to ReTrie that chooses to reorga-
nize the database based on a clustering quality metric, Periodic is more active
and thus more computationally demanding, showing the tradeoff between the
two approaches. Notice that Periodic is less than 4% faster at filtering time (as
shown in the graph of Figure 17), while needing as much as 7 times more time
to reorganize the query database.

6.7.3 Memory Requirements. ReTrie needs about 22MB more memory
than the rest of the trie-based algorithms for a database of 3M queries (see
also Figure 9), due to the size of CA. This amount, although small compared
with today’s main memory capacities, is about one third of the total memory
requirements for the rest of the trie-based algorithms. This increase in mem-
ory usage is the cost for the faster database reorganization and filtering times
achieved by ReTrie. Therefore, the developer of an information filtering system
can choose between ReTrie or Periodic depending on resource availability and
which resource he wishes to optimize.

6.8 Performance with a Different Document Corpus

To assess the performance of the algorithms in a dataset that is wider and not
thematically focused, we repeated all the experiments presented in the previ-
ous sections with the .GOV corpus. The documents in this corpus are Web sites
crawled from the .gov domain in early 2002. The corpus contains around 1.25M
documents with an average document length of 974 words. Table V summarizes
some key characteristics of the corpus. Since no continuous queries were avail-
able for this document corpus, we used the methodology described in Section
6.1 to construct the query database. The experiments with the .GOV corpus
were conducted using the same machinery as before, to enable the comparison
across the different settings. In this section we summarize our observations
from the experimentation with this corpus and present the most interesting
graphs that show the performance of the algorithms under this new setting.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:38 • C. Tryfonopoulos et al.

Table V. Some Characteristics of the .GOV Corpus

Description Value

Number of documents 1,247,753

Document vocabulary size 9,946,052

Maximum document size (words) 26,789

Minimum word size (letters) 1

Maximum word size (letters) 42

The main assumption behind the clustering algorithms, is that the submit-
ted queries will present commonalities among the words they contain. These
commonalities are then exploited by the trie-based algorithms to allow clus-
tering of queries under their identifying subsets. The NN corpus used in the
previous experiments, was a focused dataset that contained documents about
the same topic (i.e., neural networks). This focus was naturally depicted in the
constructed queries, since they contained a lot of common words among them.
This offered a lot of clustering opportunities to the trie-based algorithms, and
showed their advantages and disadvantages in such a setting. Contrary to the
NN corpus of focused scientific papers, the .GOV corpus is comprised of docu-
ments crawled from the web with a wide variety of topics and thus a wider and
less focused vocabulary. This resulted in the construction of queries that did
not have a lot of common words among them, thus restricting the clustering op-
portunities of the trie-based algorithms. This diversity in topics (ranging from
security announcements and court decisions, to governmental laws and pages
with how-to instructions for governmental employees), vocabulary and corpus
size were the reasons for the selection of this corpus, which was meant to be a
stress test for the filtering performance of the proposed algorithms. To compare
the two corpora in terms of some quantitative characteristics one should refer
to Tables II and V.

Figure 18 shows the performance of the algorithms BF, SWIN, PrefixTrie
and BestFitTrie under different sizes of the query database. In this experiment
we randomly selected one hundred documents from the .GOV corpus and used
them as incoming documents in query databases of different sizes. The details of
the setting are summarized in the table of Figure 18. Similarly to the NN corpus
(Figure 7), the filtering time of all algorithms is linear to the database size, with
the trie-based algorithms being faster than BF and SWIN. Notice that, in this
setting, BestFitTrie is marginally better that PrefixTrie, even for large query
databases. This can be explained as follows. Due to the lack of focus in the
document corpus, and thus its large vocabulary, the constructed queries do not
have many words in common. This results in less clustering opportunities for
the queries, and thus in similar clustering performance for both PrefixTrie and
BestFitTrie. Finally notice that since the average document size in the .GOV
corpus is smaller compared to the NN corpus, the algorithms need less filtering
time per incoming document (compare the filtering times shown in Figure 18
with those of Figure 7).

Figure 19 presents the throughput of the different algorithms with respect
to the total input size. As we can observe, for small query databases the trie-
based algorithms achieve high throughput, which is naturally reduced as the

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:39

Fig. 18. Effect of the query database size in filtering time.

Fig. 19. Performance in terms of throughput for the algorithms of Section 4.

query database size increases. Additionally, for small query databases algo-
rithm PrefixTrie achieves higher throughput than BestFitTrie, while as the
database grows, BestFitTrie manages to exploit the opportunities for better
query clustering and improves over PrefixTrie, managing to achieve higher
throughput. Finally, in terms of memory consumption, our experiments with
the .GOV corpus showed that the behavior of all algorithms is similar to that ob-
served with the NN corpus, with the trie-based algorithms needing a constant
amount of extra space for their index structures compared to BF and SWIN.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:40 • C. Tryfonopoulos et al.

Fig. 20. Incorporating word frequency information into the trie-based algorithms, and its effect

in filtering time.

Figure 20 presents the filtering performance of the trie-based algorithms to-
gether with their ranking variations and LCWTrie for the .GOV corpus runs.
Again, for the reasons explained in detail in Section 6.6, using the rank heuristic
causes the filtering performance of both PrefixTrie and BestFitTrie to deteri-
orate. Similarly, using the irank heuristic improves the performance of both
trie-based algorithms as expected, since larger parts of the tries can be pruned
at filtering time. Notice that both PrefixTrie-irank and BestFitTrie-irank per-
form similarly in this set of experiments. This can be explained as follows.
Since the vocabulary used to construct the queries is large and varied, queries
do not present many clustering opportunities, since they do not contain many
words in common. This lack of clustering opportunities causes the two irank
variants of the trie-based algorithms to perform similarly, since the margin
for BestFitTrie-irank to further improve the clustering achieved by PrefixTrie-
irank is very small. Finally, notice that LCWTrie is the fastest of all ranked
alternatives, contrary to the NN corpus runs where it was only marginally
better (see Figure 14). This difference in the performance of LCWTrie is at-
tributed again to the lack of clustering opportunities for the indexed queries.
Since not many queries share the same words, clustering cannot achieve a big
improvement at filtering time. This gap is filled by LCWTrie, which exploits
the frequency information available and indexes the queries in the trie that
has as root the least frequent word in the query. This indexing scheme helps in
pruning a big number of tries, thus speeding up the filtering process.

To study the effect of our reorganization strategy we compared algorithm
ReTrie with algorithms Periodic and BestFitTrie. This set of experiments was
set up similarly to the one described in Section 6.7.2. We chose two sets of
documents from the .GOV corpus, containing one hundred documents each.
Set S1 was chosen so as to contain many words that are also contained in the

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:41

Fig. 21. Performance of algorithm ReTrie for different clustering thresholds and sets of documents.

under-clustered queries, where set S2 consisted of randomly chosen documents
from the .GOV corpus. The first set intended to demonstrate the performance
gain of ReTrie in settings where similar documents arrive at high rates, whereas
the second set was representative of the standard setting used in the rest of the
experiments.

Figure 21 shows the performance of the filtering algorithms for different
database sizes, and for the two documents sets described above. Notice that for
both document sets the Periodic algorithm is the fastest. This was expected,
since this periodic query reorganization exploits well all clustering opportuni-
ties and manages to organize similar queries together. However, this comes at
a high computational cost, since the complete query database is reorganized
every 10K query insertions (for the experiments conducted here algorithm Pe-
riodic reorganized the query database 300 times). On the other hand, algorithm
ReTrie is slightly slower than Periodic, but manages to achieve fast filter-
ing times by resorting on the clustering quality metrics defined in Section 5
and avoiding expensive periodic database reorganizations (see the table of
Figure 21). The computational cost for Periodic comes from the frequent re-
organization of the database, contrary to ReTrie that chooses to reorganize
only those queries that are not sufficiently clustered. Finally, notice that the
difference in the filtering performance of Periodic and ReTrie is higher for docu-
ment set S1. This was expected, since the incoming documents where chosen to
contain many words from the underclustered queries. Thus, achieving a better
indexing for these queries is expected to improve the filtering performance of
Periodic over ReTrie. Similarly, on set S2, which is chosen to fit our standard
document setting, the difference between the two algorithms is smaller.

6.9 Summary of Results

The experiments conducted in this section demonstrate the strengths and weak-
nesses of all algorithms. When no frequency information of word occurrences

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:42 • C. Tryfonopoulos et al.

in documents is available, BestFitTrie performs as much as 20% faster than
prior work in the literature (achieving also a higher throughput rate). Addition-
ally, BestFitTrie remains relatively unaffected to the increase in document size,
compared to the rest of the algorithms. This improvement comes at the cost of a
small constant increase in storage cost compared to brute force approach, and
a small increase in query insertion time, which is a standard tradeoff in such
a setting. Additionally BestFitTrie presents a sensitivity in the increase of the
matching percentage, compared to the rest of the algorithms, but experiments
show that it remains faster despite this increase.

When word frequency information is available, variations of the original
algorithms (namely BestFitTrie-irank and PrefixTrie-irank) are reported to
perform faster. A new algorithm introduced, called LCWTrie, performs slightly
better that the previous algorithms, with no extra storage cost associated. When
utilizing a wider and more varied corpus that does not contain many similar
queries, then LCWTrie performs even better by exploiting the word frequency
information. Finally, algorithm ReTrie extends the proposed algorithms by re-
sorting in a clustering quality metric, and reorganizing the query database
when this metric drops below a threshold. While the rest of the algorithms
give a greedy, static solution to the problem of query database organization,
ReTrie considers the reorganization of the database to achieve better perfor-
mance at filtering time. Experiments show that the parameters regulating this
reorganization process (e.g., the clustering threshold) should be carefully tuned
and tailored to the needs of the specific scenario. Should this be done, further
improvements of around 15% compared to BestFitTrie are reported.

7. CONCLUSIONS AND OUTLOOK

In the last years, main memory has become competitive in price with the disk
storage of a few years ago. Multi-gigabyte main memories have become easily
affordable and expandable, allowing applications with as much as 1 or 2 GB of
data in main memory to be built with relatively inexpensive systems. In this
work we have presented efficient main-memory algorithms suitable for large
scale information filtering with queries supporting Boolean and proximity op-
erations on attribute values. Indexing millions of users queries requires only a
few hundred megabytes, allowing us to store up to twenty to thirty million user
queries on a single off-the-shelf machine. Additionally, extensive experimental
evaluation shows that our algorithms are able to filter incoming documents
up to 20% faster compared to known alternatives in the literature. In scenarios
where word frequency information can be collected, variations of the original al-
gorithm can exploit it to speed up filtering. Finally, since all proposed algorithms
utilize a heuristic solution to query clustering, variations that reorganizes the
query database when query clustering degrades has been proposed.

In the future, we plan to extend our work on the problem of reorganizing
the query database to identify alternative criteria that will reflect the clus-
tering quality achieved and trigger the reorganization process. Additionally,
we would like to use the lessons learned in this work to extend our approach
to richer data models and more expressive query languages. Our goal is to

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:43

look into information filtering with data models based on XML and queries
based on XQuery/XPath with IR features (phrases, word proximity, similarity
etc.) [Amer-Yahia et al. 2004; Chinenyanga and Kushmerick 2001; Fuhr and
Großjohann 2004; Theobald and Weikum 2000].

ACKNOWLEDGMENTS

We would like to thank Evangelos E. Milios and his group at Dalhousie Univer-
sity for providing us the original Neural Network Corpus. Special thanks go to
Theodoros Koutris and Paraskevi Raftopoulou for their help in the processing
of the corpus and for reading previous versions of this article and providing
useful comments on it.

REFERENCES

AEKATERINIDIS, I. AND TRIANTAFILLOU, P. 2005. Internet scale string attribute publish/subscribe

data networks. In Proceedings of the ACM 14th Conference on Information and Knowledge Man-
agement (CIKM05).

AGUILERA, M. K., STROM, R. E., STURMAN, D., ASTLEY, M., AND CHANDRA, T. 1999. Matching events

in a content-based subscription system. In Proceedings of the 18th Annual ACM Symposium on
Principles of Distributed Computing (PODC’99). ACM, New York, 53–62.

AHO, A., HOPCROFT, J., AND ULLMAN, J. 1983. Data Structures and Algorithms. Addison- Wesley,

Reading, MA.

AHO, A. V., SETHI, R., AND ULLMAN, J. 1986. Compilers, Principles, Techniques, and Tools. Addison-

Wesley, Reading, MA.

ALTINEL, M., AKSOY, D., BABY, T., FRANKLIN, M., SHAPIRO, W., AND ZDONIK, S. 1999. DBIS-toolkit:

Adaptable middleware for large-scale data delivery. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data.

ALTINEL, M. AND FRANKLIN, M. 2000. Efficient filtering of XML documents for selective dissemi-

nation of information. In Proceedings of the 26th VLDB Conference.

AMER-YAHIA, S., BOTEV, C., AND SHANMUGASUNDARAM, J. 2004. TeXQuery: A full-text search exten-

sion to Query. In Proceedings of WWW. ACM Press, 583–594.

AOE, J.-I., MORIMOTO, K., AND SATO, T. 1992. An efficient implementation of trie structures. Softw.—
Pract. Exper. 22, 9, 695–721.

BAEZA-YATES, R. AND GONNET, G. 1996. Fast text searching for regular expressions or automaton

simulation on tries. J. ACM 43, 6, 915–936.

BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison Wesley, Read-

ing, MA.

BELKIN, N. AND CROFT, W. 1992. Information filtering and information retrieval: Two sides of the

same coin? Comm. ACM 35, 12, 29–38.

BELL, T., CLEARY, J., AND WITTEN, I. 1990. Text Compression. Prentice-Hall publishers.

BELL, T. AND MOFFAT, A. 1996. The design of a high performance information filtering system. In

Proceedings of the ACM SIGIR. 12–20.

BHARAMBE, A., AGRAWAL, M., AND SESHAN, S. 2004. Mercury: Supporting scalable multi-attribute

range queries. In Proceedings of SIGCOMM. Portland, Oregon, USA.

BHARAMBE, A., RAO, S., AND SESHAN, S. 2002. Mercury: A scalable publish-subscribe system for

Internet games. In Proceedings of the 1st International Workshop on Network and System Support
for Games (Netgames). Braunchweig, Germany.

CALLAN, J. 1996. Document filtering with inference networks. In Proceedings of the ACM SIGIR.

CALLAN, J. 1998. Learning while filtering focuments. In Proceedings of the ACM SIGIR. 224–

231.

CALLAN, J., CROFT, W., AND HARDING, S. 1992. The INQUERY retrieval system. In Proceedings of
the 3rd International Conference on Database and Expert Systems Applications. Springer-Verlag,

78–83.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:44 • C. Tryfonopoulos et al.

CAMPAILLA, A., CHAKI, S., CLARKE, E., JHA, S., AND VEITH, H. 2001. Efficient filtering in publish

subscribe systems using binary decision diagrams. In Proceedings of the 23rd International Con-
ference on Software Engeneering (ICSE’01). IEEE Computer Society, 443–452.

CARZANIGA, A., ROSENBLUM, D.-S., AND WOLF, A. 2001. Design and evaluation of a wide-area event

notification service. ACM Trans. Comput. Syst. 19, 3, 332–383.

CARZANIGA, A., ROSENBLUM, D. S., AND WOLF, A. L. 2000. Achieving scalability and expressiveness

in an internet-scale event notification service. In Proceedings of the 19th ACM Symposium on
Principles of Distributed Computing (PODC’00). 219–227.

CHAN, C.-Y., FELBER, P., GAROFALAKIS, M., AND RASTOGI, R. 2002. Efficient filtering of XML docu-

ments with XPath expressions. In Proceedings of ICDE. 235–244.

CHANG, C.-C. 2001. Query and data mapping across heterogeneous information sources. Ph.D.

thesis, Stanford University.

CHANG, C.-C., GARCIA-MOLINA, H., AND PAEPCKE, A. 1996. Boolean query mapping across heteroge-

neous information sources. IEEE Trans. Knowl. Data Eng. 8, 4, 515–521.

CHANG, C.-C. K., GARCIA-MOLINA, H., AND PAEPCKE, A. 1999. Predicate rewriting for translating

Boolean queries in a heterogeneous information system. ACM Trans. Inform. Syst. 17, 1, 1–

39.

CHINENYANGA, T. T. AND KUSHMERICK, N. 2001. Expressive retrieval from XML documents. In Pro-
ceedings of SIGIR’01.

COHEN, W. W. 2000. WHIRL: A word-based information representation language. Artif. In-
tell. 118, 1-2, 163–196.

COMER, D. 1981. Analysis of a heuristic for trie minimization. ACM Trans. Datab. Syst. 6, 3,

513–537.

COMER, D. AND SETHI, R. 1977. The complexity of trie index construction. J. ACM 24, 3, 428–440.

CRESPO, A. AND GARCIA-MOLINA, H. 2002. Routing indices for peer-to-peer systems. In ICDCS.

DE LA BRIANDAIS, R. 1959. File searching using variable length keys. In Proceedings of the Western
Joint Computer Conference. 295–298.

DENNING, P. 1982. Electronic junk. Comm. ACM 25, 3, 163–165.

DEVROYE, L. 1992. A study of trie-like structures under the density model. Annals Appl. Prob. 2, 2,

402–434.

DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L. D., STONEBRAKER, M. R., AND WOOD, D. 1984. Imple-

mentation techniques for main memory database systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 92–95.

DIAO, Y., ALTINEL, M., FRANKLIN, M., ZHANG, H., AND FISCHER, P. 2003. Path sharing and predicate

evaluation for high-performance XML filtering. ACM Trans. Datab. Syst.
DONG, L. 2002. Automatic term extraction and similarity assessment in a domain specific doc-

ument corpus. M.S. thesis, Department of Computer Science, Dalhousie University, Halifax,

Canada.

FABRET, F., JACOBSEN, H. A., LLIRBAT, F., PEREIRA, J., ROSS, K. A., AND SHASHA, D. 2001. Filtering

algorithms and implementation for very fast publish/subscribe systems. In Proceedings of ACM
SIGMOD.

FLAJOLET, P. 1983. On the performance evaluation of extendible hashing and trie searching. Acta
Informatica 20, 345–369.

FLAJOLET, P. AND PUECH, C. 1986. Partial match retrieval of multidimensional data. J. ACM 33, 2,

371–407.

FOLTZ, P. AND DUMAIS, S. 1992. Personalized information delivery: An analysis of information

filtering methods. Comm. ACM 35, 12, 51–60.

FRANKLIN, M. AND ZDONIK, S. 1998. “Data in Your Face”: Push technology in perspective. SIGMOD
Record (ACM Special Interest Group on Management of Data) 27, 2, 516–519.

FRANTZI, K., ANANIADOU, S., AND MIMA, H. 2000. Automatic recognition of multiword terms:the

c-value/nc-value method. JODL 5, 2.

FREDKIN, E. 1960. Trie memory. Comm. ACM 3, 9, 490–499.

FUHR, N. AND GROSJOHANN, K. 2004. XIRQL: An XML query language based on information re-

trieval concepts. ACM Trans. Inform. Syst. 22, 2, 313–356.

GARCIA-MOLINA, H. AND SALEM, K. 1992. Main memory database systems: An overview. IEEE
Trans. Knowl. Data Eng. 4, 6, 509.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:45

GEDIK, B. AND LIU, L. 2003. PeerCQ: A decentralized and self-configuring peer-to-peer informa-

tion monitoring system. In Proceedings of the the 23rd International Conference on Distributed
Computing Systems.

GREEN, T. J., MIKLAU, G., ONIZUKA, M., AND SUCIU, D. 2003. Processing XML streams with de-

terministic automata. In Proceedings of the International Conference on Database Technology.

173–189.

GUPTA, A., SAHIN, O. D., AGRAWAL, D., AND ABBADI, A. E. 2004. Meghdoot: Content-based publish/

subscribe over P2P networks. In Proceedings of ACM/IFIP/USENIX 5th International Middle-
ware Conference.

HULL, D., PEDERSEN, J., AND SCHÜTZE, H. 1996. Method combination for document filtering. In

Proceedings of the ACM SIGIR. 279–287.

IDREOS, S., KOUBARAKIS, M., AND TRYFONOPOULOS, C. 2004a. P2P-DIET: An extensible P2P service

that unifies ad-hoc and continuous querying in super-peer networks. In Proceedings of the ACM
SIGMOD Conference. 933–934.

IDREOS, S., KOUBARAKIS, M., AND TRYFONOPOULOS, C. 2004b. P2P-DIET: One-time and continuous

queries in super-peer networks. In Proceedings of the 9th International Conference on Extending
Database Technology (EDBT). 851–853.

JACQUET, P. AND SZPANKOWSKI, W. 1991. Analysis of digital tries with Markovian dependency. IEEE
Trans. Inform. Theor. 37, 5, 1470–1475.

KARGER, D., LEHMAN, E., LEIGHTON, T., LEVINE, M., LEWIN, D., AND PANIGRAHY, R. 1997. Consistent

hashing and random trees: Distributed caching protocols for relieving hot spots on the World Wide

Web. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing. 654–663.

KNUTH, D. 1973a. The Art of Computer Programming. Vol. 3: Sorting and Searching. Addison-

Wesley, Reading, MA.

KNUTH, D. 1973b. The Art of Computer Programming. Vol. 1: Fundamental Algorithms. Addison-

Wesley, Reading, MA.

KOUBARAKIS, M., KOUTRIS, T., TRYFONOPOULOS, C., AND RAFTOPOULOU, P. 2002. Information alert in

distributed digital libraries: The models, languages, and architecture of DIAS. In Proceedings of
the 6th European Conference on Research and Advanced Technology for Digital Libraries (ECDL).
527–542.

KOUBARAKIS, M., SKIADOPOULOS, S., AND TRYFONOPOULOS, C. 2006. Logic and computational com-

plexity for Boolean information retrieval. IEEE Trans. Knowl. Data Eng. 18, 12, 1659–1666.

KOUBARAKIS, M., TRYFONOPOULOS, C., IDREOS, S., AND DROUGAS, Y. 2003. Selective information dis-

semination in P2P networks: Problems and solutions. SIGMOD Record, Special Issue on Peer-to-
Peer Data Management 32, 3, 71–76.

KOUBARAKIS, M., TRYFONOPOULOS, C., RAFTOPOULOU, P., AND KOUTRIS, T. 2002. Data models and lan-

guages for agent-based textual information dissemination. In Proceedings of the 6th International
Workshop on Cooperative Information Agents (CIA). Lecture Notes in Artificial Intelligence, vol.

2446. Springer, 179–193.

LUHN, H. 1958. A business intelligence system. IBM J. Reasear. Devel. 2, 4, 314–319.

MILIOS, E., ZHANG, Y., HE, B., AND DONG, L. 2003. Automatic term extraction and document sim-

ilarity in special text corpora. In Proceedings of the 6th Conference of the Pacific Association for
Computational Linguistics (PACLing). 275–284.

MORITA, M. AND SHINODA, Y. 1994. Information filtering based on user behaviour analysis and

best match text retrieval. In Proceedings of the ACM SIGIR. 272–281.

NAVARRO, G. AND BAEZA-YATES, R. 1997. Proximal nodes: A model to query document databases by

content and structure. ACM Trans. Inform. Syst. 15, 4, 400–435.

NGUYEN, B., ABITEBOUL, S., G.COBENA, AND PREDA, M. 2001. Monitoring XML data on the Web. In

Proceedings of the ACM SIGMOD Conference. Santa Barbara, CA, USA.

NILSSON, S. AND KARLSSON, G. 1999. IP-address lookup using LC-tries. IEEE J. Select. Areas
Comm. 17, 6, 1083–1092.

PETERSON, J. 1980. Computer programs for detecting and correcting spelling errors. Comm.
ACM 23, 12, 676–686.

PFEIFER, U., FUHR, N., AND HUYNH, T. 1995. Searching structured documents with the enhanced

retrieval functionality of freeWAIS-sf and SFgate. Comput. Netw. ISDN Syst. 27, 6, 1027–

1036.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

10:46 • C. Tryfonopoulos et al.

PIETZUCH, P. AND BACON, J. 2002. Hermes: A distributed event-based middleware architecture. In

Proceedings of the 1st International Workshop on Distributed Event-Based Systems (DEBS’02).
RAFTOPOULOU, P., PETRAKIS, E. G., TRYFONOPOULOS, C., AND WEIKUM, G. 2008. Information retrieval

and filtering over self-organising digital libraries. In Proceedings of the 12th European Conference
on Research and Advanced Technology for Digital Libraries (ECDL).

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SHENKER, S. 2001. A scalable content-

addressable network. In Proceedings of the ACM SIGCOMM Conference.

REGNIER, M. AND JACQUET, P. 1989. New results on the size of tries. IEEE Trans. Inform.
Theor. 35, 1, 203–205.

RIVEST, R. L. 1976. Partial-match retrieval algorithms. SIAM J. Comput. 5, 1, 19–50.

ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry: Scalable, distributed object location and routing

for large-scale- peer-to-peer storage utility. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Paltforms (Middleware’01).

ROWSTRON, A., KERMARREC, A.-M., CASTRO, M., AND DRUSCHEL, P. 2001. Scribe: The design of a

large-scale event notification infrastructure. In Proceedings of the 3rd International COST264
Workshop, J. Crowcroft and M. Hofmann, Eds.

SEVERANCE, C. AND PRAMANIK, S. 1990. Distributed linear hashing for main memory databases. In

Proceedings of the International Conference on Parallel Processing. 92–95.

STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M., AND BALAKRISHNAN, H. 2001. Chord: A scalable

peer-to-peer lookup service for Internet applications. In Proceedings of the ACM SIGCOMM
Conference.

SUSSENGUTH, E. 1963. Use of tree structures for processing files. Comm. ACM 6, 5, 272–279.

TAM, D., AZIMI, R., AND JACOBSEN, H.-A. 2003. Building content-based publish/subscribe systems

with distributed hash tables. In Proceedings of the 1st International Workshop On Databases,
Information Systems and Peer-to-Peer Computing.

TANG, C. AND XU, Z. 2003. pFilter: Global information filtering and dissemination using structured

overlays. In FTDCS.

TERPSTRA, W., BEHNEL, S., FIEGE, L., ZEIDLER, A., AND BUCHMANN, A. 2003. A peer-to-peer approach to

content-based publish/subscribe. In Proceedings of the 2nd International Workshop on Distributed
Event-Based Systems (DEBS’03).

THEOBALD, A. AND WEIKUM, G. 2000. Adding relevance to XML. In WebDB (Selected Papers). 105–

124.

THEOBALD, M., SCHENKEL, R., AND WEIKUM, G. 2005. An efficient and versatile query engine for TopX

search. In Proceedings of the 31st International Conference on Very Large Databases (VLDB).
TRYFONOPOULOS, C., IDREOS, S., AND KOUBARAKIS, M. 2005a. LibraRing: An architecture for dis-

tributed digital libraries based on DHTs. In Proceedings of the 9th European Conference on
Research and Advanced Technology for Digital Libraries (ECDL). 25–36.

TRYFONOPOULOS, C., IDREOS, S., AND KOUBARAKIS, M. 2005b. Publish/subscribe functionality in IR

environments using structured overlay networks. In Proceedings of the 28th Annual International
ACM SIGIR Conference. 322–329.

TRYFONOPOULOS, C. AND KOUBARAKIS, M. 2002. Selective dissemination of information in P2P

systems: Data models, query languages, algorithms and computational complexity. Tech. Rep.

TR-ISL-02-2003, Department of Electronic and Computer Engineering, Technical University of

Crete.

TRYFONOPOULOS, C., KOUBARAKIS, M., AND DROUGAS, Y. 2004. Filtering algorithms for information

retrieval models with named attributes and proximity operators. In Proceedings of the 27th
Annual International ACM SIGIR Conference. 313–320.

TRYFONOPOULOS, C., ZIMMER, C., KOUBARAKIS, M., AND WEIKUM, G. 2007. Architectural alternatives

for information filtering in structured overlay networks. IEEE Intern. Comput. 11, 4, 24–34.

YAN, T. AND GARCIA-MOLINA, H. 1994a. Index structures for information filtering under the vec-

tor space model. Proceedings of the 10th International Conference on Data Engineering, 337–

347.

YAN, T. AND GARCIA-MOLINA, H. 1994b. Index structures for selective dissemination of information

under the Boolean model. ACM Trans. Datab. Syst. 19, 2, 332–364.

YAN, T. AND GARCIA-MOLINA, H. 1999. The SIFT information dissemination system. ACM Trans.
Datab. Syst.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

Information Filtering and Query Indexing for an Information Retrieval Model • 10:47

YANG, B. AND GARCIA-MOLINA, H. 2003. Designing a super-peer network. In Proceedings of the 19th
International Conference on Data Engineering (ICDE’03).

YOCHUM, J. A. 1985. A high-speed text scanning algorithm utilising least frequent trigraphs. In

Proceedings of the IEEE Symposium on New Directions in Computing.

ZHANG, Y. AND CALLAN, J. 2001. Maximum likelihood estimation for filtering thresholds. In Pro-
ceedings of the ACM SIGIR.

ZIMMER, C., TRYFONOPOULOS, C., BERBERICH, K., KOUBARAKIS, M., AND WEIKUM, G. 2008. Approximate

information filtering in peer-to-peer networks. In Proceedings of the 9th Web Information Systems
Engineering (WISE) Conference.

ZIMMER, C., TRYFONOPOULOS, C., AND WEIKUM, G. 2007. MinervaDL: An architecture for informa-

tion retrieval and filtering in distributed digital libraries. In Proceedings of the 11th European
Conference on Research and Advanced Technology for Digital Libraries (ECDL). 148–160.

ZIMMER, C., TRYFONOPOULOS, C., AND WEIKUM, G. 2008. Exploiting correlated keywords to improve

approximate information filtering. In Proceedings of the 31st Annual International ACM SIGIR
Conference.

Received February 2006; revised July 2007; accepted June 2008

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 10, Publication date: February 2009.

