
Evaluating Conjunctive Triple Pattern Queries
over Large Structured Overlay Networks?

Erietta Liarou1, Stratos Idreos2, and Manolis Koubarakis3

1 Technical University of Crete, Chania, Greece
2 CWI, Amsterdam, The Netherlands

3 National and Kapodistrian University of Athens, Athens, Greece

Abstract. We study the problem of evaluating conjunctive queries com-
posed of triple patterns over RDF data stored in distributed hash tables.
Our goal is to develop algorithms that scale to large amounts of RDF
data, distribute the query processing load evenly and incur little network
traffic. We present and evaluate two novel query processing algorithms
with these possibly conflicting goals in mind. We discuss the various
tradeoffs that occur in our setting through a detailed experimental eval-
uation of the proposed algorithms.

1 Introduction

Research at the frontiers of P2P networks and Semantic Web has recently re-
ceived a lot of interest [23]. One of the most interesting open problems in this
area is how to evaluate queries expressed in Semantic Web query languages (e.g.,
RDQL [22], RQL [17], SPARQL [21] or OWL-QL [10]) on top of P2P networks
[9, 4, 19, 20, 25, 18].

In this paper we study the problem of evaluating conjunctive queries com-
posed of triple patterns on top of RDF data stored in distributed hash tables.
Distributed hash tables (DHTs) are an important class of P2P networks that of-
fer distributed hash table functionality, and allow one to develop scalable, robust
and fault-tolerant distributed applications [2]. DHTs have recently been used for
the distributed storage and retrieval of various kinds of data e.g., relational [12,
14], textual [27], RDF [9] etc. Conjunctions of triple patterns are core constructs
of some RDF query languages (e.g., RDQL [22] and SPARQL [21]) and used
implicitly in all others (e.g., in the generalized path expressions of RQL [17]).

The contributions of this paper are the following. We present two novel algo-
rithms for the evaluation of conjunctive RDF queries composed of triple patterns
on top of the distributed hash table Chord [24]. This has been an open prob-
lem since the proposal of RDFPeers [9] where only atomic triple patterns and
conjunctions of triple patterns with the same variable or constant subject and
possibly different constant predicates have been studied. Extending these query
classes considered by RDFPeers to full conjunctive queries is an important issue
if we want to deal effectively with the full functionality of existing RDF query
? This work was supported in part by the European Commission project Ontogrid

(http://www.ontogrid.net/).



languages [22, 17, 21]. But notice that the resulting query class is more chal-
lenging than the ones considered in RDFPeers. In the terminology of relational
databases: we now have to deal with arbitrary selections, projections and joins
on a virtual ternary relation consisting of all triples.

The focus of our work is on the experimental evaluation of the proposed
algorithms. We concentrate on three parameters that are critical in a distributed
setting: amount of data stored in the network, load distribution and generated
network traffic. Our algorithms are designed so that they involve in the query
evaluation as many network nodes as possible, store as little date in the network
as possible, and minimize the amount of network traffic they create. Trying to
achieve all of these goals involves a tradeoff, and we demonstrate how we can
sacrifice good load distribution to keep data storage and network traffic low and
vice versa.

The rest of the paper is organized as follows. Section 2 presents a synopsis
of the underlying assumptions regarding network architecture, data model and
query language. Sections 3 and 4 present the alternative data indexing and query
processing algorithms. Then, in Section 5, we present an optimization to further
reduce the network traffic generated by the algorithms. In Section 6, we show a
detailed experimental evaluation and comparison of our algorithms under various
parameters that affect performance. Finally, Section 7 discusses related work,
and Section 8 presents conclusions and future work directions.

2 System model and data model

System model. We assume an overlay network where all nodes are equal, they
run the same software and have the same rights and responsibilities. Each node
n has a unique key (e.g., its public key), denoted by key(n). Nodes are orga-
nized according to the Chord protocol [24] and are assumed to have synchronized
clocks. This property is necessary for the time semantics we describe later on in
this section. In practice, nodes will run a protocol such as NTP and achieve ac-
curacies within few milliseconds [6]. Each data item i has a unique key, denoted
by key(i). Chord uses consistent hashing to map keys to identifiers. Each node
and item is assigned an m-bit identifier, that should be large enough to avoid
collisions. A cryptographic hash function, such as SHA-1 or MD5 is used: func-
tion Hash(k) returns the m-bit identifier of key k. The identifier of a node n is
denoted as id(n) and is computed by id(n) = Hash(key(n)). Similarly, the iden-
tifier of an item i is denoted by id(i) and is computed by id(i) = Hash(key(i)).
Identifiers are ordered in an identifier circle (ring) modulo 2m, i.e., from 0 to
2m − 1. Key k is assigned to the first node which is equal or follows Hash(k)
clockwise in the identifier space. This node is called the successor node of iden-
tifier Hash(k) and is denoted by Successor(Hash(k)). We will often say that
this node is responsible for key k. A query for locating the node responsible for
a key k can be done in O(log N) steps with high probability [24], where N is the
number of nodes in the network. Chord is described in more detail in [24].

The algorithms we describe in this paper use the API defined in [26, 14, 13].
This API provides two functionalities not given by the standard DHT protocols:



(i) send a message to multiple nodes (multicast) and (ii) send d messages to
d nodes where each node receives exactly one of these messages (this can be
thought of as a variation of the multicast operation). Let us now briefly describe
this API. Function send(msg, id), where msg is a message and id is an identifier,
delivers msg from any node to node Successor(id) in O(log N) hops. Function
multiSend(msg, I), where I is a set of d > 1 identifiers I1, ..., Id, delivers msg to
nodes n1, n2, ..., nd such that nj = Successor(Ij), where 1 < j ≤ d. This happens
in O(d log N) hops. Function multiSend() can also be used as multiSend(M, I),
where M is a set of d messages and I is a set of d identifiers. In this case, for
each Ij , message Mj is delivered to Successor(Ij) in O(d log N) hops in total.
A detailed description and evaluation of alternative ways to implement this API
can be found in [13].

Data model. In the application scenarios we target, each network node is
able to describe in RDF the resources that it wants to make available to the rest
of the network, by creating and inserting metadata in the form of RDF triples.
In addition, each node can submit queries that describe information that this
node wants to receive all possible answers that are available at this time. We
use a very simple concept of schema equivalent to the notion of a namespace.
Thus, we do not deal with RDFS and the associated reasoning about classes
and instances. Different schemas can co-exist but we do not support schema
mappings. Each node uses some of the available schemas for its descriptions and
queries.

We will use the standard RDF concept of a triple4. Let D be a countably infi-
nite set of URIs and RDF literals. A triple is used to represent a statement about
the application domain and is a formula of the form (subject, predicate, object).
The subject of a triple identifies the resource that the statement is about, the
predicate identifies a property or a characteristic of the subject, while the object
identifies the value of the property. The subject and predicate parts of a triple
are URIs from D, while the object is a URI or a literal from D. For a triple t,
we will use subj(t), pred(t) and obj(t) to denote the string value of the subject,
the predicate and the object of t respectively.

As in RDQL [22], a triple pattern is an expression of the form (s, p, o) where s
and p are URIs or variables, and o is a URI, a literal or a variable. A conjunctive
query q is a formula

?x1, . . . , ?xn : (s1, p1, o1) ∧ (s2, p2, o2) ∧ · · · ∧ (sn, pn, on)

where ?x1, . . . , ?xn are variables, each (si, pi, oi) is a triple pattern, and each
variable ?xi appears in at least one triple pattern (si, pi, oi). Variables will always
start with the ’?’ character. Variables ?x1, . . . , ?xn will be called answer variables
when we want to distinguish them from other variables of the query. A query
will be called atomic if it consists of a single conjunct.

Let us now define the concept of valuation (so we can talk about values that
satisfy a query). Let V be a finite set of variables. A valuation v over V is a total
function v from V to the set D. In the natural way, we extend a valuation v to be
identity on D and to map triple patterns (si, pi, oi) to triples, and conjunctions
of triple patterns to conjunctions of triple patterns.
4 http://www.w3.org/RDF/



We will find it useful to use various concepts from relational database theory
in the presentation of our work. In particular, the operations of the relational
algebra utilized in algorithm QC below follow the unnamed perspective of the
relational model (i.e., tuples are elements of Cartesian products and co-ordinate
numbers are used instead of attribute names) [5].

An RDF database is a set of triples. Let DB be an RDF database and q a
conjunctive query q1 ∧ · · · ∧ qn where each qi is a triple pattern. The answer
to q over database DB consists of all n-tuples (v(?x1), . . . , v(?xn)) where v is a
valuation over the set of variables of q and v(qi) ∈ DB for each i = 1, . . . , n.

In the algorithms we will describe below, each query q has a unique key,
denoted by key(q), that is created by concatenating an increasing number to the
key of the node that posed q.

3 The QC algorithm

Let us now describe our first query processing algorithm, the query chain algo-
rithm (QC). The main characteristic of QC is that the query is evaluated by a
chain of nodes. Intermediate results flow through the nodes of this chain and
finally the last node in the chain delivers the result back to the node that sub-
mitted the query. We will first describe how triples are stored in the network
and then how an incoming query is evaluated by QC.

Indexing a new triple. Assume a node x that wants to make a resource
available to the rest of the network. Node x creates an RDF description d that
characterizes this resource and publishes it. Since, we are not interested in a
centralized solution, we do not store the whole description d to a single node.
Instead, we choose to split d into triples and disperse it in the network, trying to
distribute responsibility of storing descriptions and answering future conjunctive
queries to several nodes. Each triple is handled separately and is indexed to
three nodes. Let us explain the exact details for a triple t = (s, p, o). Node x
computes the index identifiers of t as follows: I1 = Hash(s), I2 = Hash(p) and
I3 = Hash(o). These identifiers are used to locate the nodes r1, r2 and r3, that
will store t. In Chord terminology, these nodes are the successors of the relevant
identifiers, e.g., r1 = Successor(I1). Then, x uses the multiSend() function to
index t to these 3 nodes. Each node that receives a triple t stores it in its local
triple table TT . In the discussion below, TT will be formally treated as a ternary
relation (in the sense of the relational model).

Evaluating a query. Assume a node x that poses a conjunctive query
q which consists of triple patterns q1, . . . , qk. Each triple pattern of q will be
evaluated by a (possibly) different node; these nodes form the query chain for
q. The order we use to evaluate the different triple patterns is crucial and we
discuss the issues involved later on. Now, for simplicity, we assume that we first
evaluate the first triple pattern, then the second and so on.

Query evaluation proceeds as follows. Node x determines the node that will
evaluate triple pattern q1 by using one of the constants in q1. For example, if
q1 = (?s1, p1, ?o1) then x computes identifier I1 = Hash(pred(qj)) since the
predicate part is the only constant part of qj . This identifier is used to locate the



node r1 (the successor of I1) that may have triples that satisfy q1, since according
to the way we index triples, all triples that have pred(qj) as their predicate will
be stored in rj . Thus, n sends the message QEval(q, i, R, IP (x)) to node r1

where q is the query, i is the index of the triple pattern to be evaluated by node
r1, IP (x) is the IP address of node x that posed the query, and R is the relation
that will be used to accumulate triples that are intermediate results towards the
computation of the answer to q. In this call, R receives its initial value (formally,
the trivial relation {()} i.e., the relation that consists of an empty tuple over an
empty set of attributes).

In case that q1 has multiple constants, x will heuristically prefer to use first
the subject, then the object and finally the predicate to determine the node
that will evaluate q1. Intuitively, there will be more distinct subject or object
values than distinct predicates values in an instance of a given schema. Thus,
our decision help us to achieve a better distribution of the query processing load.

Local processing at each chain node. Assume now that a node n re-
ceives a message QEval(q, i, R, IP (x)). First, n evaluates the i-th triple pattern
of q using its local triple table i.e., it computes the relation L = πX(σF (TT ))
where F is a selection condition and X is a (possibly empty) list of natural
numbers between 1 and 3. F and X are formed in the natural way by tak-
ing into account the constants and variables of qi e.g., if qi is (?si, pi, oi) then
L = π1(σ2=pi∧3=oi

(TT )). Then, n computes a new relation with intermediate
results R′ = πY (R on L) where Y is the (possibly empty) list of positive integers
identifying columns of R and L that correspond to answer variables or variables
with values that are needed in the rest of the query evaluation (i.e., variables
appearing in a triple pattern qj of q such that j > i). Note that the special case
of i = 1 (when R′ = πY (L)) is covered by the above formula for R′, given the
initial value {()} of R. If R′ is not the empty relation then n creates a message
QEval(q, i + 1, R′, IP (x)) and sends it to the node that will evaluate triple pat-
tern qi+1. If R′ is the empty relation then the computation stops and an empty
answer is returned to node x.

In the case that i = k, the last triple pattern of q is evaluated. Then, n simply
returns relation R′ back to x using a message Answer(q, R′). Now R′ is indeed
a relation with arity equal to the number of answer variables and contains the
answer to query q over the database of triples in the network.

In the current implementation, R′ = πY (R on πX(σF (TT ))) is computed as
follows. For each tuple t of R, we first rewrite qi by substituting variables of qi

by their corresponding values in R. Then, we use qi to probe TT for matching
triples. For each matching triple, the appropriate tuple of R′ is computed on
the fly. Access to TT can be made vary fast (essentially constant time) using
hashing. In relational terminology, this is a nested loops join using a hash index
for the inner relation TT . This is a good implementation strategy given that
we expect a good evaluation order for the triple patterns of q to minimize the
number of tuples in intermediate relation R (see relevant discussion at the end
of this section).

Example. QC is shown in operation in Figure 1. Each event in this figure
represents an event in the network, i.e., either the arrival of a new triple or
the arrival of a new triple pattern. Events are drawn from left to right which



Fig. 1. The algorithm QC in operation

represents the chronological order in which these events have happened. In each
event, the figure shows the steps of the algorithm that take place due to this
event. For readability, in each event we draw only the nodes that do something
due to this event, i.e., store or search triples, evaluate a query etc. Finally, note
that we use S for the function Successor(), H for the function Hash() and we
use comma to denote a conjunction between two triple patterns.

In Event 1, node n inserts three triples t1, t2 and t3 in the network. In Event
2, node n submits a conjunctive query q that consists of three triple patterns.
The figure shows how the query travels from node n to r2, then to r4 and finally
to r7, where the answer is computed and returned to n.

Order of nodes in a query chain. The order in which the different triple
patterns of a query are evaluated is crucial, and affects network traffic, query
processing load or any other resource that we try to optimize. For example, if
we want to minimize message size for QC, we would like to put early in the
query chain nodes that are responsible for triple patterns with low selectivity.
Selectivity information can be made available to each node if statistics regarding
the contents of TTs are available. Then, when a node n determines the next triple
pattern qi+1 to be evaluated, n has enough statistical information to determine
a good node to continue the query evaluation. The details of how to make our
algorithms adaptive in the above sense are the subject of future work.

4 The SBV algorithm

Let us now present our second algorithm, the algorithm spread by value (SBV).
SBV extends the ideas of QC to achieve a better distribution of the query
processing load. It does not create a single chain for a query as QC does, but by
exploiting the values of matching triples found while processing the query incre-
mentally, it distributes the responsibility of evaluating a query to more nodes
than QC. In other words, it is essentially constructing multiple chains for each
query. A quick understanding of the difference between QC and SBV can be
obtained from Figure 2. There, we draw for each algorithm, all the nodes that
participate in query processing for a query q that consists of 3 triple patterns.



Fig. 2. Comparing the query chains in QC and SBV

QC creates a single chain that consists of only 3 nodes and query evaluation is
carried out by these nodes only. On the contrary, SBV creates multiple chains
which can collectively be seen as a tree. Now the query processing load for q is
spread among the nodes of this tree. Each path in this tree is determined by the
values used by triples that match the respective triple patterns at the different
nodes (thus the name of the algorithm).

Indexing a new triple. Assume a new triple t = (s, p, o). In SBV t will
be stored at the successor nodes of the identifiers Hash(s), Hash(p), Hash(o),
Hash(s + p), Hash(s + o), Hash(p + o) and Hash(s + p + o). We will exploit
these replicas of triple t to achieve a better query load distribution.

Evaluating a query. As in QC, the node that poses a new query q of the
form q1∧· · ·∧qk sends q to a node r1 that is able to evaluate the first triple pattern
q1. From this point on, the query plan produced by SBV is created dynamically
by exploiting the values of the matching triples that nodes find at each step in
order to achieve a better distribution of the query processing load. For example,
r1 will use the values for variables of q1, that it will find in local triples matching
q1, to bind the variables of q2 ∧ · · · ∧ qk that are common with q1 and produce
a new set of queries that will jointly determine the answer to the original query
q. Since we expect to have multiple matching values for the variables of q1, we
also expect to have multiple next nodes where the new queries will continue their
evaluation. Thus, multiple chains of nodes take responsibility for the evaluation
of q. The nodes at the leafs of these chains will deliver answers back to the node
that submitted q. Our previous discussion on the order of nodes/triple patterns
in a query chain is also valid for SBV. For simplicity, in the formal description
of SBV below, we assume again that the evaluation order is determined by the
order that the triple patterns appear in the query.

To determine which node will evaluate a triple pattern in SBV, we use the
constant parts of the triple pattern as in QC. The difference is that if there
are multiple constants in a triple pattern, we use the combination of all constant
parts. For example, if qj = (?sj , pj , oj), then Ij = Hash(pred(qj)+obj(qj)) where
the operator + denotes concatenation of string values. We use the concatenation
of constant parts whenever possible, since the number of possible identifiers that
can be created by a combination of constant parts is definitely higher and will
allow us to achieve a better distribution of the query processing load.



Fig. 3. The algorithm SBV in operation

Assume a node x that wants to submit a query q with set of answer variables
V . x creates a message Eval(q, V, u, IP (x)), where u is the empty valuation. x
computes the identifier of the node that will evaluate the first triple pattern and
sends the message to it with the send() function in O(log N) hops.

When a node r receives a message Eval(q, V, u, IP (x)) where q is a query
q1 ∧ · · · ∧ qn and n > 1, r searches its local TT for stored triples that satisfy
triple pattern q1. Assume m matching triples are found. For each satisfying triple
ti, there is a valuation vi such that ti = vi(q1). For each vi, r computes a new
valuation v′i = u∪vi and a new query q′i ≡ vi(q2∧· · ·∧qn). Then r decides the node
that will continue the algorithm with the evaluation of q′i (as we described in the
previous paragraph), and creates a new message msgi = Eval(q′i, V, v′i, IP (x))
for that node. As a result, we have a set of at most m messages and r uses
the multiSend() function to deliver them in O(m log N) hops. Each node that
receives one of these messages reacts as described in this paragraph.

In the case that a node r receives a message Eval(q, V, u, IP (x)) where q
consists of a single triple pattern q1 (i.e., r is the last node in this query chain),
then the evaluation of q finishes at r. Thus, r simply computes all triples t in TT
and valuations v such that t = v(qn) and sends the set of all such valuations v
back to node x that posed the original query in one hop (after projecting them
on the answer variables of the initial query). These valuations are part of the
answer to the query. This case covers the situation where n = 1 as well (i.e., q
consists of a single conjunct). Figure 3 shows an example of SBV in operation.

5 Optimizing network traffic

In this section we introduce a new routing table, called IP cache (IPC) [14] that
can be used by our algorithms to significantly reduce network traffic. In both
our algorithms, the evaluation of a query goes through a number of nodes. The
observation is that similar queries will follow a route with some nodes in common
and we can exploit this information to decrease network traffic. Assume a node
xj that participates in the evaluation of a query q and needs to send a message
to a “next” node xj+1 that costs O(log N) overlay hops. After the first time that



Fig. 4. The schema used in our experiments

node xj has sent a message to node xj+1, xj can keep track of the IP address
of xj+1 and use it in the future when the same query or a similar one obliges it
to communicate with the same node. Then, xj can send a message to xj+1 in
just 1 hop instead of O(log N). The cost for the maintenance of the IPC is only
local. As we will show in the experiments section, the use of IPCs significantly
improves network traffic. Another effect of IPC, is that we reduce the routing
load incurred by nodes in the network. The routing load of a node n is defined
as the number of messages that n receives so as to forward them closer towards
their destination, i.e., these are messages not sent to n but through n. Without
using the IPC, each message that forwards intermediate results will pass through
O(log N) nodes while with IPCs, it will go directly to the receiver node.

6 Experiments

In this section, we experimentally evaluate the algorithms presented in this pa-
per. We implemented a simulator of Chord in Java on top of which we developed
our algorithms. Our metrics are: (a) the amount of network traffic that is cre-
ated and (b) how well the query processing load and storage load are distributed
among the network nodes. Each metric will be carefully described in the rele-
vant experiment. We create a uniform workload of queries and data triples. We
synthetically create RDF triples and queries assuming an RDFS schema of the
form shown in Figure 4, i.e., a balanced tree with depth d and branching factor
k. We assume that each class has a set of k properties. Each property of a class
C which is at level l < d − 1 ranges over another class which belongs to level
l+1. Each class of level d−1 has also k properties which have values that range
over XSD datatypes. These data types are located at the last level d.

To create an RDF triple t, we first randomly choose a depth of the tree of our
schema. Then, we randomly choose a class Ci among the classes of this depth.
After that, we randomly choose an instance of Ci to be subj(t), a property p of
Ci to be pred(t) and a value from the range of p to be obj(t). If the range of
the selected property p are instances of a class Cj that belongs to the next level,
then obj(t) is a resource, otherwise it is a literal.

For our experiments, we use conjunctive path queries of the following form:

?x : (?x, p1, ?o1) ∧ (?o1, p2, ?o2) ∧ · · · ∧ (?on−1, pn, on)



In other words, we want to know the nodes in the graph ?x for which there is a
path of length n to node o1 labeled by predicates p1, . . . , pn. Path queries are an
important type of conjunctive queries for which database and query workloads
over the schema of Figure 4 can be created easily. To create a query of this type,
we randomly choose a property p1 of class C0. Property p1 leads us to a class
C1 from the next level. Then we randomly choose a property p2 of class C1.
This procedure is repeated until we create n triple patterns. For the last triple
pattern, we also randomly choose a value (literal) from the range of pn to be on.

Our experiments use the following parameters. The depth of our schema is
d = 4. The number of instances of each class is 500, the number of properties
that each one has is k = 3 while the a literal can take up to 200 different values.
Finally, the number of triple patterns in each query we create is 5.

E1: Network traffic and IPC effect. This experiment provides a com-
parison of our algorithms in terms of the network traffic that they create. To
estimate better the network traffic, we use weighted hops, i.e., each hope has
as weight the amount of intermediate results that it carries. Furthermore, we
investigate the effect of the IPC in each algorithm and the cost of this optimiza-
tion. We set up this experiment as follows. We create a network of 104 nodes
and install 104 triples. Then, in order to count how expensive it is to insert and
evaluate a query, in terms of network traffic, we pose a set Q of 100 queries and
calculate the average cost of answering them. In order to understand the effect of
IPCs the experiment continues as follows. We train IPCs with a varying number
of queries, starting from 5 queries up to 640. After each training phase, we insert
the same set of queries Q and count (a) the average amount of network traffic
that is created and (b) the average size of IPCs in the network. Each training
phase, as we call it, has two effects: query insertions cause the algorithms to work
so query chains are created and the rewritten queries are transferred through
these chains, but also because of these forwarding actions IPCs are filled with
information that can reduce the cost of a subsequent forwarding operation. Af-
ter each training phase, we measure the cost of inserting a query in the network
after all the queries inserted so far, by exploiting the content of IPCs.

In Figure 5(a) we show the network traffic that each algorithm creates. The
point 0 on the x-axis has the maximum cost, since it represents the cost to insert
the first query in the network. In this case all IPCs are empty and their use has
no effect. Thus, this point reflects the cost of the algorithms if we do not use
IPCs. However, in the next phases where IPCs have information that we can
exploit, we see that the network traffic required to answer a query is decreased.
For example, observe that after the last phase the cost of QC is 87% lower
than it was at point 0. Another important observation is that QC causes less
network traffic than SBV. In QC the nodes that participate in query chains are
successors of a single value (of the predicate value for the queries we use in these
experiments), so it is more possible that a query can use the IPC. SBV always
creates more network traffic since the nodes that participate in query chains are
successors of the combination of two values (a subject plus a predicate value).
Since the combinations of these values are more then just a single one, it is less
possible to use the IPC. QC is also cheaper at the point 0 on the x-axis since
SBV has to sent the information though multiple chains.



(a) Traffic cost (b) IPC effect

Fig. 5. (E1) Traffic cost and IPC effect as more queries are submitted

In Figure 5(b) we show the average storage cost of the IPCs. Note, that here
for readability we use a logarithmic scale for the y-axis. During the training
phases, nodes fill their IPCs so we see that the size of IPC increases, as the num-
ber of submitted queries increases. Since even a small IPC size can significantly
reduce network traffic, we can allow each node to fill its IPC as long as it can
handle its size. The IPC cost in SBV is much more greater than in QC which
happens again because SBV creates multiple chains for each query.

E2: Load distribution. In this experiment we compare the algorithms in
terms of load distribution. We distinguish between two types of load: query
processing load and storage load. The query processing load that a node n incurs
is defined as the number of triple patterns that arrive to n and are compared
against its locally stored triples. Note that for algorithm QC the comparison of
a triple pattern with the triples stored in TT happens for each tuple of relation
R when R′ is computed. Thus, the query processing load of a node n in QC is
equal to the number of tuples in R whenever a message QEval() is received. The
storage load of a node n is defined as the sum of triples that n stores locally.
For this experiment, we create a network of 104 nodes where we insert 3 ∗ 105

triples. Then we insert 103 queries and after that, we count the query processing
and the storage load of each node in the network.

In Figure 6(a) we show the query processing load for both algorithms. On
the x-axis of this graph, nodes are ranked starting from the node with the high-
est load. The y-axis represents the cumulative load, i.e, each point (a, b) in the
graph represents the sum of load b for the a most loaded nodes. First, we observe
that both algorithms create the same total query processing load in the network.
SBV achieves to distribute the query processing load to a significantly higher
portion of network nodes, i.e, in QC there are 306 nodes (out of 104) participat-
ing in query processing, while in SBV there are 9666 nodes. SBV achieves this
nice distribution since it exploits the values used to create rewritten queries by
forwarding the produced intermediate results to nodes that are the successors of
a combination of two or three constant parts.



(a) Cumulative query processing load (b) Cumulative storage load

Fig. 6. (E2) Query processing and storage load distribution

Finally, in Figure 6(b) we present the storage load distribution for both
algorithms. As before, nodes are ranked starting from the node with the highest
load while the y-axis represents the cumulative storage load. We observe that
in QC the total storage load is less than in SBV. This happens because in QC
we store each triple according to the values of its subject, its predicate and its
object, while in SBV we also use the combinations per two and three of these
values. Thus, in SBV a triple is indexed/stored four more times than in QC. The
highest total storage load in the network is a price we have to pay for the better
distribution of the query processing load in SBV.

Notice that our load balancing techniques are at the application level. Thus,
they can be used together with DHT-level load balancing techniques, e.g., [16].

7 Related work

The recent book [23] is an up-to-date collection of papers on work at the frontiers
of P2P networks and Semantic Web. In the rest of this section, we only survey
works that are closely related to our own.

In [9], Min Cai et al. studied the problem of evaluating RDF queries in a scal-
able distributed RDF repository, named RDFPeers. RDFPeers is implemented
on top of MAAN [8], which extends the Chord protocols [24] to efficiently an-
swer multi-attribute and range queries. [9] was the first work to consider RDF
queries on top of a DHT. The authors of [9] propose algorithms for evaluat-
ing triple pattern queries, range queries and conjunctive multi-predicate queries
for the one-time query processing scenario. Furthermore, a simple replication
algorithm is used to improve load distribution. Finally, [9] sketches some ideas
regarding publish/subscribe scenarios in RDFPeers. In previous work [18], we
have presented algorithms that go beyond the preliminary ideas of [9] regarding
publish/subscribe for conjunctive multi-predicate queries.

The ideas in [9] have influenced the design of QC. However, we deal with the
full class of conjunctive queries which is an extension of the class of conjunctive



multi-predicate queries considered in [9]. In addition, we have presented the more
advanced algorithm SBV which achieves efficient load distribution in a novel way.

The other interesting work in the area of RDF query processing on top of
DHTs is GridVine [4]. GridVine is built on top of P-Grid [1] and can deal with
the same kind of queries as RDFPeers. In addition, it has an original approach
to global semantic interoperability by utilizing gossiping techniques [3].

Another distributed RDF repository that provides a general RDF-based
metadata infrastructure for P2P applications is the Edutella system [19, 20].
Edutella has two differences with our proposal: it is based on super-peers (while
our proposal assumes that all nodes are equal) and concentrates on data inte-
gration issues (while we do not study this topic). Edutella uses HyperCup in its
super-peer layer to achieve efficient routing of messages, but it does not consider
issues such as the distribution of triples in the network to achieve scalability,
load balancing etc. as in our approach.

The paper [25] is another interesting work on distributed RDF query process-
ing focusing on the optimization of path queries over multiple sources.

Our research is also closely related with work on P2P databases based on
the relational model [7, 11, 12, 14]. Currently, one can distinguish two orthogonal
research directions in this area: work that emphasizes semantic interoperability
of peer databases [7, 11] and work that attempts to push the capabilities of
current database query processors to new large-scale Internet-wide applications
by utilizing DHTs [12]. Our work can be categorized in the latter direction since
it studies the processing of a subclass of conjunctive relational queries on top of
DHTs. The only existing study of conjunctive relational queries on top of DHTs
is [12] where join queries are studied. The ideas in this paper complement the
ones in [12] and could also be used profitably in the relational case. This is an
avenue that we plan to explore in future work together with extensions of our
current results on continuous relational queries [14].

8 Conclusions and future work

In this paper we presented two novel algorithms for the distributed evaluation
of conjunctive RDF queries composed of triple patterns. The algorithms manage
to distribute the query processing load to a large part of the network while
trying to minimize network traffic and keep storage cost low. The key idea is
to decompose each conjunctive query to the triple patterns that it consists of,
and then handle each triple pattern separately at a different node. The first
algorithm establishes a chain of nodes that carry out the query evaluation. The
second algorithm dynamically exploits matching triples to determine the next
node in the query plan and creates multiple node chains that carry out the query
evaluation. As a result, it achieves a better distribution of the query processing
load at the expense of extra network traffic and storage load in the network.

Our future work concentrates on extending our algorithms so that they can
be adaptive to changes in the environment (e.g., changes in the data distribu-
tion), be able to handle skewed workloads efficiently, take into account network
proximity etc. We also plan to extend our algorithms to deal with RDFS reason-
ing. Eventually, we want to support the complete functionality of languages such



RDQL [22], RQL [17] and SPARQL [21]. The algorithms will be incorporated
in our system Atlas [15] which is developed in the context of the Semantic Grid
project OntoGrid5 (Atlas currently implements QC).

References

[1] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Systems. In CoopIS
’01.

[2] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and S. Haridi. The essence
of P2P: A reference architecture for overlay networks. In IEEE P2P 2005.

[3] K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. Start making sense: The chatty web approach
for global semantic agreements. Journal of Web Semantics, 1(1), December 2003.

[4] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. V. Pelt. GridVine: Building Internet-Scale
Semantic Overlay Networks. In WWW ’04.

[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.
[6] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The Price of Validity in Dynamic

Networks. In SIGMOD ’04.
[7] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and I. Zaihrayeu.

Data Management for Peer-to-Peer Computing: A Vision . In WebDB ’02.
[8] M. Cai, M. Frank, and J. C. P. Szekely. MAAN: A Multi-Attribute Addressable Network for

Grid Information Services. In Grid ’03.
[9] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor. A Subscribable Peer-to-Peer RDF Repos-

itory for Distributed Metadata Management. Journal of Web Semantics, 2(2):109–130, De-
cember 2004.

[10] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL: A Language for Deductive Query Answering on
the Semantic Web. Journal of Web Semantics, 2(1):19–29, December 2004.

[11] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What Can Peer-to-Peer Do for
Databases, and Vice Versa? In WebDB ’01.

[12] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica. Querying the
Internet with PIER. In VLDB ’03.

[13] S. Idreos. Distributed evaluation of continuous equi-join queries over large structured overlay
networks. Master’s thesis, 2005.

[14] S. Idreos, C. Tryfonopoulos, and M. Koubarakis. Distributed Evaluation of Continuous Equi-
join Queries over Large Structured Overlay Networks. In ICDE ’06.

[15] Z. Kaoudi, I. Miliaraki, M. Magiridou, A. Papadakis-Pesaresi, and M. Koubarakis. Storing and
querying RDF data in Atlas. In Demo Papers ESWC ’06.

[16] D. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms for Peer to Peer Systems.
In SPAA ’04.

[17] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A Declar-
ative Query Language for RDF. In WWW ’02.

[18] E. Liarou, S. Idreos, and M. Koubarakis. Publish-Subscribe with RDF Data over Large Struc-
tured Overlay Networks. In DBISP2P ’05.

[19] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer, and T. Risch.
EDUTELLA: A P2P Networking Infrastructure Based on RDF. In WWW ’02.

[20] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and A. Loser.
Super-Peer-Based Routing and Clustering Strategies for RDF-Based Peer-To-Peer Networks.
In WWW ’03.

[21] E. Prud’hommeaux and A. Seaborn. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2005.

[22] A. Seaborne. Rdql - a query language for RDF. W3C Member Submission, 2004.
[23] S. Staab and H. Stuckenschmidt. Semantic Web and Peer-to-Peer. Springer, 2006.
[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. In SIGCOMM ’01.
[25] H. Stuckenschmidt, R. Vdovjak, J. Broekstra, and G.-J. Houben. Towards Distributed Process-

ing of RDF Path Queries. International Journal of Web Engineering and Technology,
2(2/3):207–230, 2005.

[26] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. LibraRing: An Architecture for Distributed
Digital Libraries Based on DHTs. In ECDL ’05.

[27] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/Subscribe Functionality in IR Envi-
ronments using Structured Overlay Networks. In SIGIR ’05.

5 http://www.ontogrid.net


