Topic 3: Error Handling,
Low-level I/O, Signals™

K24: Systems Programming
Instructor: Mema Roussopoulou

Error Handling

¢ Murphy’s Law
= Anything that can go wrong, will go wrong.

= Potential errors/mistakes have to be
anticipated and corresponding corrective
action (if possible) should be adopted.

* Instead of using an fprintf(), the call
perror() could be used:

= Vvoid perror(char *estring)

= Prints out the string pointed to by estring
denoting a specific kind of a mistake (choice

of the programmer), plus a system-generated
error string

+ |f we include the header file #include <errno.h>,
the variable errno will have as its value an integer
corresponding to the latest error that occurred.

If (amt=read(fd, buf, numbyte)) == -1)

then fprintf(stderr, “read failed; errno= %d\n”, errno);

C Program with Error Handling
(errors_demo.c)

include <'stdio .n'> /> for fopen, printf >/
include < stdlib .h > /* for malloc */
include < errno .h > /* for errno */

iInt main () {
FILE *fp = NULL,; char *p = NULL; int stat =0;
fp = fopen ("a_non_existent _file', "'r'");
if (fp==NULL) { /* check for error */
printf (*'errno = %d \n "', errno);
perror ("‘fopen');

}

p =(char *) malloc (2147483647) ;

iIf (p==NULL){ /* check for error */
printf ("'errno = %d \n"", errno);
perror (" malloc ™) ;

}else {
printf (""Carry on\n"");

}

stat = unlink (""/etc/motd"");

if (stat==-1) { /* check for error */
printf ("'errno = %d\n" , errno) ;
perror (" unlink **) ;

}

return (1) ;

}

C Program with Error Handling
(errors_demo.c)

mema@bowser> ./errors_demo
errno =2

fopen : No such file or directory
errno=12

malloc: Cannot allocate memory
errno = 13

unlink : Permission denied
mema@bowser>

Low-level Input/Output

¢ The stdio library enables the
average user to carry out 1/O
without worrying about buffering
and/or data conversion.

¢ The stdio Is a user-friendly set of
system calls.

+ Low-level I/O functionality Is
required
1. when the amenities of stdio are not

desirable (for whatever reason) in
accessing files/devices, or

2. when interprocess communication
occurs with the help of pipes/sockets.

To yaunAotepo enineoo aAinieniopaonc pe to OS
UNIX eivor o1 kAnoeic cvotriuatos. Elval ta
«oMUElD E1GOO0VY GTOV TLPTVAL.

Low-level I/0 (cont’d)

* In low-level /O, file descriptors that
identify files, pipes, sockets and devices
are small integers

= The above is in contrast to what
happens in the stdio library where
respective identifiers are pointers.

+ Designated (fixed) file descriptors:
0 : standard input
1 : standard output
2 . standard error (for error diagnostics).

¢ The above file descriptors 0, 1, and 2
correspond to pointers to the stdin,
sdtout, and stderr files of the stdio
library.

¢ The file descriptors are “inherited” by
any child process that the parent in

guestion creates.

Low-level I/O (cont’d)

+ A FILE pointer points to a data
structure that includes, among other
things, the file descriptor.

+ When the shell starts up and runs a
program, the program inherits three
open files with file descriptors 0,1,2.

¢+ |If the program opens any additional
files, they will have file descriptors
3,4, etc.

The open() system call

* Int open(char *pathname, int flags

[, mode _t mode])

+ The call opens or creates a file with
absolute or relative pathname for
reading/writing.

+ flags designates the way (a number) with
which the file can be accessed; values for
flags may be constructed by a bitwise-
Inclusive OR of flags from the following

set:

O _RDONLY: open for reading only.
O_WRONLY: open for writing only.
O_RDWR: open for both reading and writing.
O_APPEND: write at the end of the file.

O_CREAT: create a file if it does not already
exist.

O_TRUNC: the size of the file will be
truncated to O if the file exists.

* Returns a file descriptor on success or -1
on failure.

The open() system call

¢ required: #include <fnctl.h>
defines all these (and more)
flags.

+ The non-mandatory mode
parameter Is an integer that
designates the desired access
permissions during the creation
of a file (access rights not
allowed from the umask are not
allowed).

¢ open returns an Integer that
designates the file created and,
In case of no success, It returns
-1.

Example usage: open

Int myfd;
myfd = open(“/home/mema/my.dat”, O RDONLY);

mode_t fdmode = (S_IRUSR | S IWUSR | S_IRGRP|S_IROTH).

if ((fd = open(“info.dat”, O RDWR | O CREAT, fdmode)) == -1)
perror(“Failed to open info.dat”);

S IRUSR Avayvmo™ 1010KTN TN

S_IWUSR | I'poopn 1810kt

S_IXUSR Extéleon 1010kt n

S_IRWXU | Avdayvaoon, ypaor], EKTEAEST 1010KTNTN
S_IRGRP Avdyvoon opdoa

S_IWGRP | I'poon opdoo

S_IXGRP Extéleon oudoo

S_IRWXG | Avdyvaoon, ypagn, ektéAect opdda
S_IROTH Avdayvoon Aotrol

S IWOTH I'pagpn Aouroi

S IXOTH Extéleon Aouroi

S IRWXO Avayvmon, ypaer, EKTéElecT) Aotrotl -

Example: createfile

Include < stdio .h > // to have access to printf ()
include < stdlib .h > // to enable exit calls
Include < fentl .h > // to have access to flags def

define PERMS 0644 // set accesspermissions
char *workfile =""mytest" ;

main () {
Int filedes;

If ((filedes = open (workfile, O CREAT | O_ RDWR
PERMS))==-1){
perror(** creating "');
exit(1); }
else {
printf ("' Managed to get to the file successfully

\n"); }

exit (0) ;
}

mema@bowser> ./createfile

Managed to get to the file successfully
mema@bowser> s -I

total 20

-T'WXTr - Xr - X 1 mema mema 8442 2010 -04 -06 21:50 a.0ut
-r'W -I --I -- 1 mema mema 375 2010 -04 -06 21:49 createfile.c
-fW -I --I -- 1 mema mema 0 2010 -04 -06 21:50 mytest
mema@bowser> cat > mytest

This is a test

mema@bowser> ./createfile

Managed to get to the file successfully
mema@bowser> Is

a.out createfile.c mytest

mema@bowser> more mytest

This is a test

mema@bowser>

The creat() call

¢ The creat call is an alternative way to
create a file (instead of using open()).

¢+ int creat(char *pathname, mode_t mode);

¢ pathname Is any Unix pathname giving
the target location in which the file is to
be created.

+ mode helps set up the access rights.

+ creat will always truncate an existing file
before returning its file descriptor.

filedes = creat ("/tmp/mr.txt", 0644) ;

IS equivalent to:

filedes = open ("/tmp/mr.txt", O_ WRONLY |
O CREAT | O_TRUNC, 0644);

The read() call

+ Int read(int fd, char *buf, int count)

+ Reads at most count bytes from a file,
device, end-point of a pipe, or socket
that iIs designated by filedes and places
the bytes in buf.

¢ The call returns the number of bytes
successfully read, O if we are past the
last byte-already read, and -1 if a
problem occurs.

+ \When do we read less bytes?
a If file has less characters left to be read.
s If the read() is “interrupted” by a signal.

» If reading on pipe/socket, and a character
becomes available (in which case a while-
loop is needed to read all characters).

Example usage: read()

char buf[100];
ssize t bytesread;

bytesread = read(STDIN_FILENO, buf, 100);

char *buf;
ssize t bytesread;

bytesread = read(STDIN_FILENO, buf, 100);

|

T 0o cvuPet e0m?

2.T0, EMOLLEVO TTAPOOETYLOTOL,
STDIN_FILENO=0,

STDOUT_FILE=1,
STDERR_FILE=2

15

include <stdio .h> .
include <stdlib .h> Example
include <fcntl .h> Count

include <unistd .h>
define BUFSIZE 27

main (){
char buffer [BUFSIZE];
Int filedes; ssize t nread; long total =0;

If ((filedes = open(argv[1l], O RDONLY))==-1){
printf (*" error in opening %b6s \n“, argv[l));
exit (1) ;

}

while ((nread = read (filedes, buffer , BUFSIZE)) > 0)
total +=nread ;
printf (*"Total char in %s %ld \n"", argv[1],total);
exit (0) ;

}

mema@bowser> ./count Makefile
Total char in Makefile 1989
mema@bowser>

What happens if char *buffer=NULL; Is used
Instead of char buffer[BUFSIZE];

The write() and close()
calls

* Int write(int fd, char *buf, int count)

= Writes at most count bytes of content
from the buffer to the file that is
described by fd

= write() returns the number of bytes
successfully written out to the file, or
-1 In case of failure.

= use the write call with:
#include <unistd.h>

* Int close(int fd)

= releases the file descriptor fd; returns O
In case of successful release and -1
otherwise.

= use the close call with:
#include <unistd.h>

Example usage: write()

Towc owPdoet
< 1024 bytes

#define BLKSIZE 1024
char buf[BLKSIZE],
ssize t bytesread;

bytesread = read(STDIN_FILENO, buf, BLKSIZE);
If (bytesread > 0)

write(STDOUT _FILENO, buf, bytesread);

b

Koud eyyomon ot Oo
ypawyet bytesread bytes

18

Example: readwriteclose

#include <stdio.h>

#include <stdlib.h> /* for exit */
#include.<fentkh>

#include <unistd.h>

#include <sys/stat.h>

Int main(){
Int fd, bytes, bytesl, bytes2;
char buf[50];
mode t fdmode =S _IRUSR|S IWUSR,;

If ((fd=open("t", O_WRONLY |
O_CREAT, fdmode)) == -1 {
perror("open");
exit(1);
}
bytesl = write(fd, "First write. ", 13);
printf("%d bytes were written. \n", bytes1);
close(fd);

If ((fd=open("t", O_WRONLY | O_APPEND)) == -1){
perror("open");
exit(1);
}
bytes2 = write(fd, "Second Write. \n", 14);
printf("%d bytes were written. \n", bytes2);
close(fd): 19

Example: readwriteclose

If ((fd=open("t", O_RDONLY)) ==-1 {
perror("open");
exit(1);

bytes=read(fd, buf, bytesl+bytes?2);
printf("%d bytes were read \n",bytes);
close(fd);

buf[bytes]="\0';

printf("%s\n",buf);
return 1,

20

mema@bowser> ./read-write-close
13 bytes were written.

14 bytes were written.

27 bytes were read

First write. Second Write.
mema@bowser> |s -|t

total 12

-rwxr-xr-x 1 mema mema 5777 Dec 29 07:30 read-write-close*
-rw-r--r-- 1 mema mema 842 Dec 29 07:19 read-write-close.c

-FW------- 1 mema mema 41 Dec?2907:35t
mema@bowser>

21

Example: writeafterend

include <stdio .h>

include <string .h>

include <stdlib .h>

include <fentl .h>

include <unistd .h>

include <sys / stat .h>
define BUFFSIZE 1024

iInt main(int argc , char * argv []) {
int n, from , to; char buff BUFFSIZE |;
mode tfdmode =S IRUSR | S_IWUSR |
S IRGRP | S IROTH;
If (argc '=3) {
write(2," Usage : ", 7);
write(2, argv[0] , strlen (argv[0]));
write(2," from-file to-file \n", 19) ; exit (1) ; }

If ((from = open(argv [1], O RDONLY)) <0 ¥
perror (" open "); exit (1); }

If ((to= open(argv[2], O_ WRONLY | O _CREAT |
O_APPEND , fdmode)) <0)}
perror (" open"); exit (1); }

while ((n= read(from, buf , sizeof(buf))) >0)
write(to ,buf ,n);
close(from); close(to); return (1);

} 22

Example: writeafterend

mema@bowser> |s

filel file2

mema@bowser> more filel

This is filel.

Will append it to file2.
mema@bowser> more file2

This is file2.

mema@bowser> ./writeafterend
Usage : ./writeafterend from-file to-file
mema@bowser> ./writeafterend filel file2
mema@bowser> more file2

This is file2.

This is filel.

Will append it to file2.
mema@bowser>

23

Copying a file with variable
snewde <sion> -y ffer size: buffect

#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>

#includes<string:h>

#define SIZE 30
#define PERM 0644

Int mycopyfile(char *namel, char *name2, int BUFFSIZE
Int infile, oultfile;
ssize t nread,
char buffer[BUFFSIZE];

If ((infile=open(namel,O RDONLY)) ==-1)
return(-1);

If ((outfile=open(name2, O_WRONLY|O_ CREAT|
O _TRUNC, PERM)) == -1){
close(infile);
return(-2);

}

while ((nread=read(infile, buffer, BUFFSIZE)) > 0){
If (write(outfile,buffer,nread) < nread){
close(infile); close(outfile); return(-3);

}

Copying a file with variable
buffer size: buffect

close(infile); close(outfile);

If (nread == -1) return(-4);
else return(0);

}

int main(int argc, char *argv[])X{
Int status=0;

status=mycopyfile(argv[l],argv|[2],atoi(argv[3]));
exit(status);

Copying a file with variable
buffer size: buffect

mema@bowser> time ./buffeffect longFile foo.txt 8192

real 0mO0.038s

user 0m0.002s

sys 0mO0.033s

mema@bowser> time ./buffeffect longFile foo.txt 4096

real 0mO0.034s

user 0mO0.003s

sys 0m0.029s

mema@bowser> time ./buffeffect longFile foo.txt 256

real 0mO0.163s

user 0m0.020s

sys 0m0.142s

mema@bowser> time ./buffeffect longFile foo.txt 1

real 0m34.870s
user 0m4.204s
sys 0ma30.544s
mema@bowser>

|seek call

+ off tlIseek(int filedes, off t offset, int
startflag);

¢+ |seek repositions the offset of the
open file associated with filedes to
the argument offset according to the
directive startflag as follows:
= 1. SEEK SET: The offset is set to
offset bytes; usual actual integer value
=0
s 2. SEEK CUR: The offset is set to its

current location plus offset bytes; usual
actual integer value =1

s 3. SEEK_END: The offset is set to the
size of the file plus offset bytes. usual
actual integer value = 2

|seek call

off t newposition;

newposition = Iseek(fd, (off t) -32, SEEK_END);

 Positions the read/write pointer 32 bytes
BEFORE the end of the file.

* When used with read() and write() system
calls, provides all tools necessary to do
Input and output randomly.

The fcntl() system call

Int fentl(int filedes, int cmd);
Int fentl(int filedes, int cmd, long arg);
Int fentl(int filedes, int cmd, struct flock *lock);

Provides (some) control over already-opened
files; headers required: <sys/types.h>,
<unistd.h>, <fcntl.h>.

fentl() performs one of the operations described
below on the open file descriptor filedes. The
operation is determined by cmd — values for the
cmd appear in the <fcntl.h>.

Value of 3rd param (arg) depends on what cmd
does.

Among other operations, fcntl() carries out two

commands:

1. F_ GETFL: Read file status flags; arg is ignored.

2. F SETFL.: Set file status flags to value specified by
arg.

A routine for checking the flags of an open file

#include<fcntl.h>
Int filestatus(int filedes) {
iInt myfileflags ;
If ((myfileflags = fentl(filedes , F_ GETFL)) ==-1) {
printf(" file status failure\ n") ; return (-1) ;
¥
printf(*'file descriptor : % d", filedes) ;
/[test against the open file flags
switch (myfileflags & O ACCMODE) {
case O WRONLY:
printf("write - only"); break;
case O_ RDWR:
printf(*'read - write"); break;
case O_RDONLY:
printf(*'read - only") ; break;
default :
printf ("no such mode") ;

If (myfileflags & O_APPEND)
printf (" - append flag set") ; printf ("\'n");
return (0);

i & : bitwise AND operator
« fcntl can be used to acquire record locks (or locks
on file segments).

Calls: dup, dup?
(Duplicate file descriptors)

+ int dup(int oldfd);

finds the lowest numbered unused
file descriptor and makes it refer to
the same entity to which oldfd
refers.

¢ Int dup2(int oldfd, int newfd); frees
newfd (If Iin use) and makes newfd
refer to the same entity to which
oldfd refers - note:
1. If oldfd is not a valid file descriptor,

then the call fails, and newfd Is not
closed.

2. If oldfd is a valid file descriptor, and
newfd has the same value as oldfd, then
dup2() does nothing, and returns
newfd.

+ After a successful return from one
of these system calls, the old and
new file descriptors may be used
Interchangeably.

Example: dupdup2

#include <stdio.h>

#include <stdlib.h> /* for exit */
#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

Int main(){
int fd1, fd2, fd3;
mode_t fdmode = S _IRUSR|S_IWUSR]
S IRGRP| S _IROTH,;

If ((fdl=open(“dupdup2file, O WRONLY |
O_CREAT | O _TRUNC, fdmode)) ==-1

perror("open");
exit(1);

}

printf("fd1 = %d\n", fd1);

write(fd1, "What ", 5);

fd2=dup(fdl);

printf("fd2 = %d\n", fd2);

write(fd2, "time", 4);

close(0);
32

Example: dupdup2

fd3=dup(fdl);
printf("fd3 = %d\n", fd3);
write(fd3, " is it", 6);
dup2(fd2, 2);
write(2,"?\n",2);
close(fdl);

close(fd2);

close(fd3);

return 1;

33

Example: dupdup2

mema@bowser> ./dupdup2

fdl=3
fd2 =4
fd3=0

mema@bowser> Is -I dupdup2file
-rw-r--r-- 1 mema mema 17 Dec 29 07:58 dupdup2file

mema@bowser> more dupdup2file
What time is it?
mema@bowser>

34

Accessing Inode
Information with stat()

¢ Int stat(char *path, struct stat *buf);

+ Int fstat(int fd, struct stat *buf);

= returns information about a file; path points
to the file (or fd) and the buf structure is
filled with information.

¢ such information includes:
= buf->st_dev: ID of device containing file
= buf->st_ino: inode number

= buf->st_mode: the last 9 bits represent the
access rights of owner, group, and others.
The first 4 bits indicate the type of the node
(after a bitwise-AND with the constant
S _IFMT, if the outcome is S_IFDIR, the
node is a directory, if outcome is
S IFREG, the mode is a regular file, etc.)

= buf->st_nlink: number of hard links

Accessing Inode
Information with stat()

= buf->st_uid: user-1D of owner

= buf->st_gid: group ID of owner

= buf->st_size: total size, in bytes

= puf->st_atime: time of last access

= pbutf->st_ mtime: time of last modification
of content

= buf->st_ctime: time of last status change

+ Header files needed: <sys/stat.h> and
<sys/types.h>

+ Int fstat(int fd, struct stat *buf); is
Identical to stat but it works with file
descriptors.

+ Int Istat(char *path, struct stat *buf); Is
Identical to stat, except that If path is a
symbolic link, then the link itself is stat-
ed, not the file that it refers to.

st mode Is a 16-bit
guantity

* 4 first bits indicate the type of the
file (16 possible values -less than 10
file types are In use now: regular
file, dir, block-special, char-special,
fifo, symbolic link, socket).

+ the next 3 bits set the flags: set-user-
ID, set-group-ID and the sticky bits
respectively.

* next 9 bits (three groups of 3 bits
per group) indicate the
read/write/execute access rights for
the groups: owner, group and others.

+ masking can be used to decipher the
permissions each file system entity
IS glven.

stat() (cont’d)

* The fields st_atime, st mtime and
st_ctime designate time as number
of seconds past since 1/1/1970 of
the Coordinated Universal Time
(UTC).

¢ The function ctime helps bring the
content of the fields st_atime,
st._mtime and st_ctime in a more
readable format (that of the date).
The call is:

= Char *ctime(time t *timep);

¢ stat returns O 1f successful:
otherwise, -1

Definitions In
<sys/stat.n>

#define S _IFMT 0170000 [* type of file */
#define S_IFREG 0100000 [* regular */

#define S_IFDIR 0040000 [* directory */
#define S_IFBLK 0060000 /* block special */
#define S_IFCHR 0020000 [* character special */
#define S_IFIFO 0010000 [* fifo */

#define S_IFLNK 0120000 [* symbolic link */
#define S _IFSOCK 0140000 [* socket */

Testing for a specific type of a file is easy using
code fragments of the following style:

If ((info.st mode & S IFMT)==S IFIFO)
printf (" this is a fifo queue .\n");

33

Example: samplestat

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/stat.h>

Int main(int argc, char *argv[]){
struct stat statbuf;

If (stat(argv[l], &statbuf) == -1)
perror("Failed to get file status");

else {
printf("Time/Date : %s",ctime(&statbuf.st_atime));
PrNtI("--mmmemmmmemm oo \n");

printf("entity name: %s\n",argv[1]);
printf("accessed : %s", ctime(&statbuf.st_atime));
printf("modified : %s", ctime(&statbuf.st_mtime));

}

return 1;

}

40

Example: samplestat

mema@bowser> ./samplestat

Failed to get file status: Bad address
mema@bowser> ./samplestat f1
Time/Date : Sun Mar 19 10:46:27 2023
entity name: f1

accessed : Sun Mar 19 10:46:27 2023
modified : Sun Mar 19 10:46:06 2023
mema@bowser>

41

Accessing Directory Content

¢ A directory’s content (e, pairs of inodes
and node names) can be accessed with the
help of the calls: opendir, readdir and
closedir.

+ Access to a directory happens via a pointer
DIR * (similar to the FILE * pointer that is
used by the stdio).

¢ Every item in the directory Is described by
a structure called struct dirent that includes
the following two elements:
= d_no: inode number;
= d_namel]: a character string giving the
filename (null terminated)
+ Note: it Is not feasible to change the
content of the directory or its structure,
using these calls.

+ Required header files: <sys/types.h> and <dirent.h>

opendir, readdir,
closedir

+ DIR *opendir(char *name);

= 0pens up the directory name and returns a
pointer type DIR for accessing the directory

= If there is a mistake, the call returns NULL

¢ struct dirent *readdir(DIR *dirp);

= returns a pointer to a dirent structure
representing the next directory entry in the
directory pointed to by dirp

= If for the current entry, the field d_ino is 0, the
respective entry has been deleted.

s returns NULL 1f there are no more entries to be
read.

¢+ int closedir(DIR *dirp);
= closes the directory associated with dirp

= function returns 0 on success. On error, -1 Is
returned, and errno is set appropriately.

Example: openreadclosedir

#include <stdio.h>
#include <sys/types.h>
#include <dirent.h>

void do_Is(char dirnamel[])}{
DIR *dir_ptr,
struct dirent *direntp;

If ((dir_ptr = opendir(dirname)) == NULL)
fprintf(stderr, "cannot open %s \n",dirname);

else {

while ((direntp=readdir(dir_ptr)) '= NULL)
printf("inode %d of the entry %s \n", \
(int)direntp->d_ino, direntp->d_name);

closedir(dir_ptr);
}

44

Example: openreadclosedir

iInt main(int argc, char *argv[]) {

If (argc ==1)
do_Is(".");
else
while (--argc){
printf("%s: \n", *++argv) ;
do_lIs(*argv);
}
}

45

Example: openreadclosedir

mema@bowser> ./openreadclosedir directl/
directl/:

Inode 2850201 of the entry .

Inode 2702911 of the entry ..

Inode 2850223 of the entry longFile

Inode 2850218 of the entry foo.txt

Inode 2850213 of the entry bla
mema@bowser>

46

Program that behaves like
Is —al (morewithls)

#include <sys/types.h>
#include <sys/stat.n>
#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *modes[]={"---","--x","-w-","-wx","r--","r-x",
"rw-","rwx"}; // 8 distinct modes

void list(char *);
void printout(char *);

Int main(int argc, char *argv([]){
struct stat mybuf;

if (arge<2) { list("."); exit(0);}

47

Program that behaves like
Is —al (morewithls)

while(--argc){
If (stat(*++argv, &mybuf) < 0)
{ perror(*argv); continue;}

If ((Imybuf.st mode & S_IFMT) == S_IFDIR)
list(*argv); // directory encountered

else
printout(*argv); // file encountered

}
}

48

Program that behaves like
Is —al (morewithls)

void list(char *name){
DIR *dp;

struct dirent *dir;

char *newname;

If ((dp=opendir(name))== NULL) {
{perror("opendir"); return;

}

while ((dir = readdir(dp)) '= NULL) {
If (dir->d_ino == 0) continue,
newname=(char *)malloc(strlen(name)+

strlen(dir->d_name)+2);

strcpy(newname,name);
strcat(newname,"/");
strcat(newname,dir->d_name);
printout(newname);
free(newname); newname=NULL;

}
closedir(dp);

}

49

Program that behaves like
Is —al (morewithls)

void printout(char *name){
struct stat mybuf;

char type, perms[10];

Int i,);

stat(name, &mybuf);

switch (mybuf.st mode & S_IFMT){
case S_IFREG: type ="-'; break;
case S_IFDIR: type = 'd'; break;
default: type ='?"; break;
}

*perms="0';

for(i=2; i>=0; i--){
] = (mybuf.st._mode >> (i*3)) & 07,
strcat(perms,modes|j)); }

printf("%c%s%3d %5d/%-5d %7d %.12s %s \n",
type,perms,mybuf.st_nlink,
mybuf.st_uid, mybuf.st_gid, mybuf.st_size,
ctime(&mybuf.st._ mtime)+4, name); rry without 4 %

} 50

Program that behaves like
Is —al (morewithls)

mema@bowser> ./morewithls mydir

drwxr-xr-x 5 1000/1000 4096 Apr 26 19:48 mydir/.
drwxr-xr-x 3 1000/1000 4096 Apr 28 00:09 mydir/..
-rw-r--r-- 1 1000/1000 O Apr 26 19:48 mydir/a
-rw-r--r-- 1 1000/1000 O Apr 26 19:48 mydir/b
-rw-r--r-- 1 1000/1000 O Apr 26 19:48 mydir/c
-rw-r--r-- 1 1000/1000 O Apr 26 19:48 mydir/d
drwxr-xr-x 2 1000/1000 4096 Apr 27 22:20 mydir/e
drwxr-xr-x 2 1000/1000 4096 Apr 26 19:48 mydir/f
drwxr-xr-x 2 1000/1000 4096 Apr 26 19:48 mydir/g
-rw-r--r-- 1 1000/1000 O Apr 26 19:48 mydir/i
-rw-r--r-- 1 1000/1000 O Apr 26 19:48 mydir/|
-rw-r--r-- 1 1000/1000 O Apr 26 19:48 mydir/k
mema@bowser>

o1

link and unlink

¢ Int unlink(char *pathname)

¢ Deletes a name from the file system; if
that name is the last link to a file and no
other process has the file open, the file
IS deleted and its space Is made
available.

¢ Int link(char *oldpath, char *newpath)

+ It creates a new hard link to an existing
file. If newpath exists, it will not be
overwritten.

* The created link essentially connects
the inode of the oldpath with the name
of the newpath.

Example usage: link()

#include <stdio.h>
#include <unistd.h>

If (link(“/dirA/namel”, “/dirB/name2”) == -1)
perror(“Failed to make a new link in /dirB”);

directory entry in /dirA directory entry in /dirB

inode name inode name

12345| namel /”Hﬁ name?
<Indc 1234/

2 block 23567
/ “This is the
fext i the
23567)
file."

53

chmod, rename calls

¢ Int chmod(char *path, mode_t mode)
Int fchmod(int fd, mode_t mode)

+ Change the permissions (on files with
name path or having an fd descriptor)
according to what mode designates.

¢ On success, 0 Is returned; otherwise -1

* Int rename(const char *oldpath,
const char *newpath)

+ Renames a file, moving it between
directories (indicated with the help of
oldpath and newpath) if required.

¢ On success, 0 1s returned: otherwise -1

symlink and readlink
calls

¢

Int symlink(const char *oldpath, const
char *newpath)

Creates a symbolic link named newpath
that contains the string oldpath.

A symbolic link (or soft link) may point to
an existing file or to a nonexistent one; the
latter is known as a dangling link.

On success, zero is returned. On error, -1
IS returned, and errno Is set appropriately.

ssize_t readlink (char *path, char *buf,
size_t bufsiz)

Places the contents of the symbolic link
path (i.e., the string for the path that the

link points to) in the buffer buf that has
size bufsiz.

On success, readlink returns the number of
bytes placed in buf; otherwise, -1

mkdir and readdir

¢ int mkdir(char *path, int mode)

+ Creates a new directory path
with permissions mode
(permissions not allowed by
umask are not given)

+ Analogous to open for files

¢ Int rmdir(char *path)

* Removes the directory path, If
It Is empty

* Analogous to unlink for files

Signals

¢ Signals provide a simple method to
transmit software interrupts (i.e.,
notifications of events) to processes. They
occur asynchronously when:
= There is an error during the execution of a job

= Events are created with the help of input
devices (cntrl-z, cntrl-c, cntrl-\ etc.).

= A process notifies another one about an event.
= Issuing of a kill command to a job.
¢ Signals are identified with an integer
number.

= a unique number represent a different type of
signal.
¢ Signals provide a way to handle
asynchronous events: e.g., a user at a
terminal typing the interrupt key to
suspend a program in execution.

57

Signals

¢ Signals take place at what appears to be
“random time” to the process.

+ \We can ask the kernel to do one of the
following things when a signal occurs:

= Ignore the signal (two signals, however,
can never be ignored: SIGKILL &
SIGSTOP)

= Catch the signal (we do that by informing
the kernel to call a “signal-handling”
function of ours whenever a signal occurs)

= Let the default action apply (every signal
has a default action)

= Block the signal (possible with POSIX
Reliable Signals)

o8

SIGNAL NAME # DESCRIPTION;
DEFAULT ACTION

SIGABRT

SIGALRM

SIGBUS

SIGCHLD

SIGCONT

SIGFPE

SIGHUP

SIGILL

6

14

17

18

A

Process abort;
Implementation dependent

Alarm clock; (Metpntg)
Abnormal termination

Access undefined part of
memory object;
Implementation dependent

Child terminated, stopped or
continued,;
Ignore

Execution continued if
stopped,;
Continue

Error in arithmetic operation
as In division by zero;
Implementation dependent

Hang-up (death) on controlling
terminal (process);

Abnormal termination

Invalid hardware instruction;
Implementation dependent

SIGNAL NAME # DESCRIPTION;
DEFAULT ACTION

SIGINT

SIGKILL

SIGPIPE

SIGQUIT

SIGSEGV

SIGSTOP

SIGTERM

SIGTSTP

2

13

11

19

15

20

Interactive attention signal
(usually Ctrl-C);
Abnormal termination

Terminated (cannot be caught
or ignored);
Abnormal termination

Write on a pipe with no
readers:;
Abnornal termination

Interactive termination: core
dump (usually Ctrl-\);
Implementation dependent

Invalid memory reference,
Implementation dependent

Execution stopped (cannot be
caught or ignored);
Stop

Termination;
Abnormal termination

Terminal stop (usually Ctrl-2);
Stop

SIGNAL NAME # DESCRIPTION;
DEFAULT ACTION

SIGTTIN 21 Background process
attempting to read,
Stop

SIGTTOU 22 Background process
attempting to write;
Stop

SIGUSR1 10 User-defined signal 1;
Abnormal termination

SIGUSR2 12 User-defined signal 2;
Abnormal termination

* [f any signal is used, the header file
<signal.h> must be included.

Sending a signal with
kill command

Shell command:
kill [-signalName] processld
Kill -s signalName processid

send a specific signal to process(es)
Kill -1 (lists all available signals)

Examples:
Kill -USR1 3424
Kill -s USR1 3424
kill -9 3424

mema@bowser> Kill -1

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR

31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN +1 36) SIGRTMIN +2 37) SIGRTMIN +3

38) SIGRTMIN +4 39) SIGRTMIN +5 40) SIGRTMIN +6 41) SIGRTMIN +7 42) SIGRTMIN +8

43) SIGRTMIN +9 44) SIGRTMIN +10 45) SIGRTMIN +11 46) SIGRTMIN +12 47) SIGRTMIN +13
48) SIGRTMIN +14 49) SIGRTMIN +15 50) SIGRTMAX -14 51) SIGRTMAX -13 52) SIGRTMAX -1
53) SIGRTMAX -11 54) SIGRTMAX -10 55) SIGRTMAX -9 56) SIGRTMAX -8 57) SIGRTMAX -7
58) SIGRTMAX -6 59) SIGRTMAX -5 60) SIGRTMAX -4 61) SIGRTMAX -3 62) SIGRTMAX -2
63) SIGRTMAX -1 64) SIGRTMAX

mema@bowser>

62

Kill call

* #include <sys/types.h>

+ #include <signal.h>

¢ Int kill(pid_t pid, int sig)

+ Signal sig Is sent to process with pid

¢ Should the receiving and
dispatching processes belong to the
same user or the dispatching process

IS the superuser, the signal can be
successfully sent.

¢+ If sig 1s 0, then no signal Is
dispatched.

* On success (at least one signal was
sent), zero Is returned. On error, -1
IS returned, and errno Is set

appropriately.

The signal system call

¢ #include<signal.h>
void (*signal (int signum,
void (*handler) (int))) (int)
+ The signal() call installs a new signal
handler for the signal with number
signum. The signal handler Is set to the

handler which may be a user-specified
function or either SIG_IGN or SIG_DFL.

+ signal() returns the previous value of the
signal handler, or SIG_ERR on error.

* This call is the traditional way of handling
signals.

Example: sigSimExample

#include <stdio.h>
#include <signal.h>

void f(int);

Int main(){
Int I;

signal(SIGINT, f);

for(1=0;i<5;1++){
printf(*'hello\n™");
sleep(1);

}
}

/* no explicit call to function f */

void f(int signum){

/I* re-establish signal-handing function for SIGINT */
signal(SIGINT, f);
printf(""OUCHN\Nn"");

} 65

Example: sigSimExample

mema@bowser> ./sigSimExample
hello

hello

hello

hello

NCOUCH!

hello

mema@bowser>

66

Example: siglgnore

#include <stdio.h>

#include <signal.h> ITyou change SIG_IGN

to SIG_DFL, then default

int main(){ action is taken.

It i;
signal(SIGINT, SIG_IGN);

printf(*"you can't stop me here! \n"');

while(1){
sleep(1);
printf(**haha \n"");
}
}

[* use cntrl-\ to get rid of this process */

67

Example: siglgnore

mema@bowser> ./siglgnore
you can't stop me here!
haha

haha

haha

haha

haha

haha

haha

haha

haha

A\Quit
mema@bowser>

68

The pause(), raise() calls

¢+ Int pause(void);

= Causes the invoking process or thread to
sleep until a signal is received that either
terminates it (i.e., process or thread) or
causes it to call a signal handler

= Returns when a signal is caught and the
signal-handing function has run and
returned. In this case, pause returns -1, and
errno issetto EINTR

= #include <unistd.h>
+ Int raise(int signalld);

= Sends signalld to the invoking process; It IS
equivalent to: kill(getpid(), signalld)

= Returns 0 on success, non-zero on failure

E.Q..

If (raise(SIGUSR1) '=0)
perror(“Failed to raise SIGUSR1”);

69

The alarm call

¢ #include <unistd.h>
unsigned int alarm(unsigned int count);

¢ alarm() delivers a SIGALRM to the
InvoKing process In count seconds.

* The default signal handler prints a
message and terminates the process.

* |If count=0, previous alarm() call is
canceled.

+ Returns the number of seconds remaining
until any previously scheduled alarm was
due to be delivered; otherwise, O.

The alarm call

include <stdio.h>
include <unistd.h>
main () {

alarm(3); /* schedule an alarm signal in 3sec */
printf(*'Looping for good\n"");

while (1);

printf(**This line should never be executed.\n"");

mema@bowser> date; ./alarm; date
Mon Apr 12 21:20:41 EEST 2011
L_ooping for good!

Alarm clock

Mon Apr 12 21:20:44 EEST 2011
mema@bowser>

Example: alarmpause

#include <stdio.h>
#include <signal.h>

main(){
void wakeup(int);

printf(*"about to sleep for 5 seconds \n"');
signal(SIGALRM, wakeup);

alarm(5);
pause(); /* pauses the process until a sig arrives */
printf(*'Hola Amigo! Un abrazo!\n"');

}

void wakeup(int signum){
printf(**Alarm received from kernel\n"");

}

72

Example: alarmpause

mema@bowser> ./alarmpause
about to sleep for seconds
Alarm received from kernel
Hola Amigo! Un abrazo!
mema@bowser>

73

Unreliable Signals — a
headache In “older” Unix

int sig_int();
éic;:]nal(SIGlNT, sig_int);
sig_int() {

/* this Is the point of possible problems */
signal(SIGINT, sig_int);

After a signal has occurred but before the signal
handler begins execution, another signal may
occur.

The second signal would cause the default
action which is to terminate the process.

An unsuccessful effort is to (re-)state the
signal’s handler as the 15t line of the handler.

Although the program may seem to work, this is
not “bullet-proof” as we may “lose” a signal In
the process.

Unreliable Signals

* A process could NOT turn off (i.e., block) a signal to prevent
the signal from interrupting it at a later time

+ All process could do was to “ignore” the signal (with a trick)

» Below, the intent is to have program wait until signal has
occurred before continuing work

Int flag = 0;

main() {
Int handler();

signal(SIGINT, handler);

while(flag == 0) {
[* potential problem here*/
pause();

handler() {
signal(SIGINT, handler);
flag = 1;

1

Unreliable Signals

* Under “regular” circumstances
the process would “pause” until
It received a SIGINT and then
continue on to other actions
(after the while statement) as
the predicate would disqualify.

* Problem: signal occurs after
test (flag =0), but before call to
pause -2 process could sleep
forever (if no other signals are
generated)

= Signal is lost!

¢ Code NOT correct, yet works
most of the time

Example: lostsig

#include <stdio:h>
#include <unistd.h>
#include <sys/types.h>
#include <signal.h>

void foohandler(int);
Int flag=0;
Int main(){
Int Ipid=0;
printf(**The process ID of this program is %d \n",getpid());
Ipid=getpid();
signal(SIGINT, foohandler);
while (flag==0){
Kill(Ipid, SIGINT);
printf(“flag is %d\n”, flag); fflush(stdout);
pause();
printf(“Hello! \n™);

¥
¥

void foohandler(int signum){
signal(SIGINT, foohandler); /* re-establish
handler for next time */
flag=1,
}

Example: lostsig

+ Running the program, we get into the
pause without noticing first signal got into
the handler:

mema@bowser> ./lostsig
The process ID of this program is 3245
flagis 1

+ The (first) signal seems to be “lost™...

¢ Even though handler is invoked on first signal
and flag gets set on the first signal, program is
unaware of this because its check occurred
before first signal is sent.

Example: lostsig

¢ Forcing a second interrupt with control-C, we
terminate the program (by getting out of the
loop):

mema@bowser> ./lostsig

The process ID of this program is 3245
flagis 1

ACHello!

mema@bowser>

¢ Signal Sets provide a (POSIX) reliable
way of dealing with signals

POSIX Signals -- first,
some definitions

When signal occurs, we say signal is
generated

Delivered means signal has been handled
(default action, ignore, user-defined
handler)

Between generation and delivery a signal
IS pending
= If another signal of same type is generated, the
delivery of the new signal is unspecified
(implementation-specific)
A thread can keep signals In pending state
by blocking them

Signal mask: the set of all blocked signals
(for a particular thread)

With POSIX (reliable) signals, when in a
signal handler, the signal type is
temporarily added to the mask so that
another signal of same type doesn’t get
delivered.

POSIX Signal Sets

+ Signal sets are defined using
the type sigset_t

+ Sets are large enough to hold a
representation of all signals in
the system

+ \We may Indicate interest In
specific signals by empty-ing a
set and then adding signals or
by using a full set and then by
selectively deleting certain
signals

POSIX Signal Sets

+ [nitialization of signals happens
through:

- Int sigemptyset(sigset_t *set);
- Int sigfillset(sigset_t *set);
+ Manipulation of signal sets happens via
- Int sigaddset(sigset_t *set, Int signo);
- Int sigdelset(sigset_t *set, int signo);
+ Membership in a signal set:

- Int sigismember(sigset_t *set, int
sSigno)

Example: creating
different signal sets

include <signal .h>
sigset_t maskl , mask2 ;

sigempty (&maskl); // create an empty mask

sigaddset (&maskl , SIGINT); // add signal SIGINT
sigaddset (&maskl , SIGQUIT); //add signal SIGQUIT

sigfillset (&mask?2); // create a full mask
// remove signal SIGCHLD
sigdelset (&mask2 , SIGCHLD);

» maskl Is created entirely empty
» mask? is created entirely full

sigaction() call

+ Once a set has been defined, we can define a
specific method to handle a signal using
sigaction().

* Int sigaction(int signo, const struct sigaction *act,
struct sigaction *oldact);

* When oldact is non-null, on return, points to old
signal handling action (old sigaction structure)

+ The sigaction structure Is:
struct sigaction {
void (*sa_handler)(int); // action to be taken
sigset t sa_mask; // additional signals to be
// blocked during the handling
/I of the signal
Int sa_flags; / flags controlling handler
// invocation
void (*sa_sigaction)(int, siginfo_t *, void *);
// pointer to a signal handler for
// real-time signals

The sigaction structure

¢ sa_handler field: identifies the action to be taken
when the signal signo is received (previous slide)

1. SIG_DFL: restores the system’s default action
2. SIG_IGN: ignores the signal

3. The address of a function which takes an int as
argument. The function will be executed when a
signal of type signo is received and the value of
signo Is passed as parameter. Control is passed to
function as soon as signal is received and when
function returns, control is passed back to the
point at which the process was interrupted.

+ sa_mask field: the signals specified here will be
blocked during the execution of the sa_handler.

The sigaction structure

* sa_flags field: used to modify the
behavior of signo — the originally
specified signal.

1. A signal’s action iIs reset to
SIG_DFL on return from the handler
by sa_flags=SA RESETHAND

2. Extra information will be passed to
signal handler, if sa_flags=SIG INFO.
Here, sa_handler Is redundant and the
final field sa_sigaction is used.

3. Do not interrupt ongoing syscall if
sa flags=SA RESTART

+ Good Idea to either use sa_handler or
sa_sigaction. NOT both!

Example: sigaction

include < stdio .h >
include < stdlib .h >
include <signal .n >

void catchinterrupt (int signo){
printf(*'\ nCatching : signo =%d\n"*,signo);
printf(** Catching : returning \n"');
}

main (){

static struct sigaction act ;
act.sa_handler = catchinterrupt ;
sigfillset(&(act.sa_mask));
sigaction(SIGINT , &act, NULL);
printf(** sleep call #1\ n"");

sleep (1) ;

printf(** sleep call #2\ n"");

sleep (1) ;

printf(** sleep call #3\ n"");

sleep (1) ;

printf(** sleep call #4\ n"");

sleep (1) ;

printf("* Exiting \n"");

exit (0) ;

}

Regardless of where the program is interrupted,
It resumes execution and carries on

mema@bowser> ./sigaction
sleep call #1

sleep call #2

"C

Catching : signo =2
Catching : returning
sleep call #3

"C

Catching : signo =2
Catching : returning
sleep call #4

"C

Catching : signo =2
Catching : returning
Exiting

Another execution:

Regardless of where the program is interrupted,
It resumes execution and carries on

mema@bowser> ./sigaction
sleep call #1

sleep call #2

"C

Catching : signo =2
Catching : returning

sleep call #3

sleep call #4

Exiting

mema@bowser>

Changing the Behavior of program in
Interrupt: sigaction2

include < stdio .h >
include < stdlib .h >
include <signal .n'>

main (){
static struct sigaction act ;

act.sa_handler = SIG_IGN ; // the handler is set to IGNORE
sigfillset (&(act.sa_mask));

sigaction (SIGINT , &act, NULL); // control -c
sigaction (SIGTSTP, &act, NULL); // control —z

printf(** sleep call #1\ n"*); sleep (1) ;
printf(** sleep call #2\ n"*); sleep (1) ;
printf(** sleep call #3\ n""); sleep (1) ;

act.sa_handler = SIG_DFL ; // reestablish DEFAULT behavior
sigaction (SIGINT , &act, NULL); // default for control —c

printf(** sleep call #4\ n"*); sleep (1) ;
printf(** sleep call #5\ n"*); sleep (1) ;
printf(** sleep call #6\ n"*); sleep (1) ;

sigaction (SIGTSTP, &act, NULL); // default for control -z
printf(*" Exiting \n"");

exit (0) ;

}

mema@bowser> ./sigaction?2
sleep call #1

"Csleep call #2

NZ"NCsleep call #3

sleep call #4

sleep call #5

NZsleep call #6

Exiting

mema@bowser> ./sigaction2
sleep call #1

sleep call #2

sleep call #3

sleep call #4

sleep call #5

"C

mema@bowser> ./sigaction2
sleep call #1

"Csleep call #2
NCNZNZsleep call #3
NZNZsleep call #4
NZNZsleep call #5
NZNZsleep call #6
NZEXIiting

mema@bowser>

Restoring a previous action: sigaction3

include < stdio .h >
include < stdlib .h >
include < signal .h >

main«(){
static struct sigaction act, oldact;

printf(** Saving the default way of handling the
control =c\n"");

sigaction (SIGINT, NULL, &oldact);

printf(** sleep call #1\ n""); sleep (4) ;

printf(**"Changing (Ignoring) the way of handling \n");
act.sa_handler = SIG_IGN ; // the handler is set to IGNORE
sigfillset(&(act.sa_mask));

sigaction(SIGINT , &act, NULL);

printf(** sleep call #2\ n""); sleep (4) ;

printf(*’Reestablishing old way of handling control-c\n"");
sigaction(SIGINT , &oldact, NULL);
printf(** sleep call #3\ n""); sleep (4) ;

printf("* Exiting \n"");
exit (0) ; }

mema@bowser> ./sigaction3

Saving the default way of handling the control =c
sleep call #1

"C

mema@bowser>

mema@bowser>

mema@bowser>

mema@bowser> ./sigaction3

Saving the default way of handling the control =c
sleep call #1

Changing (Ignoring) the way of handling

sleep call #2

NCACACNC/CRestablishing old way of handling control-c
sleep call #3

"C

mema@bowser>

Blocking Signals

Occasionally, a program wants to block all together
(rather than ignore) incoming signals

- for instance, when updating a data segment in
a database.

Int sigprocmask(int how, const sigset_t *set,
sigset_t *oldset)

how indicates what specific action sigprocmask
should take:

1. SIG_BLOCK: set of blocked signals is the
union of the current set and the set argument.

2. SIG_UNBLOCK: signals in set are removed
from the current set of blocked signals.

3. SIG_SETMASK: group of blocked signals is
set to set

If oldset is non-null, the previous value of signal
mask Is stored in oldset.

If set is NULL, the signal mask is unchanged and
current value of mask is returned in oldset (if it is
not NULL);

Example: sigprocmask

include <stdio .h>
include <stdlib .h>
include<signal~h>

main (){
sigset_t setl, set2;

sigfillset (&setl); // completely full set

sigfillset (&set2);
sigdelset (&set2 , SIGINT);
sigdelset (&set2 , SIGTSTP); // a full set minus INT & TSTP

printf(*" This is simple code ... \n"");

sleep (5) ;

// block everything here !

sigprocmask (SIG_SETMASK , &setl , NULL);

printf(** This is CRITICAL code ... \n""); sleep (10) ;

// unblock (allow) all but INT & TSTP

sigprocmask (SIG_UNBLOCK , &set2 , NULL);
printf("* This is less CRITICAL code ... \n""); sleep (5) ;
// unblock (allow) all signals in setl

sigprocmask (SIG_UNBLOCK , &setl , NULL);
printf("*All signals are welcome \n"");

exit (0) ;

}

mema@bowser> ./sigprocmask
This is simple code ...

"C

mema@bowser> ./sigprocmask
This is simple code ...

This is CRITICAL code ...

NZ

This is less CRITICAL code ...
Suspended

mema@bowser> fg
Jsignal-sigprocmask

All signals are welcome!
mema@bowser> ./sigprocmask
This is simple code ...

This is CRITICAL code ...

"C

This is less CRITICAL code ...

mema@bowser>

mema@bowser> ./sigprocmask
This is simple code ...

This is CRITICAL code ...
NZNC

This is less CRITICAL code ...
mema@bowser> fg

bash : fg: current : no such job
mema@bowser> ./sigprocmask
This is simple code ...

This is CRITICAL code ...
NINCNZNCNZNCNZ

This is less CRITICAL code ...
N\

Quit

mema@bowser> fg

bash : fg: current : no such job
mema@bowser> ./sigprocmask
This is simple code ...

This is CRITICAL code ...
This is less CRITICAL code ...
All signals are welcome !
mema@bowser>

What signals to handle?

* If the program must do some cleanup
before terminating, must handle:

= SIGHUP
= SIGINT
= SIGTERM
¢ Professional programs try to catch and

handle as many signals as possible to
enable

= Cleanup
= Error recording in log
= Display of error message
“Internal error #78: contact technical support”

IS BETTER THAN
“Bus error: core dump”

* Make signal handler a short function that
returns quickly
= Better to raise a flag and have main program

check that flag occasionally (see Rochkind for
more)

e flag should be of type: volatile sig_atomic _t

