Topic 6: Threads™

Threads - Nnjuorta

Lightweight Processes (LWPS)
share single address space,
each has its own flow control

*Try to overcome penalties when it comes to
context switching between different “flows”
(or sequence) of execution

separate process for every flow of

of control is costly

Why Threads?

 (Offer a more efficient way to develop apps

0N uniprocessor, one thread blocks on a
syscall (e.g., read), another grabs CPU
and does useful processing (faster user
Interface, lower program execution
time)

« on multiprocessor, separate thread on
each CPU (program finishes faster)

*Question: In our network server example, if
creating multiple processes is a performance
Issue, why not just use select()?

*\What do threads give us over select()-based
network server?

Thread (Solaris) Model

Traditional processes
T —
Proc1 Proc2 Proc3 Procd Procs

s [=8| R R =

Space l \Ji L i
4 & ~
________-:) P 4 I'x_ { —) { l_l\._jl__
lightweight proces. T_
-< b
P
kemel o
threads
Kernel

Hardware Processors

Threads Overview

+ One or more threads may be
executed In the context of a process.

* The entity that is being scheduled is
the thread — not the process itself.

+ In the presence of a single
processor, threads are executed
concurrently.

¢+ |f there are more than one
processors, threads can be assigned
to different kernel thread (and so
different CPUs) and run in parallel.

+ Any thread may create a new thread.

Threads Overview

+ All threads of a single process share
the same address space (global,
static, heap, file descriptors etc.)
BUT they have their own PC, stack
and set of registers.

* The kernel can perform content
switches from one thread to another
faster than from one process to
another.

¢ The header #include <pthread.h> Is
required by all programs that use
threads.

* Programs have to be compiled with
the pthread library.

= gcc <filename>.c -Ipthread

Threads Overview

+ The functions of the pthread library
do not set the value of the variable
errno and so, we cannot use the
function perror() for the printing of
a diagnostic message.

+ |f there Is an error in one of the
thread functions, strerror() Is used
for the printing of the diagnostic
code (which is the “function return”
for the thread).

char *strerror(int errnum)

= returns a pointer to a string that
describes the error code passed in the
argument errnum.

= requires: #include <string.h>

Threads vs. Processes

Threads Processes
Address Common. Any change | Different for each
space made by one thread is | process. After a fork()
visible to all (i.e., we have different
mallon()/free()) address spaces
File descriptors | Common. Any two Two processes use
threads can use the copies of the file
same descriptor. One | descriptors
close() on this
descriptor is sufficient

fork() On a fork(), only the thread that invoked the fork
Is duplicated.
exit() On exit(), all threads die together (pthread_exit

for the termination of a single thread).

exec() All threads disappear (the shared/common
address space is replaced)

Signals This is somewhat more complex. See textbook.

POSIX Thread
Management

POSIX function

description

pthread create
pthread self
pthread_equal
pthread exit
pthread_detach
pthread_join
pthread_cancel
pthread kill

create a thread

find out own thread ID

test 2 thread IDs for equality

exit thread without existing process
set thread to release resources

wait for a thread

terminate another thread

send a signal to a thread

Thread creation

Int pthread_create(pthread _t *thread,
const pthread attr t *attr,
void *(*start_func) (void *), void *arg);
+ Creates a new thread with attributes
specified by attr within a process.

+ Thread executes the function at address
start_func

+ Upon successful completion, pthread
create() shall store the ID of the created
thread in the location referenced by thread.

+ Through attr we can change features of the
thread but oftentimes we use the default
attribute values, by setting attr to NULL.

¢ |f successful, returns O; otherwise, an error
number shall be returned to indicate the
error.

Thread termination

void pthread_exit (void *retval);

¢ terminates the calling thread and
makes the value retvalue available
to any successful pthread_join()
with the terminating thread.

+ After a thread has terminated, the
result of access to local (auto)
variables of the thread i1s undefined.

+ References to local variables of the
exiting thread should not be used
for the retvalue parameter value.

pthread join - waiting
for thread termination

Int pthread_join (pthread _t thread,
volid ** retval);

+ suspends execution of the calling thread
until the target thread terminates (unless
the target thread has already terminated).

* When a pthread_join() returns
successfully, the target thread has been
terminated.

+ On successful completion, the function
returns 0.

+ [|f retval is not NULL, then pthread_join()
copies the exit status of the target thread
Into the location pointed to by *retval.

|ldentifying — Detaching
Threads

pthread_t pthread_self(void);

+ Returns the thread-ID of the calling
thread

Int pthread_detach(pthread_t thread);

+ |ndicates that the storage for the
thread can be reclaimed only when
the thread terminates.

+ |f thread has not terminated,
pthread_detach() shall not cause it to
terminate.

+ If the call succeeds, pthread detach()
shall return O: otherwise, an error
number shall be returned.

¢ Calling pthread_join() on a detached
thread fails.

Xpnon pthread create, pthread exit, pthread join

ko pthread self

#include <stdio.h>

#include <string.h> /* For strerror */
#include <stdlib.h> /* For exit */
#include <pthread.h> /* For threads */

create_a_ thread.c

#define perror2(s,e) fprintf(stderr, "%s: %s\n", s, strerror(e))
void *thread_f(void *argp){ /* Thread function */
printf("l am the newly created thread %ld\n",

pthread_self());

printf("Hanging on for a couple of secs\n");

sleep(2);

printf(“ am the newly created thread and about to

exit! \n");

pthread_exit((void *) 47);

main(){
pthread _t thr;
Int err, status;
/* New thread */

\

Not recommended way of “exit”’ing..
avoid using automatic values; use
malloc(ed) structs to return status

If (err = pthread_create(&thr, NULL, thread_f, NULL)) {
perror2("pthread_create", err);

exit(1):
}

printf("1 am original thread %ld and | created
thread %ld\n", pthread_self(), thr);

14

Xpnon pthread create, pthread exit, pthread join
ko pthread self

create_a_ thread.c

[* Wait for thread */
iIf (err = pthread_join(thr, (void **) &status)) {
perror2("pthread_join", err); /* termination */
exit(1);
}
else printf("Just joined the two threads ->one\n”);
printf("Thread %ld exited with code %d\n", thr, status);
printf("Thread %ld just before exiting (Original)\n",
pthread_self());
pthread_exit(NULL);

15

Run output

mema@bowser> ./create_a thread

| am original thread 8327046400 and | created thread 609728512(
| am the newly created thread 6097285120

Hanging on for a couple of secs!

| am the newly created thread and about to exit!

Just joined the two threads ->one!

Thread 6097285120 exited with code 47

Thread 8327046400 just before exiting (Original)
mema@bowser>

16

whichexit() can be executed as a thread

void *whichexit(void *arg){
int n;
int np1[1];
int *np2;
char s1[10];
char s2[] ="l am done";
n=a3;
npl =n;
np2 = (int *)malloc(sizeof(int *));
*np2 = n;
strcpy(s1,"Done");
return(NULL);

}

©WooNOoO Ok WNE

n
&n

(int *)n

npl

np2

sl

s2

“This works”
strerror(EINTR)

Which of the above options could be safe replacement
for NULL as return value in whichexit function?

(Or as a parameter to pthread_exit?)

17

whichexit() can be executed as a thread

void *whichexit(void *arg){
int n;
int np1[1];
int *np2;
char s1[10];
char s2[] ="l am done";
n=a3;
npl =n;
np2 = (int *)malloc(sizeof(int *));
*np2 = n;
strcpy(sl,"Done");
return(NULL);

}

©WooNOoO Ok WNE

n
&n

(int *)n

npl

np2

sl

s2

“This works”
strerror(EINTR)

Which of the above options could be safe replacement
for NULL as return value in whichexit function?

(Or as a parameter to pthread_exit?)

No — automatic variable

No — automatic variable

. Yes — dynamically allocated
No — automatic variable

No — automatic storage

©Oo~NOoO Ok wWNE

No, return value is a pointer not an int

Might work (but not in all impls- avoid)

Yes — In C, string literals have static storage
No — The string produced by strerror might not exist

18

Xpnon pthread detach

detached_thread.c

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <pthread.h>

#define perror2(s,e) fprintf(stderr,"%s: %s\n",s,strerror(e))

void *thread_f(void *argp){ /* Thread function */
int err;
if (err = pthread_detach(pthread_self())) { /* Detach thread */
perror2("pthread_detach", err);
exit(1);
}
printf("l am thread %d and | was called with
argument %d\n", pthread_self(), *(int *) argp);
printf("l will wait for some time in detached now..10 secs\n”);
sleep(10);
printf(“About to leave detached thread now.. Id\n”,
pthread_self());
pthread_exit(NULL);

19

Xpnon pthread detach

detached_thread.c

main(){

pthread _t thr;

int err, arg = 29;

[*New Thread */

if (err = pthread_create(&thr,NULL,thread_f,(void *) &arg)){
perror2("pthread_create", err);
exit(1);
}

sleep(2);

printf("l am original thread %d and | created thread %d\n",

pthread_self(), thr);
printf(“| am the original and | am done! \n”);
pthread_exit(NULL);

20

Run output

mema@bowser> ./detached thread
| am thread 6133919744 and | was called with argument 29
I will wait for some time in detached now.. 10 secs

| am original thread 8327046400 and | created thread 6133919744
| am the original and I am done!

About to leave detached thread now.. 6133919744
mema@bowser>

21

Create n threads that wait for a random number of

seconds and then terminate
#include <stdio.h>

random_sleeps.c

#include <string.h> /* For strerror */

#include <stdlib.h> /* For exit */

#include <pthread.h> /* For threads */

#define perror2(s,e) fprintf(stderr, "%s: %s\n", s, strerror(e))
#define MAX_SLEEP 10

void *sleeping(void *arg) {
long sl = (long) arg;
printf("thread %ld sleeping %d seconds ...\n",
pthread_self(), sl);
sleep(sl); [* Sleep a number of seconds */
printf("thread %ld waking up\n", pthread_self());
pthread_exit(NULL);

}

main(int argc, char *argv[]){
Int n, I, err,
long sl;
pthread _t *tids;
If (argc > 1) n = atoi(argv|[1]); [* Make integer */
else exit(0);

If (n>50){ /* Avoid too many threads */
printf("Number of threads should be no more
than 50\n"); exit(0); }
If ((tids = malloc(n * sizeof(pthread_t))) == NULL) {
perror("malloc"); exit(1); }
22

random_sleeps.c

srandom((unsigned int) time(NULL)); /* Initialize generator */
for (i=0 ; i<n ; i++) {
[* Sleeping time 1..MAX_SLEEP */
sl = random() % MAX_SLEEP + 1;
if (err = pthread_create(tids+i, NULL,
sleeping, (void *) sl)) {
[* Create a thread */
perror2("pthread create", err); exit(1);}
}
for (i=0 ; i<n ; i++) {
/* Wait for thread termination */
iIf (err = pthread_join(*(tids+i), NULL)) {
perror2("pthread_join", err);
exit(1);
}
}

printf("all %d threads have terminated\n”, n);

}

Sample output

mema@bowser> ./random_sleeps 12
thread 134685184 sleeping 8 seconds ...
thread 134559232 sleeping 3 seconds ...
thread 134685696 sleeping 7 seconds ...
thread 134686208 sleeping 1 seconds ...
thread 134558720 sleeping 2 seconds ...
thread 134559744 sleeping 2 seconds ...
thread 134560256 sleeping 5 seconds ...
thread 134560768 sleeping 8 seconds ...
thread 134561280 sleeping 5 seconds ...
thread 134684672 sleeping 4 seconds ...
thread 134686720 sleeping 2 seconds ...
thread 134687232 sleeping 8 seconds ...
thread 134686208 waking up
thread 134558720 waking up
thread 134559744 waking up
thread 134686720 waking up
thread 134559232 waking up
thread 134684672 waking up
thread 134560256 waking up
thread 134561280 waking up
thread 134685696 waking up
thread 134685184 waking up
thread 134560768 waking up
thread 134687232 waking up
all 12 threads have terminated
mema@bowser>

Going from a single-threaded program
to multi-threading

#include <stdio.h>
#define NUM 5

void print_mesg(char *);

int main(){
print._mesg("hello");
print_mesg("world\n");

}

void print_mesg(char *m){
Int I;
for (i=0; iKNUM; i++){

}

}

printf("%s", m);
fflush(stdout);
sleep(1);

mema@bowser> ./print_single
hellohellohellohellohelloworld
world

world

world

world

mema@bowser>

25

First attempt: multi_hello.c

#include <stdio.h>
#include <pthread.h>
#define NUM 5

main()
{ pthread ttl, t2;
void *print_mesg(void *);

pthread_create(&tl, NULL, print_mesg, (void *)"hello ");
pthread_create(&t2, NULL, print_mesg, (void *)"world\n");
pthread_join(tl, NULL);

pthread_join(t2, NULL);

}

void *print_mesg(void *m)

{ char*cp = (char *)m;

Int i;

for (I=0;i<KNUM; i++){
printf("%s", cp);
fflush(stdout);
sleep(2);

}
return NULL;

}

26

Output of 4 runs

mema@bowser> ./multi_hello
hello world
hello world
hello world
hello world
hello world

mema@bowser> ./multi_hello
hello world

world

hello hello world

hello world

hello world

mema@bowser> ./multi_hello
world

hello world

hello hello world

hello world

hello world

mema@bowser> ./multi_hello
world

hello hello world

hello world

world

hello world

hello mema@bowser>

Another Example: Synchronization attempt
(via sleep())

#include <stdio.h>

#include <pthread.h> incprint.c
#definexNUM5

int counter=0;

main(){
pthread ttl;
void *print_count(void *);
Int i;

pthread create(&tl, NULL, print_count, NULL);
for(i=0; I<KNUM; i++){
counter++;
sleep(l);
}
pthread_join(t1,NULL);
}

void *print_count(void *m){
[* counter is a shared variable */
INt i
for (i=0;i<NUM;i++){
printf("count = %d\n",counter);
sleep(l);
[*changing this to something else has an effect */

}
return NULL;

28

Output

mema@bowser> ./incprint
count=0

count=1

count =2

count =3

count=4
mema@bowser> ./incprint
count=1

count=1

count =3

count=4

count=>5
mema@bowser> ./incprint
count=1

count =2

count =3

count=4

count=5
mema@bowser> ./incprint
count=1

count=1

count=3

count =4

count=>5
mema@bowser>

Changing the sleep(1) to sleep(0)
within print_count() we get the
following:

mema@bowser> ./incprint
count=1

count=1

count=1

count=1

count=1
mema@bowser>

29

Counting words from two distinct files

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#include <ctype.h> wordcountl.c
Int total words;

int main(int ac, char *av[]){
pthread _tt1, t2;
void *count_words(void *);
if(ac!=3){
printf("usage: %s filel file2 \n", av[0]);
exit(1); }
total words=0;

pthread_create(&t1, NULL, count_words, (void *)av[1]);
pthread_create(&t2, NULL, count_words, (void *)av[2]);

pthread_join(tl, NULL);

pthread_join(t2, NULL);

printf(""Main thread with 1D: %ld reports %5d total words\n”,
pthread_self(), total _words);

30

void *count_words(void *f){
char *filename = (char *)f;
FILE *fp; intc, prevc ="\0';

wordcountl.c

printf("In thread with ID: %ld counting words.. \n",

pthread_self());

If ((fp=fopen(filename,"r"")) '= NULL){
while ((¢ = getc(fp))!= EOF){
If (lisalnum(c) && isalnum(prevc))

total words++;
prevc = ¢;
}
fclose(fp);
} else perror(filename);
return NULL,;

Output

mema@bowser> wc filel file2
1 4 15 filel
1 4 17 file2
2 8 32 total
mema@bowser> ./wordcountl filel file2
In thread with ID: 134559232 counting words..
In thread with ID: 134558720 counting words..
Main thread with ID: 134557696 reports 8 total words
mema@bowser> ./wordcountl filel file2
In thread with ID: 134559232 counting words..
In thread with ID: 134558720 counting words..
Main thread with ID: 134557696 reports 6 total words
mema@bowser>

32

Concurrent Access

Potential Problem:

Threadl Thread?2

Race-condition: total words might not have
consistent value after executing the above two
assignments.

Never allow concurrent access to data without
protection (when at least one access is write)!

Binary POSIX Mutexes

When threads share common structures (resources),
the POSIX library offers a simplified version of
semaphores termed binary semaphores or mutexes.

A binary semaphore can find itself in only two
states: locked or unlocked.

Int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread mutexattr t *mutexattr)

= Initializes the mutex-object pointed to by mutex
according to the mutex attributes specified in
mutexattr.

= pthread mutex_init always returns O

A mutex may also be initialized by setting its value
by the macro

static pthread _mutex_t mymutex =
PTHREAD MUTEX INITIALIZER;

Initialization of a mutex should occur only once

Locking a mutex

+ | ocking a mutex Is carried out by:
Int pthread_mutex_lock(pthread_mutex_t * mutex)

¢ |f the mutex is currently unlocked, it becomes
locked and owned by the calling thread, and
pthread _mutex_lock returns immediately.

¢ |f successful, pthread _mutex_lock returns O.

+ |f the mutex is already locked by another thread,
pthread _mutex_lock blocks (or “suspends’ for
the user) the calling thread until the mutex is
unlocked.

Locking a mutex

Int pthread_mutex_trylock (pthread mutex_t
*mutex);

behaves identically to pthread mutex_lock,
except that it does not block the calling thread
If the mutex Is already locked by another
thread

Instead, pthread_mutex_trylock returns
Immediately with the error code EBUSY

If pthread_mutex_trylock returns the error code
EINVAL, the mutex was not initialized properly.

Unlocking and
destroying a mutex

Int pthread_mutex_unlock (pthread _mutex_t *mutex)

+ |f the mutex has been locked and owned by the
calling thread, the mutex gets unlocked.

+ Upon successful call, it returns O.
Int pthread_mutex_destroy(pthread _mutex_t *mutex)
+ Destroys the mutex, freeing resources it might hold.

¢ |n the LinuxThreads implementation, the call does
nothing except checking that mutex is unlocked.

¢ Upon successful call, it returns O.

Counting (correctly) words in two files

wordcount2.c

[* add all header files */

int total words;

pthread _mutex_t counter lock =
PTHREAD MUTEX INITIALIZER;

Int main(int ac, char *av[])
{ pthread ttl, t2;
void *count_words(void *);
if(ac!=3){

printf("usage: %s filel file2 \n", av[0]);

exit(1); }
total words=0;
pthread create(&t1l, NULL, count words, (void *)av[1]);
pthread create(&t2, NULL, count_words, (void *)av[2]);
pthread_join(tl, NULL);
pthread_join(t2, NULL);
printf("Main thread with ID %ld reporting %5d

total words\n", pthread_self(),total _words);

¥

38

wordcount2.c

void *count_words(void *f){
char *filename = (char *)f;
FILE *fp; int c, prevc ="\0',

If ((fp=fopen(filename,"r")) '= NULL){
while ((¢ = getc(fp))!= EOF){
If (lisalnum(c) && isalnum(prevc)){
pthread _mutex_lock(&counter_lock);
total words++;
pthread _mutex_unlock(&counter_lock);
¥
prevc = c;
by
fclose(fp);
} else perror(filename);
return NULL;

Output

mema@bowser> wc filel file2

1 4 15 filel
1 4 17 file2
2 8 32 total

mema@bowser> ./wordcount2 filel file2

In thread with ID: 134559232 counting words..

In thread with ID: 134558720 counting words..

Main thread with ID: 134557696 reports 8 total words
mema@bowser>

40

Another program that counts words In
two files correctly

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <ctype.h>
#define EXIT _FAILURE 1

struct arg_set{
char *fname:
Int count;

};

INnt

main(int ac, char *av[]) {

pthread ttl, t2;

struct arg_set argsl, argsz2;
void *count_words(void *);

if (ac!=3){
printf("usage: %s filel file2 \n", av[0]);

}

exit (EXIT_FAILURE);

wordcount3.c

41

wordcount3.c

argsl.fname = av[1]; argsl.count = O;
pthread_create(&t1, NULL,
count_words, (void *) &argsl);

args2.fname = av|2]; args2.count = 0;
pthread create(&t2, NULL,
count_words, (void *) &args2);

pthread_join(tl, NULL);
pthread_join(t2, NULL);

printf("'In file %-10s there are %5d words\n",
av[1], argsl.count);

printf("In file %-10s there are %5d words\n",
av[2], args2.count);

printf(*'Malin thread %ld reporting %5d
total words\n", pthread_self(),
argsl.count+args2.count);

wordcount3.c

void *count_words(void *a) {
struct arg_set *args = a;
FILE *fp; int c, prevc = "\0';
printf(*"Working within Thread with ID %ld
and counting\n",pthread_self());

If ((fp=fopen(args->fname,"r")) 1= NULL){
while ((¢ = getc(fp))!= EOF){
If (lisalnum(c) && isalnum(prevc)){
args->count++;

} \
prevc = c;
s

fclose(fp): No mutexvin this function! ‘

} else perror(args->fname);
return NULL,;

¥

43

mema@bowser> ./twordcount3 \
[etc/dictionaries-common/words \
/etc/dictionaries-common/ispell-default

Working within Thread with ID 1210238064 and counting

Working within Thread with ID 1218630768 and counting

In file /etc/dictionaries-common/words there are 123261 word

In file /etc/dictionaries-common/ispell-default there are 3 words

Main thread 1210235216 reporting 123264 total words

mema@bowser>

TIps

¢ pthread _mutex_trylock() returns EBUSY if
the mutex is already locked by another
thread

+ Every mutex must be initialized only once

¢ pthread mutex_unlock() should be called
only by the thread holding the mutex

* NEVER have pthread_mutex_lock() called
by the thread that has already locked the
mutex. A deadlock will occur

¢ |f EINVAL is returned when trying to lock
a mutex, then the mutex has not been
Initialized properly

* NEVER call pthread _mutex_destroy() on
a locked mutex (EBUSY)

45

Using: pthread_mutex_init, pthread _mutex_lock,
pthread mutex_unlock, pthread mutex_destroy

sync_by mutex.c

pthread _mutex_t mtx; [* Mutex for synchronization */
char buf[25]; [* Message to communicate */
void *thread_f(void *); [* Forward declaration */
main() {

pthread_t thr;

Int err;

printf("Main Thread %ld running \n",pthread_self());
pthread_mutex_init(&mtx, NULL);

If (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */
perror2("pthread _mutex_lock", err); exit(1); }
printf(""Thread %d: Locked the mutex\n", pthread_self());

/* New thread */

If (err = pthread_create(&thr, NULL, thread f, NULL)) {
perror2("pthread_create", err); exit(1); }

printf("Thread %ld: Created thread %d\n", pthread_self(), thr);

strcpy(buf, "This is a test message");
printf(""Thread %ld: Wrote message \"%s\" for thread %ld\n",

pthread_self(), buf, thr); 46

sync_by mutex.c

If (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */
perror2("pthread_mutex_unlock", err); exit(1);

}
printf("Thread %ld: Unlocked the mutex\n", pthread_self());

If (err = pthread_join(thr, NULL)) { /* Wait for thread */
perror2("pthread_join", err); exit(1); } /* termination */

printf("Exiting Threads %Id and %lId \n", pthread_self(), thr);

If (err = pthread_mutex_destroy(&mtx)) { /* Destroy mutex */
perror2("pthread_mutex_destroy", err); exit(1); }
pthread_exit(NULL);

}

sync_by mutex.c

Shall block here

void *thread f(void *argp){ /* Thread funcgon */
Int err;
printf(""Thread %ld: Just started\n"
printf("Thread %ld: Trying to |

thread_self());
the mutex\n", pthread_self())

If (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */
perror2("pthread_mutex_lock", err); exit(1); }

printf("Thread %ld: Locked the mutex\n", pthread_self());
printf("Thread %ld: Read message \"%s\"\n", pthread_self(), buf);

If (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */
perror2("pthread _mutex_unlock", err); exit(1); }
printf(""Thread %ld: Unlocked the mutex\n", pthread_self());

pthread_exit(NULL);

48

mema@linux01> ./sync_by mutex

Main Thread 1217464640 running

Thread 1217464640: Locked the mutex

Thread 1217464640: Created thread -1217467536
Thread 1217464640 Wrote message ""This is a test message"”
for thread 1217467536

Thread 1217464640: Unlocked the mutex

Thread 1217467536 Just started

Thread 1217467536: Trying to lock the mutex

Thread 1217467536: Locked the mutex

Thread 1217467536: Read message ""This is a test message"*
Thread 1217467536: Unlocked the mutex

Exiting Threads 1217464640 and 1217467536
mema@Ilinux01>

Sum the squares of n integers using m threads

sum_of squares.c

#include <pthread.h>
#define perror2(s, e) fprintf(stderr, "%s: %s\n", s, strerror(e))
#define LIMITUP 100

pthread _mutex_t mtx; /* Mutex for synchronization */

int n, nthr, mtxfl; /[* Variables visible by thread function */
double sqsum; [* Sum of squares */

void *square_f(void *); /* Forward declaration */

main(int argc, char *argv[]){
Inti, err,
pthread_t *tids;
if (argc>3) {
n = atoi(argv([1]); [* Last integer to be squared */
nthr = atoi(argv[2]); /* Number of threads */
mtxfl = atoi(argv[3]); }/* with lock (1)? or without lock (0) */
else exit(0);

if (nthr > LIMITUP) { /* Avoid too many threads */
printf(""Number of threads should be up to 100\n"); exit(0); }

If ((tids = malloc(nthr * sizeof(pthread _t))) == NULL) {
perror('malloc™); exit(1); }

50

sum_of squares.c

sqsum = (double) 0.0; /* Initialize sum */
pthread_mutex_init(&mtx, NULL); /* Initialize mutex */

for (=0 ; i<nthr ; i++) {
If (err = pthread_create(tids+i, NULL, square_f, (void *) 1)) {
/[* Create a thread */
perror2("pthread_create", err); exit(1); } }

for (1=0 ; i<nthr ; i++)
If (err = pthread_join(*(tids+i), NULL)) {
/* Walt for thread termination */
perror2("pthread_join", err); exit(1); }

if (tmtxfl) printf(“Without mutex\n®); | sum_of _squares.c

else printf("With mutex\n");

printf("%2d threads: sum of squares up to %d Is %12.9e\n",
nthr,n,sqsum);

sqsum = (double) 0.0; /* Compute sum with a single thread */

for (iI=0 ; I<n ; I++)

sgsum += (double) (i+1) * (double) (i+1);

printf("Single thread: sum of squares up to %d is %12.9e\n",
n, sqsum);

printf("Formula based: sum of squares up to %d is %12.9e\n",

n, ((double) n)*(((double) n)+1)*(2*((double) n)+1)/6);
pthread_exit(NULL);
by

void *square_f(void *argp){ /* Thread function */
Int i, thri, err;
thri = (int) argp;

for (i=thri ; i<n ; i+=nthr) {
If (mtxfl) /* Is mutex used? */
If (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */
perror2("pthread_mutex_lock", err); exit(1); }

sqsum += (double) (i+1) * (double) (i+1);

If (mtxfl) /* Is mutex used? */
If (err = pthread_mutex_unlock(&mtx)) { /*Unlock mutex */
perror2("pthread_mutex_unlock", err); exit(1); }}
pthread exit(NULL): }

Execution outcome

mema@bowser> ./sum_of squares 12345678 99 1

With mutex

99 threads: sum of squares up to 12345678 is 6.272253963e+20
Single thread: sum of squares up to 12345678 is 6.272253963e+20
Formula based: sum of squares up to 12345678 is 6.272253963e+20
mema@bowser> ./sum_of squares 12345678 99 0

Without mutex

99 threads: sum of squares up to 12345678 is 4.610571900e+20

Single thread: sum of squares up to 12345678 is 6.272253963e+20
Formula based: sum of squares up to 12345678 is 6.272253963e+20

53

Synchronization &
Performance

¢ Two threads, A and B

+ A reads data from net and places in
buffer, B reads data from buffer and
computes with it

A: 1) Avéyvoon dedouévmv
2) Kieiompo mutex
3) ToroBétnon otnv ovpd
4) Zexleidmpo mutex
5) Emiotpoen oto 1)

B: 1) KAeidwpo mutex
2) If buffer not empty,
APOLPEGT) OEOOUEV®V
3) EexAciomua mutex
4) Emotpoen oto 1)

AvT0 dovAevEL L yapd. BAEneTe KAmoo mBavo
TpOPANpa;

Condition Variables

+ A condition variable Is a synchronization
mechanism that allows POSIX threads to
suspend execution and relinquish the
processors until some predicate on the
shared data is satisfied.

+ Basic operations on condition variables:

= signal the condition (when the predicate
becomes true)

= wait for the condition, suspending execution

= The waiting lasts until another thread “signals”
(also called “notifies”) the condition

+ A condition variable must always be
associated with a mutex to avoid a race
condition:

= Athread prepares to wait on a condition
variable and another thread signals the

condition just before the first thread actually
waits on the condition variable

55

Initializing a condition
variable

Int pthread _cond_init(pthread _cond_t *cond,
pthread condattr t *cond_attr)

+ [nitializes the condition variable cond, using the
condition attributes specified in cond_attr, or
default attributes of cond_attr is simply NULL

¢ Always returns 0

¢ The LinuxThreads implementation does not
support attributes for condition variables (cond_
attr 1s ignored).

+ Variables of type pthread _cond_t can also be
Initialized statically, using the constant
PTHREAD COND INITIALIZER.

Walting on a condition

Int pthread_cond_walt (pthread _cond_t *cond
pthread _mutex_t *mutex);

+ atomically unlocks the mutex and waits for the
condition variable cond to be signaled.

+ Before calling pthread _cond_wait() the thread
must have *mutex locked

+ The thread’s execution is suspended and the
thread does not consume any CPU time until the
condition variable is signaled (via a call by
another thread to pthread cond_ signal() or
pthread _cond_broadcast()

¢ Before returning to the calling thread,
pthread _cond_walt re-acquires mutex

+ Always returns 0

Signaling a condition
variable

Int pthread _cond_signal(pthread cond_t *cond)

¢ Restarts one of the threads that are waliting on
the condition variable cond

+ |f no threads are waiting on cond, nothing
happens

¢ |f several threads are waiting on cond,
exactly one Is restarted

* Always returns O

Broadcasting a
condition variable

Int pthread_cond_broadcast(pthread cond_t *cond)

+ Restarts all the threads that are waiting on the
condition variable cond.

+ Nothing happens if no threads are waiting on
cond.

+ Always returns 0.

Destroying a condition
variable

Int pthread_cond_destroy(pthread _cond_t *cond)

¢

Destroys a condition variable cond, freeing the
resources it might hold.

No threads must be waiting on the condition
variable when pthread cond_destroy() is called

In LinuxThreads, the call does nothing except
checking that the condition has no waiting
threads

On success, the call returns 0

In case some threads are waiting on cond,
pthread _cond_destroy returns EBUSY

No need to call this function for statically
Initialized condition variables

Tips for using condition
variables

* For every condition, use a single,
distinctly-associated with the condition,
condition variable

¢ Associate/use a single, unique mutex
with every condition variable

* Lock the mutex before checking the
condition protected by that mutex

+ Always use the same mutex when
changing variables of a condition

+ Keep a mutex for the shortest possible
time

+ Do not forget to release locks at the end
with pthread _mutex_unlock()

Use of: pthread _cond_init, pthread cond walit,
pthread cond_signal, pthread_cond_destroy

#include <stdio.h>

. . muteXx_condvar.c
#include <string.h> =

#include <stdlib.h>
#include <pthread.h>
#define perror2(s, e) fprintf(stderr, "%s: %s\n", s, strerror(e))

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

pthread cond_tcvar; [* Condition variable */

char buf[25]; /* Message to communicate */
void *thread_f(void *); [* Forward declaration */
main(){

pthread_t thr; int err;
/* Initialize condition variable */
pthread cond_init(&cvar, NULL);

If (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */
perror2("pthread_mutex_lock", err); exit(1); }
printf(""Thread %d: Locked the mutex\n", pthread_self());

/* New thread */

If (err = pthread_create(&thr, NULL, thread f, NULL)) {
perror2("pthread_create", err); exit(1); }

printf("Thread %d: Created thread %d\n", pthread_self(), thr);

62

}

mutex_condvar.c

printf(""Thread %d: Waiting for signal\n", pthread_self());
pthread cond_wait(&cvar, &mtx); /* Wait for signal */
printf("Thread %d: Woke up\n", pthread_self());
printf(""Thread %d: Read message \"%s\"\n",

pthread_self(), buf);

If (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */
perror2("pthread_mutex_unlock", err); exit(1); }
printf(""Thread %d: Unlocked the mutex\n", pthread_self());

If (err = pthread_join(thr, NULL)) { /* Wait for thread */
perror2("pthread_join", err); exit(1); } /* termination */
printf("Thread %d: Thread %d exited\n", pthread_self(), thr);

if (err = pthread_cond_destroy(&cvar)) {
/* Destroy condition variable */
perror2("pthread_cond_destroy", err); exit(1); }
pthread exit(NULL);

mutex_condvar.c

void *thread f(void *argp){ /* Thread function */
Int err;

printf(""Thread %d: Just started\n", pthread_self());
printf("Thread %d: Trying to lock the mutex\n", pthread_self());

If (err = pthread_mutex_lock(&mtx)) /* Lock mutex */
perror2("pthread _mutex_lock", err); exit(1); }
printf(""Thread %d: Locked the mutex\n", pthread_self());

strcpy(buf, "This Is a test message");

printf(""Thread %d: Wrote message \"%s\"\n",

pthread_self(), buf);

pthread _cond_signal(&cvar); /* Awake other thread */
printf("Thread %d: Sent signal\n", pthread_self());

If (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */
perror2("pthread_mutex_unlock", err); exit(1); }
printf("Thread %d: Unlocked the mutex\n", pthread_self());

pthread_exit(NULL);

64

Execution output

mema@bowser> ./mutex_condvar

Thread 1210546512:
Thread 1210549360:
Thread 1210549360:
Thread 1210546512:
Thread 1210546512:
Thread 1210549360:
Thread 1210549360:
Thread 1210549360:
Thread 1210549360:
Thread 1210546512
Thread 1210546512:
Thread 1210546512
Thread 1210546512

mema@bowser>

Locked the mutex

Just started

Trying to lock the mutex
Created thread 1210549360
Waiting for signal

Locked the mutex

Wrote message ""This is a test message"”
Sent signal

Unlocked the mutex

Woke up

Read message ""This is a test message""
Unlocked the mutex

Thread 1210549360 exited

65

Three threads increase the value of a global
variable while a fourth thread suspends its
operation until a maximum value is reached.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define perror2(s, e) fprintf(stderr, "%s: %s\n", s, strerror(e))

counter.c

#define COUNT_PER_THREAD 8 /* Count increments by each thread
#define THRESHOLD 19 * Count value to wake up thread */

int count = 0; [* The counter */

int thread _ids[4] = {0, 1, 2, 3}; [* My thread ids */
pthread _mutex_t mtx; [* mutex */

pthread cond_tcv; [* the condition variable */

void *incr(void *argp){
Inti, j, err, *id = argp;
for (i=0 ; i<COUNT_PER_THREAD ; i++) {

If (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */
perror2("pthread_mutex_lock", err); exit(1); }

count++; /* Increment counter */

If (count == THRESHOLD) { /* Check for threshold */
pthread _cond_signal(&cv); /* Signal suspended thread */
printf("incr: thread %d, count = %d, threshold reached\n",

*1d,count);
by

66

¥

printf("incr: thread %d, count = %d\n", *id, count);

If (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */
perror2("pthread_mutex_unlock", err); exit(1); }
for (j=0 ; < 1000000000 ; j++); /* For threads to alternate *

}
pthread_exit(NULL);

void *susp(void *argp){

Int err, *id = argp;
printf("susp: thread %d started\n", *id);

If (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */
perror2("pthread_mutex_lock", err); exit(1);

¥
while (count < THRESHOLD) { /* If threshold not reached */

pthread cond_wait(&cv, &mtx); /* suspend */
printf(*'susp: thread %d, signal received\n”, *id);

}

If (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */
perror2("pthread_mutex_unlock", err); exit(1);

}

pthread_exit(NULL); }

Always use a while loop and re-check the
condition after receiving signal and returning
from pthread_cond_wait; Why? 67

main() { counter.c

Inti, err;

pthread _t threads[4];
pthread _mutex_init(&mtx, NULL); /* Initialize mutex */
pthread_cond_init(&cv, NULL); /* and condition variable */

for (I=0; i<3 ; i++)
If (err = pthread_create(&threads[i], NULL, incr,
(void *) &thread _ids[i])) {
/[* Create threads 0, 1, 2 */
perror2("pthread_create", err); exit(1);
¥
If (err = pthread_create(&threads[3], NULL, susp,
(void *) &thread ids[3])) {
/* Create thread 3 */
perror2("pthread_create", err); exit(1); }

for (i=0 ; i1<4 ; i++)
If (err = pthread_join(threads[i], NULL)) {
perror2("pthread_join", err); exit(1);
b
/[* Wait for threads termination */
printf("main: all threads terminated\n");
/[* Destroy mutex and condition variable */
If (err = pthread_mutex_destroy(&mtx)) {
perror2("pthread_mutex_destroy", err); exit(1); }
If (err = pthread_cond_destroy(&cv)) {
perror2("pthread _cond_destroy", err); exit(1); }

pthread_exit(NULL); }
68

mema@bowser> ./counter

Incr:
Incr:
Incr:

thread 0, count=1
thread 1, count = 2
thread 2, count =3

susp: thread 3 started

Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:
Incr:

thread O, count =4
thread 2, count=5
thread 1, count =6
thread 1, count=7
thread O, count =8
thread 2, count=9
thread 1, count = 10
thread O, count = 11
thread 2, count = 12
thread 1, count = 13
thread 0, count = 14
thread 2, count = 15
thread 1, count = 16
thread O, count = 17
thread 2, count = 18
thread 0, count = 19, threshold reached
thread O, count = 19

susp: thread 3, signal received

Incr:
Incr:
Incr:
Incr:
Incr:

thread 2, count = 20
thread 1, count = 21
thread 0, count = 22
thread 2, count = 23
thread 1, count = 24

main: all threads terminated
mema@bowser>

Thread safety

¢ Problem: a thread may call library
functions that are not thread-safe creating
spurious outcomes

+ A function is “thread-safe,” If multiple
threads can simultaneously execute
Invocations of the same function without
side-effects (or intereference of any type!)

+ POSIX specifies that all functions
(including all those from the Standard C
Library) except those listed on next slide
are implemented in a thread-safe manner

+ Directive: the calls listed on the next slide
should have thread-safe implementations
denoted with the postfix _r

System calls not required

to be thread-safe

asctime
dbm_clearerr
dbm_firstkey
dlemrar
endpwent
getc_unlocked
getgrgid
getnetbyaddr
getprotobynumber
getservbyname
getutxdine
inet_ntoa
localeconv
nl_langinfo
pututxline
setkey

ttyname

basename
dbm_rlose
dbm_nextkey
drand48
endutxent
getchar_unlocked
getgrname
getnetbyname
getprotoend
getservbyport
gmitime

643

localtime
ptsname

rand

Setpwent
unsetenv

catgets
dbm_delete
dbm_open
ecwvit

fovt

getdate
gethostbyaddr
getnetent
getpwent
getsarvent
horeate
lgamma
frand48
putc_unlocked
readdir
setuxent
wicstombs

crypt
dbm_emor
dbm_store
encrypt

fiw

geteny
gethostbyname
getopt
getopwnam
getutxent
hdestroy
lgammaf
mrand48
putchar_unlocked
setenv

strerror
wctomb

ctime
dbm_fetch
dirname
endgrent
govt
getgrent
getlogin
getprotobynam
getpwuid
getutxid
hsearch
lgammal
e
puteny
setgrent
striok

Thread safety

* An easy (“dirty”’) way to safely use the
above calls with threads is to invoke them
In conjunction with mutexes (i.e., In
mutually exclusive fashion)

¢ Can convert non-thread-safe functions to
safe as follows:

= 1) Lock a mutex, 2) call the function, 3) use
data returned (e.g., pointer to a struct allocated
somewhere), 4) unlock mutex

= 1) Lock mutex, 2) call function 3) copy struct
pointed to by returned pointer for later use 4)
unlock
¢+ Remember: _r at end of function name

means it is re-entrant (i.e., thread-safe)

72

Producer-Consumer
Problem

L -

producers - buffer = consumers

o -

+ Producers (P) insert data into buffer
¢ Consumers (C) read data from the buffer

+ \What do we want to avoid?

= C starts reading an object that a producer has
not yet finished inserting

= C reads an object from the buffer that does not
exist

= C reads an object that has already been removed
from the buffer

= P places an item in the buffer, when buffer is
full

= P overwrites an item in the buffer that has not
yet been read by a consumer

73

Example: Bounded cyclical
buffer

.I| I
— —
\ ,J“JI 0 L |
bufin — "\ \‘ 5 /(\\ " bufout

bufin: points at next available slot for storing item
bufout: points at slot where next reader should read
from

74

Solution to bounded buffer problem

#include <errno.h>
#include <pthread.h>
#include “buffer.h”

static buffer_t buffer[BUFSIZE];
static pthread_mutex_t bufferlock =
PTHREAD MUTEX_ INITIALIZER;
static int bufin = 0;
static int bufout = 0;
static int totalitems = 0; «—__ [Too0 vgpyovv oto buffer.
Xpetaleton?
int getitem(buffer_t *itemp) { /* remove item from buffer
and put in *itemp */
int error;
Int erroritem = O;
if (error = pthread__mutex_lock(&bufferlock))
[* no mutex, give up */
return error;
If (totalitems > 0) { /* buffer has something to remove */
*itemp = buffer[bufout];
bufout = (bufout + 1) % BUFSIZE;
totalitems--;
} else
erroritem = EAGAIN:;
If (error = pthread_mutex_unlock(&bufferlock))
return error; /* unlock error more serious than no item*/

return erroritem; T :
1 EMGTPEPEL AV OEV

} « VITLAPYOVV OEOOUEVAL?

int putitem(buffer_t item) { /* insert item into buffer */
int error;
int erroritem = 0;
If (error = pthread_mutex_lock(&bufferlock))
[* no mutex, give up */
return error;
If (totalitems < BUFSIZE) { /* buffer has room for another item */
buffer[bufin] = item;
bufin = (bufin + 1) % BUFSIZE;
totalitems++;
} else
erroritem = EAGAIN:;
If (error = pthread_mutex_unlock(&bufferlock))
return error; /* unlock error more serious than no slot*/
return erroritem;

}

fetching 1tems from the
buffer

The following piece of code attempts to
retrieve 10 items from the buffer[8] ring...

Int error, i, item;
for (i=0; i<10; i++){
while ((error = getitem(&item)) && (error== EAGAIN)) ;

If (error) break;
printf("Retrieved item %d: %d\n", i, item);

}

Problems??

77

fetching 1tems from the
buffer

The following piece of code attempts to
retrieve 10 items from the buffer[8] ring...

Int error, i, item;

for (i=0; iI<10; i++){
while ((error = getitem(&item)) && (error== EAGAIN)) ;
If (error) break;
printf("Retrieved item %d: %d\n", i, item);

}

Problem??
1) busy waiting
2) producers might get blocked --
(readers might continuously grab lock first)
Solution:
Use condition variables

/8

Another producer-consumer example

// from www.mario-konrad.ch, changed slightly

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#define POOL_SIZE 6

typedef struct {
Int data[POOL_SIZE];
Int start;
int end;
Int count;
} pool _t;

int num_of _items = 15;

pthread _mutex_t mtx;

pthread cond_t cond_nonempty;
pthread _cond_t cond_nonfull;
pool_t pool;

void initialize(pool_t * pool) {
pool->start = 0;
pool->end = -1;
pool->count = 0;

prod-cons.c

79

void place(pool_t* pool, int data) { W

pthread mutex_lock(&mtx);

while (pool->count >= POOL_SIZE) {
printf(*'>> Found Buffer Full \n"");
pthread_cond_wait(&cond_nonfull, &mtx);
}

pool->end = (pool->end + 1) % POOL_SIZE;

pool->data[pool->end] = data;

pool->count++;

pthread mutex_unlock(&mtx);

}

int obtain(pool_t * pool) {

int data = 0;

pthread mutex_lock(&mtx);

while (pool->count <=0) {
printf(*'>> Found Buffer Empty \n"");
pthread cond_ wait(&cond_nonempty, &mtx);
}

data = pool->data[pool->start];

pool->start = (pool->start + 1) % POOL_SIZE;

pool->count--;

pthread mutex_unlock(&mtx);

return data;

80

void * producer(void * ptr) lm

{

while (num_of _items > 0) {
place(&pool, num_of items);
printf(*'producer: %d\n"’, num_of _items);
num_of_items--;
pthread cond_signal(&cond_nonempty);
usleep(300000);
}

pthread_exit(0);

}

void * consumer(void * ptr)
{
while (num_of _items > 0 || pool.count > 0) {
printf(*'consumer: %d\n"’, obtain(&pool));
pthread cond_signal(&cond_nonfull);
usleep(500000);

}
pthread_exit(0);

81

prod-cons.c

int main(){
pthread_t cons, prod,;

Initialize(&pool);

pthread _mutex_init(&mtx, 0);

pthread _cond_init(&cond_nonempty, 0);
pthread cond_init(&cond_nonfull, 0);

pthread_create(&cons, 0, consumer, 0);
pthread_create(&prod, 0, producer, 0);

pthread_join(prod, 0);
pthread_join(cons, 0);

pthread cond_destroy(&cond_nonempty);
pthread cond_destroy(&cond_nonfull);
pthread _mutex_destroy(&mtx);

return O;

mema@bowser> ./prod-cons
>> Found Buffer Empty
producer: 15

consumer: 15

producer: 14

consumer: 14

producer: 13

producer: 12

consumer: 13

producer: 11

consumer: 12

producer: 10

producer: 9

consumer: 11

producer: 8

producer: 7

consumer: 10

producer: 6

consumer: 9

producer: 5

producer: 4

consumer: 8

producer: 3

producer: 2

consumer: 7/

producer: 1

consumer:
consumer:
consumer:
consumer:
consumer:
consumer: 1
mema@bowser>

N WA OO

mema@bowser> ./prod-cons

>> Found Buffer Empty

producer: 15
consumer: 15
producer: 14
producer: 13
producer: 12
producer: 11
producer: 10
producer: 9

>> Found Buffer Full
consumer: 14
producer: 8

>> Found Buffer Full
consumer: 13
producer: 7

>> Found Buffer Full
consumer: 12
producer: 6

>> Found Buffer Full
consumer: 11
producer: 5

>> Found Buffer Full
consumer: 10
producer: 4

>> Found Buffer Full
consumer: 9
producer: 3

Outcome - usleep(0)

84

>> Found Buffer Full
consumer: 8
producer: 2
>> Found Buffer Full
consumer: 7
producer: 1
consumer:
consumer:
consumer:
consumer:
consumer:
consumer:
mema@bowser>

P NWS~OTO

Outcome - usleep(0)
(cont’d)

Food for Thought

«Anything wrong with this example? Hint: what data
are protected by mutexes?

*\With one producer/consumer, can we use if

Instead while in the condition check?

«\With multiple producers/consumers where multiple
Items can be added/removed at a time, does code need
to be changed?

Nnuoto - Movtero

Traditional processes

[—

Froct Froc2 Procs

Procd Procs
o=] ST e | REw
Space /L):

® dglelln

thfweﬁ/.j/ 2/ ‘ L

/5 g < ¢ S \

keme!

threads

Kerrnef

® =
Hardwarg FProcessors

Two-level multi-threaded Model

87

