
Topic 6: Threads*

2

Threads - Νήματα

•Lightweight Processes (LWPs)

•share single address space,

•each has its own flow control

•Try to overcome penalties when it comes to

context switching between different “flows”

(or sequence) of execution

•separate process for every flow of

of control is costly

Why Threads?

• Offer a more efficient way to develop apps

• on uniprocessor, one thread blocks on a

syscall (e.g., read), another grabs CPU

and does useful processing (faster user

interface, lower program execution

time)

• on multiprocessor, separate thread on

each CPU (program finishes faster)

•Question: In our network server example, if

creating multiple processes is a performance

issue, why not just use select()?

•What do threads give us over select()-based

network server?

Thread (Solaris) Model

Threads Overview

 One or more threads may be

executed in the context of a process.

 The entity that is being scheduled is

the thread – not the process itself.

 In the presence of a single

processor, threads are executed

concurrently.

 If there are more than one

processors, threads can be assigned

to different kernel thread (and so

different CPUs) and run in parallel.

 Any thread may create a new thread.

Threads Overview

 All threads of a single process share

the same address space (global,

static, heap, file descriptors etc.)

BUT they have their own PC, stack

and set of registers.

 The kernel can perform content

switches from one thread to another

faster than from one process to

another.

 The header #include <pthread.h> is

required by all programs that use

threads.

 Programs have to be compiled with

the pthread library.

 gcc <filename>.c -lpthread

Threads Overview

 The functions of the pthread library

do not set the value of the variable

errno and so, we cannot use the

function perror() for the printing of

a diagnostic message.

 If there is an error in one of the

thread functions, strerror() is used

for the printing of the diagnostic

code (which is the “function return”

for the thread).

char *strerror(int errnum)

 returns a pointer to a string that

describes the error code passed in the

argument errnum.

 requires: #include <string.h>

8

Threads vs. Processes

All threads disappear (the shared/common

address space is replaced)

exec()

This is somewhat more complex. See textbook.Signals

On exit(), all threads die together (pthread_exit

for the termination of a single thread).

exit()

On a fork(), only the thread that invoked the fork

is duplicated.

fork()

Two processes use

copies of the file

descriptors

Common. Any two

threads can use the

same descriptor. One

close() on this

descriptor is sufficient

File descriptors

Different for each

process. After a fork()

we have different

address spaces

Common. Any change

made by one thread is

visible to all (i.e.,

mallon()/free())

Address

space

ProcessesThreads

POSIX Thread
Management

Thread creation

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_func) (void *), void *arg);

 Creates a new thread with attributes

specified by attr within a process.

 Thread executes the function at address

start_func

 Upon successful completion, pthread

create() shall store the ID of the created

thread in the location referenced by thread.

 Through attr we can change features of the

thread but oftentimes we use the default

attribute values, by setting attr to NULL.

 If successful, returns 0; otherwise, an error

number shall be returned to indicate the

error.

Thread termination

void pthread_exit (void *retval);

 terminates the calling thread and

makes the value retvalue available

to any successful pthread_join()

with the terminating thread.

 After a thread has terminated, the

result of access to local (auto)

variables of the thread is undefined.

 References to local variables of the

exiting thread should not be used

for the retvalue parameter value.

pthread join - waiting
for thread termination

int pthread_join (pthread_t thread,

void ** retval);

 suspends execution of the calling thread

until the target thread terminates (unless

the target thread has already terminated).

 When a pthread_join() returns

successfully, the target thread has been

terminated.

 On successful completion, the function

returns 0.

 If retval is not NULL, then pthread_join()

copies the exit status of the target thread

into the location pointed to by *retval.

Identifying – Detaching
Threads
pthread_t pthread_self(void);

 Returns the thread-ID of the calling

thread

int pthread_detach(pthread_t thread);

 indicates that the storage for the

thread can be reclaimed only when

the thread terminates.

 If thread has not terminated,

pthread_detach() shall not cause it to

terminate.

 If the call succeeds, pthread_detach()

shall return 0; otherwise, an error

number shall be returned.

 Calling pthread_join() on a detached

thread fails.

14

Χρήση pthread_create, pthread_exit, pthread_join
και pthread_self

#include <stdio.h>

#include <string.h> /* For strerror */

#include <stdlib.h> /* For exit */

#include <pthread.h> /* For threads */

#define perror2(s,e) fprintf(stderr, "%s: %s\n", s, strerror(e))

void *thread_f(void *argp){ /* Thread function */

printf("I am the newly created thread %ld\n",

pthread_self());

printf(“Hanging on for a couple of secs!\n");

sleep(2);

printf(“I am the newly created thread and about to

exit! \n");

pthread_exit((void *) 47);

}

main(){

pthread_t thr;

int err, status;

/* New thread */

if (err = pthread_create(&thr, NULL, thread_f, NULL)) {

perror2("pthread_create", err);

exit(1);

}

printf("I am original thread %ld and I created

thread %ld\n", pthread_self(), thr);

Not recommended way of “exit”ing..

avoid using automatic values; use

malloc(ed) structs to return status

create_a_thread.c

15

Χρήση pthread_create, pthread_exit, pthread_join
και pthread_self

/* Wait for thread */

if (err = pthread_join(thr, (void **) &status)) {

perror2("pthread_join", err); /* termination */

exit(1);

}

else printf(“Just joined the two threads ->one!\n”);

printf("Thread %ld exited with code %d\n", thr, status);

printf("Thread %ld just before exiting (Original)\n",

pthread_self());

pthread_exit(NULL);

}

create_a_thread.c

16

Run output

mema@bowser> ./create_a_thread

I am original thread 8327046400 and I created thread 6097285120

I am the newly created thread 6097285120

Hanging on for a couple of secs!

I am the newly created thread and about to exit!

Just joined the two threads ->one!

Thread 6097285120 exited with code 47

Thread 8327046400 just before exiting (Original)

mema@bowser>

17

whichexit() can be executed as a thread

void *whichexit(void *arg){

int n;

int np1[1];

int *np2;

char s1[10];

char s2[] = "I am done";

n = 3;

np1 = n;

np2 = (int *)malloc(sizeof(int *));

*np2 = n;

strcpy(s1,"Done");

return(NULL);

}

Which of the above options could be safe replacement

for NULL as return value in whichexit function?

(Or as a parameter to pthread_exit?)

1. n

2. &n

3. (int *)n

4. np1

5. np2

6. s1

7. s2

8. “This works”

9. strerror(EINTR)

18

whichexit() can be executed as a thread

void *whichexit(void *arg){

int n;

int np1[1];

int *np2;

char s1[10];

char s2[] = "I am done";

n = 3;

np1 = n;

np2 = (int *)malloc(sizeof(int *));

*np2 = n;

strcpy(s1,"Done");

return(NULL);

}

Which of the above options could be safe replacement

for NULL as return value in whichexit function?

(Or as a parameter to pthread_exit?)

1. n

2. &n

3. (int *)n

4. np1

5. np2

6. s1

7. s2

8. “This works”

9. strerror(EINTR)

1. No, return value is a pointer not an int

2. No – automatic variable

3. Might work (but not in all impls- avoid)

4. No – automatic variable

5. Yes – dynamically allocated

6. No – automatic variable

7. No – automatic storage

8. Yes – In C, string literals have static storage

9. No – The string produced by strerror might not exist

19

Χρήση pthread_detach

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <pthread.h>

#define perror2(s,e) fprintf(stderr,"%s: %s\n",s,strerror(e))

void *thread_f(void *argp){ /* Thread function */

int err;

if (err = pthread_detach(pthread_self())) { /* Detach thread */

perror2("pthread_detach", err);

exit(1);

}

printf("I am thread %d and I was called with

argument %d\n", pthread_self(), *(int *) argp);

printf("I will wait for some time in detached now..10 secs\n”);

sleep(10);

printf(“About to leave detached thread now.. ld\n”,

pthread_self());

pthread_exit(NULL);

}

detached_thread.c

20

Χρήση pthread_detach

main(){

pthread_t thr;

int err, arg = 29;

/*New Thread */

if (err = pthread_create(&thr,NULL,thread_f,(void *) &arg)){

perror2("pthread_create", err);

exit(1);

}

sleep(2);

printf("I am original thread %d and I created thread %d\n",

pthread_self(), thr);

printf(“I am the original and I am done! \n”);

pthread_exit(NULL);

}

detached_thread.c

21

Run output

mema@bowser> ./detached_thread

I am thread 6133919744 and I was called with argument 29

I will wait for some time in detached now.. 10 secs

I am original thread 8327046400 and I created thread 6133919744

I am the original and I am done!

About to leave detached thread now.. 6133919744

mema@bowser>

22

Create n threads that wait for a random number of
seconds and then terminate

#include <stdio.h>

#include <string.h> /* For strerror */

#include <stdlib.h> /* For exit */

#include <pthread.h> /* For threads */

#define perror2(s,e) fprintf(stderr, "%s: %s\n", s, strerror(e))

#define MAX_SLEEP 10

void *sleeping(void *arg) {

long sl = (long) arg;

printf("thread %ld sleeping %d seconds ...\n",

pthread_self(), sl);

sleep(sl); /* Sleep a number of seconds */

printf("thread %ld waking up\n", pthread_self());

pthread_exit(NULL);

}

main(int argc, char *argv[]){

int n, i, err;

long sl;

pthread_t *tids;

if (argc > 1) n = atoi(argv[1]); /* Make integer */

else exit(0);

if (n > 50) { /* Avoid too many threads */

printf("Number of threads should be no more

than 50\n"); exit(0); }

if ((tids = malloc(n * sizeof(pthread_t))) == NULL) {

perror("malloc"); exit(1); }

random_sleeps.c

srandom((unsigned int) time(NULL)); /* Initialize generator */

for (i=0 ; i<n ; i++) {

/* Sleeping time 1..MAX_SLEEP */

sl = random() % MAX_SLEEP + 1;

if (err = pthread_create(tids+i, NULL,

sleeping, (void *) sl)) {

/* Create a thread */

perror2("pthread_create", err); exit(1);}

}

for (i=0 ; i<n ; i++) {

/* Wait for thread termination */

if (err = pthread_join(*(tids+i), NULL)) {

perror2("pthread_join", err);

exit(1);

}

}

printf("all %d threads have terminated\n", n);

}

random_sleeps.c

24

Sample output
mema@bowser> ./random_sleeps 12

thread 134685184 sleeping 8 seconds ...

thread 134559232 sleeping 3 seconds ...

thread 134685696 sleeping 7 seconds ...

thread 134686208 sleeping 1 seconds ...

thread 134558720 sleeping 2 seconds ...

thread 134559744 sleeping 2 seconds ...

thread 134560256 sleeping 5 seconds ...

thread 134560768 sleeping 8 seconds ...

thread 134561280 sleeping 5 seconds ...

thread 134684672 sleeping 4 seconds ...

thread 134686720 sleeping 2 seconds ...

thread 134687232 sleeping 8 seconds ...

thread 134686208 waking up

thread 134558720 waking up

thread 134559744 waking up

thread 134686720 waking up

thread 134559232 waking up

thread 134684672 waking up

thread 134560256 waking up

thread 134561280 waking up

thread 134685696 waking up

thread 134685184 waking up

thread 134560768 waking up

thread 134687232 waking up

all 12 threads have terminated

mema@bowser>

25

Going from a single-threaded program
to multi-threading

#include <stdio.h>

#define NUM 5

void print_mesg(char *);

int main(){

print_mesg("hello");

print_mesg("world\n");

}

void print_mesg(char *m){

int i;

for (i=0; i<NUM; i++){

printf("%s", m);

fflush(stdout);

sleep(1);

}

}
mema@bowser> ./print_single

hellohellohellohellohelloworld

world

world

world

world

mema@bowser>

26

First attempt: multi_hello.c

#include <stdio.h>

#include <pthread.h>

#define NUM 5

main()

{ pthread_t t1, t2;

void *print_mesg(void *);

pthread_create(&t1, NULL, print_mesg, (void *)"hello ");

pthread_create(&t2, NULL, print_mesg, (void *)"world\n");

pthread_join(t1, NULL);

pthread_join(t2, NULL);

}

void *print_mesg(void *m)

{ char *cp = (char *)m;

int i;

for (i=0;i<NUM; i++){

printf("%s", cp);

fflush(stdout);

sleep(2);

}

return NULL;

}

Output of 4 runs
mema@bowser> ./multi_hello

hello world

hello world

hello world

hello world

hello world

mema@bowser> ./multi_hello

hello world

world

hello hello world

hello world

hello world

mema@bowser> ./multi_hello

world

hello world

hello hello world

hello world

hello world

mema@bowser> ./multi_hello

world

hello hello world

hello world

world

hello world

hello mema@bowser>

28

Another Example: Synchronization attempt
(via sleep())
#include <stdio.h>

#include <pthread.h>

#define NUM 5

int counter=0;

main(){

pthread_t t1;

void *print_count(void *);

int i;

pthread_create(&t1, NULL, print_count, NULL);

for(i=0; i<NUM; i++){

counter++;

sleep(1);

}

pthread_join(t1,NULL);

}

void *print_count(void *m){

/* counter is a shared variable */

int i;

for (i=0;i<NUM;i++){

printf("count = %d\n",counter);

sleep(1);

/*changing this to something else has an effect */

}

return NULL;

}

incprint.c

29

Output

mema@bowser> ./incprint

count = 0

count = 1

count = 2

count = 3

count = 4

mema@bowser> ./incprint

count = 1

count = 1

count = 3

count = 4

count = 5

mema@bowser> ./incprint

count = 1

count = 2

count = 3

count = 4

count = 5

mema@bowser> ./incprint

count = 1

count = 1

count = 3

count = 4

count = 5

mema@bowser>

mema@bowser> ./incprint

count = 1

count = 1

count = 1

count = 1

count = 1

mema@bowser>

Changing the sleep(1) to sleep(0)

within print_count() we get the

following:

30

Counting words from two distinct files
#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <ctype.h>

int total_words;

int main(int ac, char *av[]){

pthread_t t1, t2;

void *count_words(void *);

if (ac != 3) {

printf("usage: %s file1 file2 \n", av[0]);

exit(1); }

total_words=0;

pthread_create(&t1, NULL, count_words, (void *)av[1]);

pthread_create(&t2, NULL, count_words, (void *)av[2]);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("Main thread with ID: %ld reports %5d total words\n”,

pthread_self(), total_words);

}

wordcount1.c

void *count_words(void *f){

char *filename = (char *)f;

FILE *fp; int c, prevc = '\0';

printf("In thread with ID: %ld counting words.. \n",

pthread_self());

if ((fp=fopen(filename,"r")) != NULL){

while ((c = getc(fp))!= EOF){

if (!isalnum(c) && isalnum(prevc))

total_words++;

prevc = c;

}

fclose(fp);

} else perror(filename);

return NULL;

}

wordcount1.c

32

Output

mema@bowser> wc file1 file2

1 4 15 file1

1 4 17 file2

2 8 32 total

mema@bowser> ./wordcount1 file1 file2

In thread with ID: 134559232 counting words..

In thread with ID: 134558720 counting words..

Main thread with ID: 134557696 reports 8 total words

mema@bowser> ./wordcount1 file1 file2

In thread with ID: 134559232 counting words..

In thread with ID: 134558720 counting words..

Main thread with ID: 134557696 reports 6 total words

mema@bowser>

Concurrent Access

Potential Problem:

Thread1 Thread2

.........

..........

total_words++ total_words++

.........

Race-condition: total_words might not have

consistent value after executing the above two

assignments.

Never allow concurrent access to data without

protection (when at least one access is write)!

Binary POSIX Mutexes

 When threads share common structures (resources),

the POSIX library offers a simplified version of

semaphores termed binary semaphores or mutexes.

 A binary semaphore can find itself in only two

states: locked or unlocked.

 int pthread_mutex_init(pthread_mutex_t *mutex,

const pthread_mutexattr_t *mutexattr)

 Initializes the mutex-object pointed to by mutex

according to the mutex attributes specified in

mutexattr.

 pthread_mutex_init always returns 0

 A mutex may also be initialized by setting its value

by the macro

 static pthread_mutex_t mymutex =

PTHREAD_MUTEX_INITIALIZER;

 Initialization of a mutex should occur only once

Locking a mutex

 Locking a mutex is carried out by:

int pthread_mutex_lock(pthread_mutex_t * mutex)

 If the mutex is currently unlocked, it becomes

locked and owned by the calling thread, and

pthread_mutex_lock returns immediately.

 If successful, pthread_mutex_lock returns 0.

 If the mutex is already locked by another thread,

pthread_mutex_lock blocks (or “suspends” for

the user) the calling thread until the mutex is

unlocked.

Locking a mutex

 int pthread_mutex_trylock (pthread_mutex_t

*mutex);

 behaves identically to pthread_mutex_lock,

except that it does not block the calling thread

if the mutex is already locked by another

thread

 instead, pthread_mutex_trylock returns

immediately with the error code EBUSY

 if pthread_mutex_trylock returns the error code

EINVAL, the mutex was not initialized properly.

Unlocking and
destroying a mutex

int pthread_mutex_unlock (pthread_mutex_t *mutex)

 If the mutex has been locked and owned by the

calling thread, the mutex gets unlocked.

 Upon successful call, it returns 0.

int pthread_mutex_destroy(pthread_mutex_t *mutex)

 Destroys the mutex, freeing resources it might hold.

 In the LinuxThreads implementation, the call does

nothing except checking that mutex is unlocked.

 Upon successful call, it returns 0.

38

Counting (correctly) words in two files

/* add all header files */

int total_words;

pthread_mutex_t counter_lock =

PTHREAD_MUTEX_INITIALIZER;

int main(int ac, char *av[])

{ pthread_t t1, t2;

void *count_words(void *);

if (ac != 3) {

printf("usage: %s file1 file2 \n", av[0]);

exit(1); }

total_words=0;

pthread_create(&t1, NULL, count_words, (void *)av[1]);

pthread_create(&t2, NULL, count_words, (void *)av[2]);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("Main thread with ID %ld reporting %5d

total words\n", pthread_self(),total_words);

}

wordcount2.c

void *count_words(void *f){

char *filename = (char *)f;

FILE *fp; int c, prevc = '\0';

if ((fp=fopen(filename,"r")) != NULL){

while ((c = getc(fp))!= EOF){

if (!isalnum(c) && isalnum(prevc)){

pthread_mutex_lock(&counter_lock);

total_words++;

pthread_mutex_unlock(&counter_lock);

}

prevc = c;

}

fclose(fp);

} else perror(filename);

return NULL;

}

wordcount2.c

40

Output

mema@bowser> wc file1 file2

1 4 15 file1

1 4 17 file2

2 8 32 total

mema@bowser> ./wordcount2 file1 file2

In thread with ID: 134559232 counting words..

In thread with ID: 134558720 counting words..

Main thread with ID: 134557696 reports 8 total words

mema@bowser>

41

Another program that counts words in
two files correctly

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#include <ctype.h>

#define EXIT_FAILURE 1

struct arg_set{

char *fname;

int count;

};

int main(int ac, char *av[]) {

pthread_t t1, t2;

struct arg_set args1, args2;

void *count_words(void *);

if (ac != 3) {

printf("usage: %s file1 file2 \n", av[0]);

exit (EXIT_FAILURE);

}

wordcount3.c

args1.fname = av[1]; args1.count = 0;

pthread_create(&t1, NULL,

count_words, (void *) &args1);

args2.fname = av[2]; args2.count = 0;

pthread_create(&t2, NULL,

count_words, (void *) &args2);

pthread_join(t1, NULL);

pthread_join(t2, NULL);

printf("In file %-10s there are %5d words\n",

av[1], args1.count);

printf("In file %-10s there are %5d words\n",

av[2], args2.count);

printf("Main thread %ld reporting %5d

total words\n", pthread_self(),

args1.count+args2.count);

}

wordcount3.c

43

void *count_words(void *a) {

struct arg_set *args = a;

FILE *fp; int c, prevc = '\0';

printf("Working within Thread with ID %ld

and counting\n",pthread_self());

if ((fp=fopen(args->fname,"r")) != NULL){

while ((c = getc(fp))!= EOF){

if (!isalnum(c) && isalnum(prevc)){

args->count++;

}

prevc = c;

}

fclose(fp);

} else perror(args->fname);

return NULL;

}

No mutex in this function!

wordcount3.c

mema@bowser> ./twordcount3 \

/etc/dictionaries-common/words \

/etc/dictionaries-common/ispell-default

Working within Thread with ID 1210238064 and counting

Working within Thread with ID 1218630768 and counting

In file /etc/dictionaries-common/words there are 123261 words

In file /etc/dictionaries-common/ispell-default there are 3 words

Main thread 1210235216 reporting 123264 total words

mema@bowser>

45

Tips

 pthread_mutex_trylock() returns EBUSY if

the mutex is already locked by another

thread

 Every mutex must be initialized only once

 pthread_mutex_unlock() should be called

only by the thread holding the mutex

 NEVER have pthread_mutex_lock() called

by the thread that has already locked the

mutex. A deadlock will occur

 If EINVAL is returned when trying to lock

a mutex, then the mutex has not been

initialized properly

 NEVER call pthread_mutex_destroy() on

a locked mutex (EBUSY)

46

Using: pthread_mutex_init, pthread_mutex_lock,
pthread_mutex_unlock, pthread_mutex_destroy

...............

pthread_mutex_t mtx; /* Mutex for synchronization */

char buf[25]; /* Message to communicate */

void *thread_f(void *); /* Forward declaration */

main() {

pthread_t thr;

int err;

printf("Main Thread %ld running \n",pthread_self());

pthread_mutex_init(&mtx, NULL);

if (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock", err); exit(1); }

printf("Thread %d: Locked the mutex\n", pthread_self());

/* New thread */

if (err = pthread_create(&thr, NULL, thread_f, NULL)) {

perror2("pthread_create", err); exit(1); }

printf("Thread %ld: Created thread %d\n", pthread_self(), thr);

strcpy(buf, "This is a test message");

printf("Thread %ld: Wrote message \"%s\" for thread %ld\n",

pthread_self(), buf, thr);

sync_by_mutex.c

if (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock", err); exit(1);

}

printf("Thread %ld: Unlocked the mutex\n", pthread_self());

if (err = pthread_join(thr, NULL)) { /* Wait for thread */

perror2("pthread_join", err); exit(1); } /* termination */

printf("Exiting Threads %ld and %ld \n", pthread_self(), thr);

if (err = pthread_mutex_destroy(&mtx)) { /* Destroy mutex */

perror2("pthread_mutex_destroy", err); exit(1); }

pthread_exit(NULL);

}

sync_by_mutex.c

48

void *thread_f(void *argp){ /* Thread function */

int err;

printf("Thread %ld: Just started\n", pthread_self());

printf("Thread %ld: Trying to lock the mutex\n", pthread_self());

if (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock", err); exit(1); }

printf("Thread %ld: Locked the mutex\n", pthread_self());

printf("Thread %ld: Read message \"%s\"\n", pthread_self(), buf);

if (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock", err); exit(1); }

printf("Thread %ld: Unlocked the mutex\n", pthread_self());

pthread_exit(NULL);

}

Shall block here

sync_by_mutex.c

mema@linux01> ./sync_by_mutex

Main Thread 1217464640 running

Thread 1217464640: Locked the mutex

Thread 1217464640: Created thread -1217467536

Thread 1217464640: Wrote message "This is a test message"

for thread 1217467536

Thread 1217464640: Unlocked the mutex

Thread 1217467536: Just started

Thread 1217467536: Trying to lock the mutex

Thread 1217467536: Locked the mutex

Thread 1217467536: Read message "This is a test message"

Thread 1217467536: Unlocked the mutex

Exiting Threads 1217464640 and 1217467536

mema@linux01>

50

Sum the squares of n integers using m threads

.................

#include <pthread.h>

#define perror2(s, e) fprintf(stderr, "%s: %s\n", s, strerror(e))

#define LIMITUP 100

pthread_mutex_t mtx; /* Mutex for synchronization */

int n, nthr, mtxfl; /* Variables visible by thread function */

double sqsum; /* Sum of squares */

void *square_f(void *); /* Forward declaration */

main(int argc, char *argv[]){

int i, err;

pthread_t *tids;

if (argc > 3) {

n = atoi(argv[1]); /* Last integer to be squared */

nthr = atoi(argv[2]); /* Number of threads */

mtxfl = atoi(argv[3]); }/* with lock (1)? or without lock (0) */

else exit(0);

if (nthr > LIMITUP) { /* Avoid too many threads */

printf("Number of threads should be up to 100\n"); exit(0); }

if ((tids = malloc(nthr * sizeof(pthread_t))) == NULL) {

perror("malloc"); exit(1); }

sum_of_squares.c

sqsum = (double) 0.0; /* Initialize sum */

pthread_mutex_init(&mtx, NULL); /* Initialize mutex */

for (i=0 ; i<nthr ; i++) {

if (err = pthread_create(tids+i, NULL, square_f, (void *) i)) {

/* Create a thread */

perror2("pthread_create", err); exit(1); } }

for (i=0 ; i<nthr ; i++)

if (err = pthread_join(*(tids+i), NULL)) {

/* Wait for thread termination */

perror2("pthread_join", err); exit(1); }

sum_of_squares.c

52

if (!mtxfl) printf("Without mutex\n");

else printf("With mutex\n");

printf("%2d threads: sum of squares up to %d is %12.9e\n",

nthr,n,sqsum);

sqsum = (double) 0.0; /* Compute sum with a single thread */

for (i=0 ; i<n ; i++)

sqsum += (double) (i+1) * (double) (i+1);

printf("Single thread: sum of squares up to %d is %12.9e\n",

n, sqsum);

printf("Formula based: sum of squares up to %d is %12.9e\n",

n, ((double) n)*(((double) n)+1)*(2*((double) n)+1)/6);

pthread_exit(NULL);

}

void *square_f(void *argp){ /* Thread function */

int i, thri, err;

thri = (int) argp;

for (i=thri ; i<n ; i+=nthr) {

if (mtxfl) /* Is mutex used? */

if (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock", err); exit(1); }

sqsum += (double) (i+1) * (double) (i+1);

if (mtxfl) /* Is mutex used? */

if (err = pthread_mutex_unlock(&mtx)) { /*Unlock mutex */

perror2("pthread_mutex_unlock", err); exit(1); } }

pthread_exit(NULL); }

sum_of_squares.c

53

Execution outcome

mema@bowser> ./sum_of_squares 12345678 99 1

With mutex

99 threads: sum of squares up to 12345678 is 6.272253963e+20

Single thread: sum of squares up to 12345678 is 6.272253963e+20

Formula based: sum of squares up to 12345678 is 6.272253963e+20

mema@bowser> ./sum_of_squares 12345678 99 0

Without mutex

99 threads: sum of squares up to 12345678 is 4.610571900e+20
Single thread: sum of squares up to 12345678 is 6.272253963e+20

Formula based: sum of squares up to 12345678 is 6.272253963e+20

Synchronization &
Performance

 Two threads, A and B

 A reads data from net and places in

buffer, B reads data from buffer and

computes with it

A: 1) Ανάγνωση δεδομένων

2) Κλείδωμα mutex

3) Τοποθέτηση στην ουρά

4) Ξεκλείδωμα mutex

5) Επιστροφή στο 1)

Β: 1) Κλείδωμα mutex

2) Ιf buffer not empty,

αφαίρεση δεδομένων

3) Ξεκλείδωμα mutex

4) Επιστροφή στο 1)

Αυτό δουλεύει μια χαρά. Βλέπετε κάποιο πιθανό

πρόβλημα;

55

Condition Variables

 A condition variable is a synchronization

mechanism that allows POSIX threads to

suspend execution and relinquish the

processors until some predicate on the

shared data is satisfied.

 Basic operations on condition variables:

 signal the condition (when the predicate

becomes true)

 wait for the condition, suspending execution

 The waiting lasts until another thread “signals”

(also called “notifies”) the condition

 A condition variable must always be

associated with a mutex to avoid a race

condition:

 A thread prepares to wait on a condition

variable and another thread signals the

condition just before the first thread actually

waits on the condition variable

Initializing a condition
variable

int pthread_cond_init(pthread_cond_t *cond,

pthread_condattr_t *cond_attr)

 Initializes the condition variable cond, using the

condition attributes specified in cond_attr, or

default attributes of cond_attr is simply NULL

 Always returns 0

 The LinuxThreads implementation does not

support attributes for condition variables (cond_

attr is ignored).

 Variables of type pthread_cond_t can also be

initialized statically, using the constant

PTHREAD_COND_INITIALIZER.

Waiting on a condition

int pthread_cond_wait (pthread_cond_t *cond

pthread_mutex_t *mutex);

 atomically unlocks the mutex and waits for the

condition variable cond to be signaled.

 Before calling pthread_cond_wait() the thread

must have *mutex locked

 The thread’s execution is suspended and the

thread does not consume any CPU time until the

condition variable is signaled (via a call by

another thread to pthread_cond_ signal() or

pthread_cond_broadcast()

 Before returning to the calling thread,

pthread_cond_wait re-acquires mutex

 Always returns 0

Signaling a condition
variable

int pthread_cond_signal(pthread_cond_t *cond)

 Restarts one of the threads that are waiting on

the condition variable cond

 If no threads are waiting on cond, nothing

happens

 If several threads are waiting on cond,

exactly one is restarted

 Always returns 0

Broadcasting a
condition variable

int pthread_cond_broadcast(pthread_cond_t *cond)

 Restarts all the threads that are waiting on the

condition variable cond.

 Nothing happens if no threads are waiting on

cond.

 Always returns 0.

Destroying a condition
variable

int pthread_cond_destroy(pthread_cond_t *cond)

 Destroys a condition variable cond, freeing the

resources it might hold.

 No threads must be waiting on the condition

variable when pthread_cond_destroy() is called

 In LinuxThreads, the call does nothing except

checking that the condition has no waiting

threads

 On success, the call returns 0

 In case some threads are waiting on cond,

pthread_cond_destroy returns EBUSY

 No need to call this function for statically

initialized condition variables

61

Tips for using condition
variables

 For every condition, use a single,

distinctly-associated with the condition,

condition variable

 Associate/use a single, unique mutex

with every condition variable

 Lock the mutex before checking the

condition protected by that mutex

 Always use the same mutex when

changing variables of a condition

 Keep a mutex for the shortest possible

time

 Do not forget to release locks at the end

with pthread_mutex_unlock()

62

Use of: pthread_cond_init, pthread_cond_wait,
pthread_cond_signal, pthread_cond_destroy

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <pthread.h>

#define perror2(s, e) fprintf(stderr, "%s: %s\n", s, strerror(e))

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cvar; /* Condition variable */

char buf[25]; /* Message to communicate */

void *thread_f(void *); /* Forward declaration */

main(){

pthread_t thr; int err;

/* Initialize condition variable */

pthread_cond_init(&cvar, NULL);

if (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock", err); exit(1); }

printf("Thread %d: Locked the mutex\n", pthread_self());

/* New thread */

if (err = pthread_create(&thr, NULL, thread_f, NULL)) {

perror2("pthread_create", err); exit(1); }

printf("Thread %d: Created thread %d\n", pthread_self(), thr);

mutex_condvar.c

printf("Thread %d: Waiting for signal\n", pthread_self());

pthread_cond_wait(&cvar, &mtx); /* Wait for signal */

printf("Thread %d: Woke up\n", pthread_self());

printf("Thread %d: Read message \"%s\"\n",

pthread_self(), buf);

if (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock", err); exit(1); }

printf("Thread %d: Unlocked the mutex\n", pthread_self());

if (err = pthread_join(thr, NULL)) { /* Wait for thread */

perror2("pthread_join", err); exit(1); } /* termination */

printf("Thread %d: Thread %d exited\n", pthread_self(), thr);

if (err = pthread_cond_destroy(&cvar)) {

/* Destroy condition variable */

perror2("pthread_cond_destroy", err); exit(1); }

pthread_exit(NULL);

}

mutex_condvar.c

64

void *thread_f(void *argp){ /* Thread function */

int err;

printf("Thread %d: Just started\n", pthread_self());

printf("Thread %d: Trying to lock the mutex\n", pthread_self());

if (err = pthread_mutex_lock(&mtx)) /* Lock mutex */

perror2("pthread_mutex_lock", err); exit(1); }

printf("Thread %d: Locked the mutex\n", pthread_self());

strcpy(buf, "This is a test message");

printf("Thread %d: Wrote message \"%s\"\n",

pthread_self(), buf);

pthread_cond_signal(&cvar); /* Awake other thread */

printf("Thread %d: Sent signal\n", pthread_self());

if (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock", err); exit(1); }

printf("Thread %d: Unlocked the mutex\n", pthread_self());

pthread_exit(NULL);

}

mutex_condvar.c

65

Execution output

mema@bowser> ./mutex_condvar

Thread 1210546512: Locked the mutex

Thread 1210549360: Just started

Thread 1210549360: Trying to lock the mutex

Thread 1210546512: Created thread 1210549360

Thread 1210546512: Waiting for signal

Thread 1210549360: Locked the mutex

Thread 1210549360: Wrote message "This is a test message"

Thread 1210549360: Sent signal

Thread 1210549360: Unlocked the mutex

Thread 1210546512: Woke up

Thread 1210546512: Read message "This is a test message"

Thread 1210546512: Unlocked the mutex

Thread 1210546512: Thread 1210549360 exited

mema@bowser>

66

Three threads increase the value of a global
variable while a fourth thread suspends its
operation until a maximum value is reached.

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

#define perror2(s, e) fprintf(stderr, "%s: %s\n", s, strerror(e))

#define COUNT_PER_THREAD 8 /* Count increments by each thread */

#define THRESHOLD 19 * Count value to wake up thread */

int count = 0; /* The counter */

int thread_ids[4] = {0, 1, 2, 3}; /* My thread ids */

pthread_mutex_t mtx; /* mutex */

pthread_cond_t cv; /* the condition variable */

void *incr(void *argp){

int i, j, err, *id = argp;

for (i=0 ; i<COUNT_PER_THREAD ; i++) {

if (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock", err); exit(1); }

count++; /* Increment counter */

if (count == THRESHOLD) { /* Check for threshold */

pthread_cond_signal(&cv); /* Signal suspended thread */

printf("incr: thread %d, count = %d, threshold reached\n",

*id,count);

}

counter.c

67

printf("incr: thread %d, count = %d\n", *id, count);

if (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock", err); exit(1); }

for (j=0 ; j < 1000000000 ; j++); /* For threads to alternate */

}

pthread_exit(NULL);

}

void *susp(void *argp){

int err, *id = argp;

printf("susp: thread %d started\n", *id);

if (err = pthread_mutex_lock(&mtx)) { /* Lock mutex */

perror2("pthread_mutex_lock", err); exit(1);

}

while (count < THRESHOLD) { /* If threshold not reached */

pthread_cond_wait(&cv, &mtx); /* suspend */

printf("susp: thread %d, signal received\n", *id);

}

if (err = pthread_mutex_unlock(&mtx)) { /* Unlock mutex */

perror2("pthread_mutex_unlock", err); exit(1);

}

pthread_exit(NULL); }

Always use a while loop and re-check the

condition after receiving signal and returning

from pthread_cond_wait; Why?

68

main() {

int i, err;

pthread_t threads[4];

pthread_mutex_init(&mtx, NULL); /* Initialize mutex */

pthread_cond_init(&cv, NULL); /* and condition variable */

for (i=0 ; i<3 ; i++)

if (err = pthread_create(&threads[i], NULL, incr,

(void *) &thread_ids[i])) {

/* Create threads 0, 1, 2 */

perror2("pthread_create", err); exit(1);

}

if (err = pthread_create(&threads[3], NULL, susp,

(void *) &thread_ids[3])) {

/* Create thread 3 */

perror2("pthread_create", err); exit(1); }

for (i=0 ; i<4 ; i++)

if (err = pthread_join(threads[i], NULL)) {

perror2("pthread_join", err); exit(1);

};

/* Wait for threads termination */

printf("main: all threads terminated\n");

/* Destroy mutex and condition variable */

if (err = pthread_mutex_destroy(&mtx)) {

perror2("pthread_mutex_destroy", err); exit(1); }

if (err = pthread_cond_destroy(&cv)) {

perror2("pthread_cond_destroy", err); exit(1); }

pthread_exit(NULL); }

counter.c

69

mema@bowser> ./counter

incr: thread 0, count = 1

incr: thread 1, count = 2

incr: thread 2, count = 3

susp: thread 3 started

incr: thread 0, count = 4

incr: thread 2, count = 5

incr: thread 1, count = 6

incr: thread 1, count = 7

incr: thread 0, count = 8

incr: thread 2, count = 9

incr: thread 1, count = 10

incr: thread 0, count = 11

incr: thread 2, count = 12

incr: thread 1, count = 13

incr: thread 0, count = 14

incr: thread 2, count = 15

incr: thread 1, count = 16

incr: thread 0, count = 17

incr: thread 2, count = 18

incr: thread 0, count = 19, threshold reached

incr: thread 0, count = 19

susp: thread 3, signal received

incr: thread 2, count = 20

incr: thread 1, count = 21

incr: thread 0, count = 22

incr: thread 2, count = 23

incr: thread 1, count = 24

main: all threads terminated

mema@bowser>

Thread safety

 Problem: a thread may call library

functions that are not thread-safe creating

spurious outcomes

 A function is “thread-safe,” if multiple

threads can simultaneously execute

invocations of the same function without

side-effects (or intereference of any type!)

 POSIX specifies that all functions

(including all those from the Standard C

Library) except those listed on next slide

are implemented in a thread-safe manner

 Directive: the calls listed on the next slide

should have thread-safe implementations

denoted with the postfix _r

System calls not required
to be thread-safe

72

Thread safety

 An easy (“dirty”) way to safely use the

above calls with threads is to invoke them

in conjunction with mutexes (i.e., in

mutually exclusive fashion)

 Can convert non-thread-safe functions to

safe as follows:

 1) Lock a mutex, 2) call the function, 3) use

data returned (e.g., pointer to a struct allocated

somewhere), 4) unlock mutex

 1) Lock mutex, 2) call function 3) copy struct

pointed to by returned pointer for later use 4)

unlock

 Remember: _r at end of function name

means it is re-entrant (i.e., thread-safe)

73

Producer-Consumer
Problem

 Producers (P) insert data into buffer

 Consumers (C) read data from the buffer

 What do we want to avoid?

 C starts reading an object that a producer has

not yet finished inserting

 C reads an object from the buffer that does not

exist

 C reads an object that has already been removed

from the buffer

 P places an item in the buffer, when buffer is

full

 P overwrites an item in the buffer that has not

yet been read by a consumer

74

Example: Bounded cyclical
buffer

bufin: points at next available slot for storing item

bufout: points at slot where next reader should read

from

Solution to bounded buffer problem

#include <errno.h>

#include <pthread.h>

#include “buffer.h”

static buffer_t buffer[BUFSIZE];

static pthread_mutex_t bufferlock =

PTHREAD_MUTEX_INITIALIZER;

static int bufin = 0;

static int bufout = 0;

static int totalitems = 0;

int getitem(buffer_t *itemp) { /* remove item from buffer

and put in *itemp */

int error;

int erroritem = 0;

if (error = pthread_mutex_lock(&bufferlock))

/* no mutex, give up */

return error;

if (totalitems > 0) { /* buffer has something to remove */

*itemp = buffer[bufout];

bufout = (bufout + 1) % BUFSIZE;

totalitems--;

} else

erroritem = EAGAIN;

if (error = pthread_mutex_unlock(&bufferlock))

return error; /* unlock error more serious than no item*/

return erroritem;

}

Πόσα υπάρχουν στο buffer.
Χρειάζεται?

Τι επιστρέφει αν δεν
υπάρχουν δεδομένα?

int putitem(buffer_t item) { /* insert item into buffer */

int error;

int erroritem = 0;

if (error = pthread_mutex_lock(&bufferlock))

/* no mutex, give up */

return error;

if (totalitems < BUFSIZE) { /* buffer has room for another item */

buffer[bufin] = item;

bufin = (bufin + 1) % BUFSIZE;

totalitems++;

} else

erroritem = EAGAIN;

if (error = pthread_mutex_unlock(&bufferlock))

return error; /* unlock error more serious than no slot*/

return erroritem;

}

77

fetching items from the
buffer

int error, i, item;

for (i=0; i<10; i++){

while ((error = getitem(&item)) && (error== EAGAIN)) ;

if (error) break;

printf("Retrieved item %d: %d\n", i, item);

}

Problems??

The following piece of code attempts to

retrieve 10 items from the buffer[8] ring...

78

fetching items from the
buffer

int error, i, item;

for (i=0; i<10; i++){

while ((error = getitem(&item)) && (error== EAGAIN)) ;

if (error) break;

printf("Retrieved item %d: %d\n", i, item);

}

Problem??

1) busy waiting

2) producers might get blocked --

(readers might continuously grab lock first)

Solution:

Use condition variables

The following piece of code attempts to

retrieve 10 items from the buffer[8] ring...

79

Another producer-consumer example

// from www.mario-konrad.ch, changed slightly

#include <stdio.h>

#include <pthread.h>

#include <unistd.h>

#define POOL_SIZE 6

typedef struct {

int data[POOL_SIZE];

int start;

int end;

int count;

} pool_t;

int num_of_items = 15;

pthread_mutex_t mtx;

pthread_cond_t cond_nonempty;

pthread_cond_t cond_nonfull;

pool_t pool;

void initialize(pool_t * pool) {

pool->start = 0;

pool->end = -1;

pool->count = 0;

}

prod-cons.c

80

void place(pool_t * pool, int data) {

pthread_mutex_lock(&mtx);

while (pool->count >= POOL_SIZE) {

printf(">> Found Buffer Full \n");

pthread_cond_wait(&cond_nonfull, &mtx);

}

pool->end = (pool->end + 1) % POOL_SIZE;

pool->data[pool->end] = data;

pool->count++;

pthread_mutex_unlock(&mtx);

}

int obtain(pool_t * pool) {

int data = 0;

pthread_mutex_lock(&mtx);

while (pool->count <= 0) {

printf(">> Found Buffer Empty \n");

pthread_cond_wait(&cond_nonempty, &mtx);

}

data = pool->data[pool->start];

pool->start = (pool->start + 1) % POOL_SIZE;

pool->count--;

pthread_mutex_unlock(&mtx);

return data;

}

prod-cons.c

81

void * producer(void * ptr)

{

while (num_of_items > 0) {

place(&pool, num_of_items);

printf("producer: %d\n", num_of_items);

num_of_items--;

pthread_cond_signal(&cond_nonempty);

usleep(300000);

}

pthread_exit(0);

}

void * consumer(void * ptr)

{

while (num_of_items > 0 || pool.count > 0) {

printf("consumer: %d\n", obtain(&pool));

pthread_cond_signal(&cond_nonfull);

usleep(500000);

}

pthread_exit(0);

}

prod-cons.c

int main(){

pthread_t cons, prod;

initialize(&pool);

pthread_mutex_init(&mtx, 0);

pthread_cond_init(&cond_nonempty, 0);

pthread_cond_init(&cond_nonfull, 0);

pthread_create(&cons, 0, consumer, 0);

pthread_create(&prod, 0, producer, 0);

pthread_join(prod, 0);

pthread_join(cons, 0);

pthread_cond_destroy(&cond_nonempty);

pthread_cond_destroy(&cond_nonfull);

pthread_mutex_destroy(&mtx);

return 0;

}

prod-cons.c

83

mema@bowser> ./prod-cons

>> Found Buffer Empty

producer: 15

consumer: 15

producer: 14

consumer: 14

producer: 13

producer: 12

consumer: 13

producer: 11

consumer: 12

producer: 10

producer: 9

consumer: 11

producer: 8

producer: 7

consumer: 10

producer: 6

consumer: 9

producer: 5

producer: 4

consumer: 8

producer: 3

producer: 2

consumer: 7

producer: 1

consumer: 6

consumer: 5

consumer: 4

consumer: 3

consumer: 2

consumer: 1

mema@bowser>

84

Outcome - usleep(0)

mema@bowser> ./prod-cons

>> Found Buffer Empty

producer: 15

consumer: 15

producer: 14

producer: 13

producer: 12

producer: 11

producer: 10

producer: 9

>> Found Buffer Full

consumer: 14

producer: 8

>> Found Buffer Full

consumer: 13

producer: 7

>> Found Buffer Full

consumer: 12

producer: 6

>> Found Buffer Full

consumer: 11

producer: 5

>> Found Buffer Full

consumer: 10

producer: 4

>> Found Buffer Full

consumer: 9

producer: 3

>> Found Buffer Full

consumer: 8

producer: 2

>> Found Buffer Full

consumer: 7

producer: 1

consumer: 6

consumer: 5

consumer: 4

consumer: 3

consumer: 2

consumer: 1

mema@bowser>

Outcome - usleep(0)
(cont’d)

Food for Thought

•Anything wrong with this example? Hint: what data

are protected by mutexes?

•With one producer/consumer, can we use if

instead while in the condition check?

•With multiple producers/consumers where multiple

items can be added/removed at a time, does code need

to be changed?

87

Νήματα - Μοντέλο

Two-level multi-threaded Model

