
Distrib. Comput. (2006) 18(6): 421–434
DOI 10.1007/s00446-005-0150-7

ORIGINAL ARTICLE

Mema Roussopoulos · Mary Baker

Practical load balancing for content requests
in peer-to-peer networks

Received: 5 August 2005 / Accepted: 15 September 2005 / Published online: 10 January 2006
C© Springer-Verlag 2006

Abstract This paper studies the problem of balancing the
demand for content in a peer-to-peer network across hetero-
geneous peer nodes that hold replicas of the content. Pre-
vious decentralized load balancing techniques in distributed
systems base their decisions on periodic updates containing
information about load or available capacity observed at the
serving entities. We show that these techniques do not work
well in the peer-to-peer context; either they do not address
peer node heterogeneity, or they suffer from significant load
oscillations which result in unutilized capacity. We propose
a new decentralized algorithm, Max-Cap, based on the max-
imum inherent capacities of the replica nodes. We show that
unlike previous algorithms, it is not tied to the timeliness
or frequency of updates, and consequently requires signif-
icantly less update overhead. Yet, Max-Cap can handle the
heterogeneity of a peer-to-peer environment without suffer-
ing from load oscillations.

Keywords Peer-to-peer networks · Load balancing ·
Content replica selection

1 Introduction

Peer-to-peer networks are becoming popular architectures
for content distribution. The basic premise in such networks
is that any one of a set of “replica” nodes can provide
the requested content, increasing the availability of interest-
ing content without requiring the presence of any particular
serving node.

Many peer-to-peer networks push index entries through-
out the overlay peer network in response to lookup queries
for specific content [5, 40, 43, 44, 47]. These index entries

M. Roussopoulos (B)
Harvard University, Cambridge, MA
E-mail: mema@eecs.harvard.edu

M. Baker
HP Labs, Palo Alto, CA
E-mail: mgbaker@hp.com

point to the locations of replica nodes where the particular
content can be served, and are typically cached for a finite
amount of time, after which they are considered stale. Until
now, however, there has been little focus on how an individ-
ual peer node should choose among the returned index en-
tries to forward client requests. One reason for considering
this choice is load balancing.

In this paper we explore the problem of load-balancing
the demand for content in a peer-to-peer network. Our pri-
mary goal is to fairly balance the uplink bandwidths of serv-
ing peers because upload bandwidth is typically the most
scarce resource in a peer-to-peer network [45]. Balancing
upload bandwidths is challenging for several reasons. First,
in a peer-to-peer network there is no centralized dispatcher
that performs the load-balancing of requests; each peer node
individually makes its own decision on how to assign in-
coming requests to replicas. Second, nodes do not typically
know the identities of all other peer nodes in the network,
and therefore they cannot coordinate with those other nodes.
Finally, replica nodes in peer-to-peer networks are not nec-
essarily homogeneous. Some replica nodes may be powerful
with good connectivity, whereas others may have limited in-
herent capacity to handle content requests.

Previous load-balancing techniques base their decisions
on periodic or continuous updates containing information on
load or available capacity. We refer to this information as
load-balancing information (LBI). Previous approaches

• do not take into account the heterogeneity of peer nodes
(e.g., [23, 36]), or

• use techniques such as migration or handoff of tasks
(e.g., [30]) that require close coordination amongst serv-
ing entities that cannot be achieved in a peer-to-peer en-
vironment, or

• suffer from significant load oscillations, or “herd behav-
ior” [36], where peer nodes simultaneously forward an
unpredictable number of requests to replicas with low
reported load or high reported available capacity causing
them to become overloaded. This herd behavior defeats
the attempt to provide load-balancing.



422 M. Roussopoulos, M. Baker

Most of these techniques also depend on the timeliness
of LBI updates. The wide-area nature of peer-to-peer net-
works and the variation in transfer delays among peer
nodes makes guaranteeing the timeliness of updates diffi-
cult. Peer nodes will experience varying degrees of stale-
ness in the LBI updates they receive depending on their dis-
tance from the source of updates. Moreover, maintaining
the timeliness of LBI updates is also costly, since all up-
dates must travel across the Internet to reach interested peer
nodes. The smaller the inter-update period and the larger
the overlay peer network, the greater the network traffic
overhead incurred by LBI updates. Therefore, in a peer-
to-peer environment, an effective load-balancing algorithm
should not be critically dependent on the timeliness of up-
dates.

In this paper we propose a new and practical load- bal-
ancing algorithm, Max-Cap, that makes decisions based on
the inherent maximum capacities of the replica nodes. We
define maximum capacity as the maximum number of con-
tent requests per time unit that a replica claims it can handle.
Alternative measures such as maximum (allowed) connec-
tions can also be used. The maximum capacity is like a con-
tract by which the replica agrees to abide. If the replica can-
not sustain its advertised rate, then it may choose to advertise
a new maximum capacity to avoid overload. Max-Cap is not
tied to the timeliness or frequency of LBI updates, and as a
result, when applied in a peer-to-peer environment, outper-
forms algorithms based on load or available capacity, whose
benefits are heavily dependent on the timeliness of the
updates.

We show that Max-Cap takes peer node heterogeneity
into account unlike algorithms based on load. While algo-
rithms based on available capacity take heterogeneity into
account, we show that surprisingly, they can suffer from sig-
nificant load oscillations in the presence of small fluctua-
tions in the workload, even when the workload request rate
is well below (e.g., 60%) the total maximum capacity of the
replicas. On the other hand, Max-Cap avoids overloading
replicas in such cases and is more resilient to large fluctu-
ations in workload. This is because a key advantage of Max-
Cap is that it uses information that is not affected by changes
in the workload.

In a peer-to-peer environment the expectation is that the
set of participating nodes changes constantly. Since replica
arrivals to and departures from the peer network can affect
the information carried in LBI updates, we also compare
Max-Cap against availability-based algorithms when the set
of replicas continuously changes. We show that Max-Cap is
less affected by changes in the replica set than the availabi-
lity-based algorithms.

We evaluate load-based and availability-based algo-
rithms and compare them with Max-Cap. We use the
Controlled Update Propagation (CUP) protocol [43] to prop-
agate the LBI updates required by these algorithms. LBI up-
dates are propagated from replica nodes serving particular
content down a conceptual tree, similar to an application-
level multicast tree. The vertices of this tree are peer nodes

receiving requests for that content. The peer nodes use the
LBI updates when choosing to which replica to forward a
client request. While we study the load-balancing problem
within the context of peer-to-peer systems, the results we
presents here apply to any distributed system where the goal
is to balance demand for content or service replicated across
a set of widely dispersed heterogeneous servers.

The rest of this paper is organized as follows. Section 2
describes the system model under study. Section 3 intro-
duces the algorithms compared. Section 4 presents experi-
mental results showing that in a peer-to-peer environment,
Max-Cap outperforms the other algorithms and does so with
no or much less overhead. Section 5 describes related work,
and Sect. 6 concludes the paper.

2 System model

We assume a peer-to-peer overlay network of widely dis-
tributed nodes. The peers store and share content with other
peers and are heterogeneous in their capacity to serve con-
tent. The placement of a file on a particular peer is decided
by the owner of the peer, not by a global placement policy.
That is, there is no control over where replicas of a partic-
ular file are placed. Finally, the set of participating peers in
the system is dynamic as peers enter and leave the system
continuously and content availability at a peer can last for as
little as a few minutes.

3 The algorithms

We evaluate two different algorithms, Inv-Load and Avail-
Cap. Each represents a different class of algorithms that
has been proposed in the distributed systems literature. We
study how these algorithms perform when applied in a peer-
to-peer context and compare them with our proposed algo-
rithm, Max-Cap. These three algorithms depend on differ-
ent LBI being propagated, but their overall goal is the same:
to balance the demand for a specific piece of content fairly
across the set of replicas providing that content. In particular,
the algorithm should avoid overloading some replicas while
underloading others, especially when the aggregate capac-
ity of all replicas is sufficient to handle the content request
workload. Moreover, the algorithm should prevent individ-
ual replicas from oscillating between being overloaded and
underloaded.

Oscillation is undesirable for two reasons. First, many
applications limit the number of requests a host can have
outstanding. This means that when a replica node is over-
loaded, it will drop any further requests it receives. This
forces the requesting client (or user) to resend its request re-
sulting in additional delay. Even for applications that allow
requests to be queued while a replica node is overloaded,
the queuing delay incurred will increase. Second, and more
importantly, in a peer-to-peer network, the issue of fairness
is sensitive. The owners of replica nodes are likely not to



Practical load balancing for content requests in peer-to-peer networks 423

want their nodes to be overloaded while other nodes in the
network are underloaded. This is particularly true in peer-to-
peer networks where the placement of content on a particu-
lar node is decided by the owner of the node, not by a global
placement policy. 1 An algorithm that can fairly distribute
the request workload without causing replicas to oscillate
between being overloaded and underloaded is preferable.

We describe each of the algorithms we evaluate in turn:
Inv-Load: Allocation Proportional to Inverse Load.

There are many load-balancing algorithms that base the allo-
cation decision on the load observed at and reported by each
of the serving entities (see Related Work Sect. 5). The rep-
resentative load-based algorithm we examine is Inv-Load,
based on the algorithm presented by Genova et al. [23]. In a
homogeneous environment, this algorithm has been shown
to perform as well as or better than other load-based al-
gorithms. In this algorithm, each peer node in the network
chooses to forward a request to a replica with probability in-
versely proportional to the load reported by the replica. This
means that the replica with the smallest reported load (as of
the last report received) will receive the most requests from
the node. Load is defined as the number of request arrivals at
the replica per time unit. Other possible load metrics include
the number of request connections open at the replica at re-
porting time [7] or the request queue length at the replica
[19].

When applied in a heterogeneous environment such as
a peer-to-peer network, Inv-Load fails. This is intuitive
because Inv-Load does not distinguish between replicas
observing the same load but having different maximum ca-
pacities. For completeness only, we verify this intuition in
Appendix B.

We have altered Inv-Load to take heterogeneity into ac-
count with a weighting scheme based on maximum capac-
ity. We find that the results for this variation are identical to
those of Avail-Cap which is the algorithm we consider next.
For this reason, we do not consider Inv-Load nor weighted
Inv-Load in the remainder of the paper.

Avail-Cap: Allocation Proportional to Available Capac-
ity. In this algorithm, each peer node chooses to forward a
request to a replica with probability proportional to the avail-
able capacity reported by the replica. Available capacity is
the maximum request rate a replica can handle minus the
load (actual request rate) experienced at the replica. This al-
gorithm is based on the algorithm proposed by Zhu et al.
[52] for load sharing in a cluster of heterogeneous servers.
Avail-Cap takes into account heterogeneity because it dis-
tinguishes between nodes that experience the same load but
have different maximum capacities.

1 For example, a global placement policy based on a distributed hash
table requires that a particular file be stored on the node responsible for
the portion of the hash table to which the name of the file hashes. This
is in contrast to a scheme where that node simply stores pointers to the
locations of nodes that voluntarily store the content. We thus do not
focus on replication-based approaches such as those used in content
distribution networks (e.g., Codeen [49] and Beehive [38]) because the
premise is that proactive replication will be difficult to enforce in a
peer-to-peer network of voluntary, non-dedicated peers.

Avail-Cap appears intuitive because it sends more re-
quests to the replicas that are currently more capable of han-
dling requests. Replicas that are overloaded report an avail-
able capacity of zero and are excluded from the allocation
decision until they once more report a positive available ca-
pacity. Unfortunately, this exclusion can cause Avail-Cap to
suffer from severe load oscillations (Sect. 4.2) and is the
main reason for its instability.

Both Inv-Load and Avail-Cap depend on the load or
available capacity last reported by a replica until the next
report is available. Since both these metrics are directly af-
fected by changes in the request workload, both algorithms
require that replicas periodically update their LBI. (We as-
sume replicas are not synchronized in when they send re-
ports.) Decreasing the period between two consecutive LBI
updates increases the freshness of the LBI at a cost of
higher overhead, measured in number of updates pushed
through the peer-to-peer network. This overhead is exacer-
bated with increasing network size. In large peer-to-peer net-
works, there may be several hops over which updates will
have to travel, and the time to do so could be on the order of
seconds.

Max-Cap: Allocation Proportional to Maximum Capac-
ity. This is the algorithm we propose. In this algorithm, each
peer node chooses to forward a request to a replica with
probability proportional to the maximum capacity of the
replica. The maximum capacity is a contract each replica
advertises indicating the maximum number of requests the
replica claims to handle per time unit. Unlike load and avail-
able capacity, the maximum capacity of a replica is not af-
fected by changes in the request workload. Therefore, Max-
Cap does not depend on the timeliness of LBI updates. In
fact, replicas only push updates when they choose to ad-
vertise a new maximum capacity. This choice depends on
extraneous factors that are unrelated to and independent of
the workload (see Sect. 4.7). If replicas rarely choose to
change contracts, Max-Cap incurs near-zero overhead. We
show that this independence of the timeliness and frequency
of LBI updates makes Max-Cap practical and elegant for use
in peer-to-peer networks and other distributed systems.

4 Experiments

We first describe the experimental setup including the de-
tails of the simulator, the network model, and the parameters
we use. We then evaluate the performance of Avail-Cap and
Max-Cap under a variety of scenarios observed in real-world
peer-to-peer systems.

4.1 Experimental setup

We describe experiments that measure the ability of the
Avail-Cap and Max-Cap algorithms to balance requests for
a specific piece of content fairly across the replicas holding
that piece of content. We say “piece of content” because in



424 M. Roussopoulos, M. Baker

many widely-used peer-to-peer networks, files are divided
into equal-sized chunks and clients fetch the chunks of a
file in parallel to improve download time (e.g. [1, 2, 16]). A
movie file may be much larger than a song file which means
it will take a larger number of chunk requests to download it.
We assume that if a replica is serving more than one file, it
will partition its maximum capacity across the files and ad-
vertise for each file accordingly. We describe this further in
Sect. 4.8.

In each of the experiments, requests for a particular piece
of content are posted at nodes throughout a peer-to-peer net-
work for 3000 seconds. A peer node that receives from a
local client a request for that content uses the Controlled
Update Propagation (CUP) protocol [43] to retrieve a set of
index entries pointing to replica nodes in the network that
serve the content, as well as LBI about each replica. Using
the LBI, the peer node applies a load-balancing algorithm to
choose one of the replica nodes. It then points the client at
the chosen replica.

CUP is a cache maintenance protocol that delivers up-
dates to cached index entries and scales efficiently to tens
of thousands of nodes. Since the particular mechanism by
which LBI is delivered to the peer nodes is not essential to
our goal of comparing the load-balancing algorithms, we de-
fer discussion of CUP to Appendix A.

We simulate a peer-to-peer network that implements a
Distributed Hash Table (DHT) of index entries using the
Content-Addressable Network (CAN) approach [40]. In a
DHT, a virtual coordinate space is evenly divided amongst
the participating peer nodes such that each peer is the au-
thority for a particular portion of the coordinate space. In-
dex entries pointing to locations of content items are mapped
onto the virtual coordinate space using a uniform hash func-
tion such that the peer whose portion an index entry maps
to is the peer responsible for that particular index entry.
CAN uses a d-dimensional Cartesian coordinate space on
a d-torus. We present results here for d = 2. We note that
varying the dimensions (and thus the topology of the peer-to-
peer overlay network) exhibits similar results because client
peers requesting content only use the overlay network to re-
trieve the index entries pointing to serving peers. They then
request the content directly from the serving peers and thus,
the content is not transferred through the overlay network
itself.

We use Narses, a Java-based discrete-event simulator [4,
24], designed for scalability over large numbers of nodes,
large amounts of traffic, and long periods of time. Narses
offers facilities for a variety of flow-based network models
allowing trade-offs between fast runtimes and accuracy. We
are interested in fairly balancing the use of upload links of
serving peers. In the Internet, typically the bottleneck link
between two communicating hosts is at the edge of the net-
work [9]. We therefore use a network model that assumes
no bottleneck link exists in the core of the network. This
means that the transfers between two end hosts are limited
by their first-link connections to the network. For example,
a DSL peer downloading content from a peer on a dial-up

modem would be limited by the speed of the DSL link and
the modem link. In this case, the modem link would most
likely be the limiting factor. With this assumption, Narses
does not need to simulate intermediate routers in the network
and therefore achieves faster runtime (45-fold speedup) and
less memory (28% of that used by the Network Simulator
ns-2 [3]) while maintaining accuracy to within 8% [24].

The simulation input parameters include: the number of
nodes in the overlay peer-to-peer network, the number of
replica nodes holding the content of interest, the maximum
capacities of the replica nodes, the distribution of content
request inter-arrival times, and the LBI update period, which
is the amount of time each replica waits before sending the
next LBI update for the Avail-Cap algorithm.

We assign maximum capacities to replica nodes by ap-
plying results from previous work that measures the upload
capabilities of nodes in peer-to-peer networks [45]. This
work has found that the upload capabilities of peer nodes
can vary by orders of magnitude. For the particular Gnutella
networks measured, around 10% of nodes are connected
through dial-up modems, 60% are connected through broad-
band connections such as cable modem or DSL where the
upload speed is about ten times that of dial-up modems, and
the remaining 30% have high-end connections with upload
speed at least 100 times that of dial-up modems. Therefore
we assign maximum capacities of 1, 10, and 100 requests
per second to nodes with probability of 0.1, 0.6, and 0.3,
respectively.

In all the experiments we present in this paper, the num-
ber of nodes in the network is 1024 and each node individu-
ally decides how to assign incoming content requests to the
replica nodes. To stress-test and compare the load-balancing
algorithms, we examine workloads that approach or exceed
in magnitude the workload that the serving replica nodes
are capable of satisfying (i.e., workloads that require 60–
500% of the total maximum capacities of the replica nodes).
We use Poisson and Pareto request inter-arrival distributions,
both of which have been found to hold in peer-to-peer net-
works [12, 32]. We find that experiments where we vary the
number of nodes in the network but keep the same request
workloads exhibit similar behavior. It is, instead, the mag-
nitude of the content request workload that highlights the
differences among the load-balancing algorithms.

First, we compare Avail-Cap with Max-Cap for Poisson
arrivals and show that while Avail-Cap takes replica hetero-
geneity into account, it can suffer from significant load os-
cillations caused by even small fluctuations in the workload
(Sect. 4.2). Second, we compare Max-Cap with Avail-Cap
for bursty Pareto arrivals (Sect. 4.3). Third, we explain why
Avail-Cap suffers (Sect. 4.4). Fourth, we compare the ef-
fect on the performances of Avail-Cap and Max-Cap when
replicas continuously enter and leave the system (Sect. 4.6).
Fifth, we consider the effect on Max-Cap when replicas can-
not always honor their advertised maximum capacities be-
cause of significant extraneous load (Sect. 4.7). Finally, we
examine the tradeoffs that arise in handling multiple objects
in Max-Cap (Sect. 4.8).



Practical load balancing for content requests in peer-to-peer networks 425

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n 

Time (seconds)

100% Utilization
Replica Utilization

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n 

Time (seconds)

100% Utilization
Replica Utilization

Fig. 1 Replica utilization versus time for a Avail-Cap, b Max-Cap

4.2 Poisson request arrivals

We first compare Avail-Cap with Max-Cap for an experi-
ment with ten replicas with a Poisson request arrival rate of
80% the total rate that can be handled by the replicas (that
is, 80% the total maximum capacity of the replicas). Under
such a workload, a good load-balancing algorithm should
be able to avoid overloading some replicas while underload-
ing others. For Avail-Cap, we use an inter-update period of
one second, which is quite aggressive in a large peer-to-peer
network and advantageous for Avail-Cap. For Max-Cap, this
parameter is inapplicable since replica nodes do not send pe-
riodic updates.

Figure 1 shows a scatterplot of how the utilization of
each replica proceeds with time for Avail-Cap and Max-Cap.
We define utilization as the request arrival rate observed by
a replica divided by the maximum capacity of the replica.
In this graph, we do not distinguish among points of differ-
ent replicas. We see, in Fig. 1a, that Avail-Cap consistently
overloads some replicas while underloading others. In con-
trast, in Fig. 1b, Max-Cap tends to cluster replica utiliza-
tion at around 80%. We ran this experiment with a range
of Poisson arrival rates and found similar results for rates
that were 60–100% the total maximum capacity of the repli-
cas. Avail-Cap consistently overloads some replicas while
underloading others whereas Max-Cap clusters replica uti-
lization at around X% utilization, where X is the average
overall request rate divided by the total maximum capacity
of the replicas.

In Avail-Cap, it is not the same replicas that are consis-
tently overloaded or underloaded throughout the experiment.
Instead, individual replicas continuously oscillate between
being overloaded and severely underloaded. We can see a
sampling of this oscillation by looking at the utilizations of
some individual replicas over time. In Fig. 2, we plot the
utilization over a one minute period in the experiment for a
representative replica from each of the replica classes (low,
medium, and high maximum capacity). We also plot the ra-
tio of the overall request rate to the total maximum capacity
of the replicas and the line y = 1 showing 100% utilization.
We see that for all replica classes, Avail-Cap suffers from

significant oscillation when compared with Max-Cap which
causes little or no oscillation above the 100% utilization line.
This behavior occurs throughout the experiment.

Figure 3 shows for each replica, the percentage of re-
ceived requests that arrive while the replica is overloaded for
a series of ten experiments, each with ten replicas, for Avail-
Cap and Max-Cap respectively. On the x-axis we order repli-
cas according to maximum capacity, with the low-capacity
replicas plotted first (replica IDs 1 through 10), followed by
the medium-capacity replicas (replica IDs 11-70), followed
by the high-capacity replicas (replica IDs 71-100). Avail-
Cap with an inter-update period of one second (Fig. 3a) re-
sults in much higher percentages than Max-Cap (Fig. 3c).
Avail-Cap also causes fairly even percentages at around
40%. This is consistent with the oscillations observed in
Fig. 2 where each replica is overloaded for roughly the same
amount of time regardless of whether it is a low, medium or
high-capacity replica. Moreover, the performance of Avail-
Cap is highly dependent on the inter-update period used. As
we increase the period and available capacity updates grow
more stale, the performance of Avail-Cap suffers more. As
an example, in Fig. 3b, we show Avail-Cap with an inter-
update period of ten seconds. The overloaded percentages
jump up to about 80% across the replicas.

Max-Cap (Fig. 3c) exhibits a step-like behavior with the
low-capacity replicas having the highest overloaded percent-
ages, followed by the medium capacity replicas, and then the
high-capacity replicas which are never overloaded. This step
behavior occurs because the lower-capacity replicas have
less tolerance for noise in the random coin tosses the peer
nodes perform while assigning requests. They also have less
tolerance for small fluctuations in the request rate. As a re-
sult, lower-capacity replicas are overloaded more easily than
higher-capacity replicas. We also see this in Fig. 2 where for
Max-Cap, replicas with lower maximum capacity are over-
loaded for more time than replicas with higher maximum
capacity.

In a peer-to-peer environment, we believe that Max-Cap
is a more practical choice than Avail-Cap. First, Max-Cap
typically incurs no overhead. Second, Max-Cap can better
handle request rates that are below 100% the total maximum



426 M. Roussopoulos, M. Baker

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

Low Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

Medium Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

High Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

Low Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

Medium Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

High Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 2 Replica utilization versus time, for representative low, medium, and high capacity replicas. Top graphs show Avail-Cap, bottom show
Max-Cap

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

%
 Q

ue
rie

s 
O

ve
rlo

ad
ed

Replica ID

% Queries Over

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

%
 Q

ue
rie

s 
O

ve
rlo

ad
ed

Replica ID

% Queries Over

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

%
 Q

ue
rie

s 
O

ve
rlo

ad
ed

Replica ID

% Queries Over

Fig. 3 Percentage Overloaded Requests versus Replica ID, Ten experiments. We show Avail-Cap with an inter-update period of 1 and 10 seconds,
and Max-Cap which has no inter-update period

capacity of the replicas and can handle small fluctuations in
the workload as are typical in Poisson arrivals.

We next compare how Avail-Cap and Max-Cap perform
when workload rates fluctuate beyond the total maximum
capacity of the replicas. Such a scenario can occur when re-
quests are bursty, as when inter-request arrival times follow
a Pareto distribution.

4.3 Pareto request arrivals

Recent work has observed that in some peer-to-peer net-
works, request inter-arrivals exhibit burstiness on several
time scales [32], making the Pareto distribution a good can-
didate for modeling these inter-arrival times. Pareto request
arrivals are characterized by frequent and intense bursts of
requests followed by idle periods of varying lengths [37].
During the bursts, the average request arrival rate can be

many times the total maximum capacity of the replicas.
We present a representative experiment in which the Pareto
shape parameter α and scale parameter κ are 1.1 and 0.0003
respectively. These particular settings cause bursts of up to
230% the total maximum capacity of the replicas. With such
intense bursts, no load-balancing algorithm can be expected
to keep replicas underloaded. Instead, the best an algorithm
can do is to avoid underloading some of the replicas and
leaving unutilized capacity that goes wasted.

In Fig. 4, we plot the same representative replica utiliza-
tions over a one minute period in the experiment. We also
plot the ratio of the overall request rate to the total maxi-
mum capacity as well as the y = 100% utilization line. From
the figure we see that Avail-Cap suffers much higher peaks
(above the range shown on the y-axis) and lower valleys in
replica utilization than Max-Cap. Even when the overall re-
quest rate is above 100% of the total maximum capacity,



Practical load balancing for content requests in peer-to-peer networks 427

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

Low Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

Medium Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

High Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

Low Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

Medium Cap Replica
RequestRate/SumMaxCaps

100% Utilization

0

0.5

1

1.5

2

2.5

3

3.5

4

270 280 290 300 310 320 330

U
til

iz
at

io
n 

Time (seconds)

High Cap Replica
RequestRate/SumMaxCaps

100% Utilization

Fig. 4 Representative replica utilization versus time, pareto arrivals. Top graphs show Avail-Cap, bottom show Max-Cap

there are times when the replicas in Avail-Cap are under-
loaded. In contrast, Max-Cap generally avoids having unuti-
lized capacity when the overall request rate is above 100%.
Max-Cap never underutilizes the medium and high capacity
replicas and causes little under-utilization of the low capac-
ity replica. This is evident from the fact that the curve for
the replica utilization tends to match the curve for the over-
all request rate in the medium and high capacity graphs.

4.4 Why Avail-Cap can suffer

Avail-Cap can suffer because a cycle is created where the
available capacity update of one replica affects a subse-
quent update of another replica. This affects later alloca-
tion decisions made by nodes which in turn affect later
replica updates. Consider what happens when a replica is
overloaded and reports an available capacity of zero. The
report eventually reaches all nodes, causing them to stop
directing requests to the replica. The exclusion of the over-
loaded replica from the allocation decision shifts the bur-
den of the workload to the other replicas. This can cause
other replicas to overload and report zero available capac-
ity while the excluded replica experiences a sharp decrease
in its utilization. This sharp decrease causes the replica to
begin reporting positive available capacity which attracts re-
quests again. Since in the meantime other replicas have be-
come overloaded and excluded from the allocation decision,
the replica receives a flock of requests which cause it to
become overloaded again. A replica can, therefore, expe-
rience severe oscillation where its utilization continuously
rises above its maximum capacity and then falls sharply.

We have studied the effect of adding damping to the
Avail-Cap algorithm, where a replica advertises an available
capacity that is a function of the previously advertised capac-
ity and the current available capacity, or where a replica ap-
proaching overload advertises less available capacity than it
actually has to ward off future requests and prevent overload
from happening. While damping can be beneficial when a
single replica is serving content, when multiple replicas are
simultaneously damping, we find that the interdependence
between updates still results in oscillation.

In Max-Cap, if a replica becomes overloaded, the over-
load condition is confined to that replica. The same is
true in the case of underloaded replicas. Since the over-
load/underload situations of the replicas are not reported,
they do not influence subsequent requests allocated to other
replicas. It is this key property that allows Max-Cap to avoid
herd behavior.

There are situations where Avail-Cap performs reason-
ably without suffering from oscillation. We next describe
the factors that affect the performance of Avail-Cap to get
a clearer picture of when the reactive nature of Avail-Cap
is beneficial (or at least not harmful) and when it causes
oscillation.

4.5 Factors affecting Avail-Cap

There are four factors that affect the performance of Avail-
Cap: the inter-update period U , the inter-request period R,
the amount of time T it takes for all nodes in the network
to receive the latest update from a replica, and the ratio of



428 M. Roussopoulos, M. Baker

the overall request rate to the total maximum capacity of
the replicas. We examine these factors by considering three
cases:

Case 1: U is much smaller than R (U << R), and T is
sufficiently small so that when a replica pushes an update,
all peer nodes receive the update before the next request ar-
rival in the network. In this case, Avail-Cap performs well
since all nodes have the latest load-balancing information
whenever they receive a request.

Case 2: U is long relative to R (U > R) and the over-
all request rate is less than about 60% the total maximum
capacity of the replicas.2 In this case, when a replica over-
loads, the remaining replicas are able to cover the proportion
of requests intended for the overloaded replica because there
is a lot of extra capacity in the system. As a result, Avail-Cap
avoids oscillations. We see experimental evidence for this in
Sect. 4.6.

The 60% threshold is specific to the particular configu-
ration of replicas for which we present results. Other config-
urations have different threshold percentages but the overall
message is the same: the overall request rate must be well
below the total maximum capacity of the replicas to avoid
oscillation. Over-provisioning to have enough extra capacity
in the system so that Avail-Cap can avoid oscillation in this
particular case seems a high price to pay for load stability.

Case 3: U is long relative to R (U > R) and the over-
all request rate is more than about 60% the total maximum
capacity of the replicas. In this case, as we observe in the
experiments above, Avail-Cap can suffer from oscillation.
This is because every request that arrives directly affects the
available capacity of one of the replicas. Since the request
rate is greater than the update rate, an update becomes stale
shortly after a replica has pushed it out. However, the replica
does not inform the nodes of its changing available capacity
until the end of its current update period. By that point many
requests have arrived and have been assigned using the pre-
vious, stale available capacity information.

In Case 3, Avail-Cap can suffer even if T = 0 and up-
dates were to arrive at all nodes instantly after being issued.
This is because all nodes would simultaneously avoid an
overloaded replica when making the allocation decision un-
til the next update is issued. As T increases, the staleness of
the report only exacerbates the performance of Avail-Cap.

In a large peer-to-peer network we expect that T will be
on the order of seconds since current peer-to-peer networks
with more than 1000 nodes have diameters ranging from a
handful to several hops [41]. We consider U = 1 second
to be as small and aggressive an inter-update period as is
practical in a peer-to-peer network. In fact, even one sec-
ond may be too aggressive due to the overhead it generates.
This means that when particular content experiences high
popularity, we expect that typically U + T >> R. Under
such circumstances Avail-Cap is not a good load-balancing
choice. For less popular content, where U + T < R, Avail-

2 The 60% threshold is specific to the particular configuration of
replicas we present in this paper: 10% low-capacity, 60% medium-
capacity, and 30% high-capacity.

Cap is a feasible choice, although it is unclear whether load-
balancing across the replicas is as important here, since the
request rate is low.

The performance of Max-Cap is independent of the
values of U , R, and T . More importantly, Max-Cap does
not require continuous updates; replicas issue updates only
if they choose to re-issue new contracts to report changes in
their advertised maximum capacities. Therefore, we believe
that Max-Cap is a more practical choice in a peer-to-peer
context than Avail-Cap.

4.6 Dynamic replica set

A key characteristic of peer-to-peer networks is that they are
subject to constant change; peer nodes continuously enter
and leave the system. In this section, we compare Max-Cap
with Avail-Cap in two dynamic experiments with a Poisson
request arrival rate that is 80% the total maximum capacity
of the replicas. The network starts with ten replicas and af-
ter a period of 600 seconds, movement into and out of the
network begins. In the first experiment, one replica leaves
and one replica enters the network every 60 seconds. In the
second and much more dynamic experiment, five replicas
leave and five replicas enter the network every 60 seconds.
Studies have found that in peer-to-peer file sharing systems,
the median user session duration of a peer is approximately
sixty minutes [45]. However, content may become available
on a peer or be deleted from the peer at any point during that
user session. This results in content availability that is on the
order of a few minutes [15]. We thus show results of exper-
iments that stress-test load-balancing algorithms under this
kind of dynamism.

The replicas that leave are randomly chosen. The repli-
cas that enter the network enter with maximum capacities of
1, 10, and 100 with probability of 0.10, 0.60, and 0.30 re-
spectively as in the initial configuration. This means that the
total maximum capacity of the active replicas in the network
varies throughout the experiment, depending on the differ-
ences in capacities of the entering and leaving replicas.

Figures 5a and b show for the first dynamic experiment
the utilization of active replicas versus time of Avail-Cap
and Max-Cap. Note that points with zero utilization indi-
cate newly entered replicas. The jagged line plots the ratio
of the current sum of maximum capacities in the network,
Scurr, to the original sum of maximum capacities, Sorig. With
each change in the replica set, the replica utilizations for
both Avail-Cap and Max-Cap change. Replica utilizations
rise when Scurr falls and vice versa. We see that between
times 1000 and 1820, Scurr is between 1.75 and 2 times Sorig,
and is more than double the overall workload request rate.
During this time period, Avail-Cap performs well because
the workload is not demanding and there is plenty of extra
capacity in the system (Case 2 in the previous section). How-
ever, when at time 1940 Scurr falls back to Sorig, we see that
both algorithms exhibit the same behavior as they do at the
start. Max-Cap adjusts nicely and clusters replica utilization
at around 80%, while Avail-Cap starts to suffer again.



Practical load balancing for content requests in peer-to-peer networks 429

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n 

Time (seconds)

SumMaxFluctuation
Replica Utilization

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n 

Time (seconds)

SumMaxFluctuation
Replica Utilization

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n 

Time (seconds)

SumMaxFluctuation
Replica Utilization

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n 

Time (seconds)

SumMaxFluctuation
Replica Utilization

Fig. 5 Replica utilization versus time. Top graphs show one switch every 60 seconds, bottom show 5 switches every 60 seconds

For each data point, we measure the difference between
the actual replica utilization and the optimal replica utiliza-
tion at that time, defined as the overall query rate divided by
the total maximum capacity of the replicas. The average uti-
lization difference exhibited by Max-Cap is 4.61 with a stan-
dard deviation of 5.77. The average utilization difference for
Avail-Cap is 18.29 with a standard deviation of 20.79.

Figures 5c and d show the utilization scatterplot for the
second dynamic experiment. We see that changing half the
replicas every 60 seconds can dramatically affect Scurr. For
example, when Scurr drops to 0.2Sorig at time 2161, the uti-
lizations rise dramatically for both Avail-Cap and Max-Cap.
This is because during this period the workload request rate
is four times that of Scurr. However, as Scurr starts to increase,
we see that Max-Cap recuperates and adjusts its replica uti-
lization more quickly. The average utilization difference for
Max-Cap here is 8.20 with a standard deviation of 14.64 and
the average utilization for Avail-Cap is 49.93 with a standard
deviation of 69.93.

These dynamic experiments show two things; first, when
the workload is not demanding and there is plenty of extra
capacity, the behavior of Avail-Cap comes close to that of
Max-Cap. However, Avail-Cap suffers more as overall ca-
pacity decreases. Second, the reactive nature of Avail-Cap
causes it to be affected more by short-lived decreases in the
total maximum capacity than Max-Cap is. We conclude that
in a dynamic environment such as a peer-to-peer network,
Max-Cap continues to be the better choice.

4.7 Extraneous load

As we have shown above, when replicas can honor their
maximum capacities, Max-Cap avoids the oscillation that
Avail-Cap can suffer, and does so with no update overhead.
Occasionally, some replicas may not be able to honor their
maximum capacities because of extraneous load caused by
other applications running on the replicas or network condi-
tions unrelated to the content request workload.

To deal with the possibility of extraneous load, we mod-
ify the Max-Cap algorithm slightly to work with honored
maximum capacity, which is maximum capacity minus the
extraneous load a replica is experiencing. A peer node
chooses a replica to forward a content request to with prob-
ability proportional to the honored maximum capacity.

As before, we view the honored maximum capacity re-
ported by a replica A as a contract. If A cannot adhere to
its contract or has extra capacity to give, and does not re-
port the deficit or surplus, then A alone will be affected and
may be overloaded or underloaded since it will be receiving
a request share that is proportional to its previous advertised
honored maximum capacity. If, on the other hand, replica A
chooses to issue a new contract with the new honored max-
imum capacity, then this can cause a portion of A’s work-
load to shift to the other replicas. This shift however does
not affect the contracts of the other replicas. The contract
of another replica B is only affected by the extraneous load
experienced by B. That is, B may, at some point, choose



430 M. Roussopoulos, M. Baker

to re-issue its contract, but it will do so because it chooses
to devote more capacity to its extraneous load, not because
it has received more requests as a result of A’s change in
contract. In contrast, in Avail-Cap, the available capacity re-
ported by one replica directly affects the available capacities
reported by the others.

In experiments where we inject extraneous load into the
replicas, we find that the performances of Max-Cap and
Avail-Cap are similar to those seen in the dynamic replicas
experiments. This is because when a replica advertises a new
honored maximum capacity, it behaves as if that replica were
leaving and being replaced by a new replica with a different
maximum capacity.

4.8 Handling multiple objects

We have shown that Max-Cap is more practical and more
fair than Avail-Cap in allocating load across the replicas
serving a particular object. If a peer is serving multiple files,
then the peer must partition its maximum capacity across
the files and advertise for each file accordingly. The policy
used to determine this partition can be independent of the
policies at other nodes and might for example, be based on
individual file popularity observed at the node. A couple of
interesting questions and scenarios arise on how to handle
multiple objects:

Should a peer that hosts a very popular object be re-
lieved of its duties for other objects it hosts? As an example,
consider the scenario where peer A has high capacity and
hosts unpopular object O1 and highly popular object O2 and
peer B has low capacity and only hosts unpopular O1. If O2
receives enough requests to swamp peer A, then should the
system send all requests for O1 to B?

This scenario highlights an important tradeoff. In a peer-
to-peer system, there is no control over which objects are
stored and served by each peer. Each peer chooses the ob-
jects it will store and serve independently of what objects
other peers choose. A peer serving a particular object cares
that peers serving that same object are getting their fair share
of the load with respect to that object. That is, if the main
objective is fairness of utilization across serving peers with
respect to object O1, the correct thing would not be to send
all requests for O1 to B, but to continue sending requests to
both. Peer A would reject requests it cannot handle due to
its workload for O2 and those requests would eventually be
sent to B by the coin-toss retries at the rejected clients. On
the other hand, if we assume the main objective is fairness of
utilization across serving peers across all objects, then one
might argue that the fair thing is to send all requests for O1
to B. To support this, one would need to modify Max-Cap
to have peers take into account what other peers are stor-
ing. This unfortunately requires close coordination and the
kind of dynamic update propagation from which Avail-Cap
suffers under workload fluctuation.

If object popularity changes quickly, how should a peer
re-partition capacities across objects and how should a peer
advertise this reallocation? As an example, consider the

scenario where you have two objects, O1 and O2. O1 is
replicated on peers A, B, C. O2 is replicated on peers C, D,
and E. Suppose the maximum capacities of A, B, and C are
in the ratio of 1:2:3 and C, D, E are in the ratio of 3:2:1. O1
starts out popular. After some time, O2 suddenly becomes
popular. Since C is the highest capacity replica serving O2,
it will receive the largest proportion of the requests and ex-
perience overload. What should C do?

In Max-Cap, each node individually decides how to par-
tition its maximum capacity across the objects it serves. For
example, node C could choose to simply allocate its maxi-
mum capacity evenly across the objects it serves. In the ex-
ample scenario above, node C may allocate 50% of its total
capacity to O1 and 50% to O2, when O2’s requests begin.
This means that the ratio of maximum capacities for nodes
A, B, and C will now be 1:2:1.5 for O1 and 1.5:2:1 for O2.
Another option would be for C to allocate capacity to O1 and
O2 using an “overbooking” approach, e.g., 70% and 60%. In
the latter case, underload (i.e., unused capacity) of O1 can
cover potential overload of O2 and vice versa. A third option
is for C to take advantage of a popularity-tracking algorithm
to allocate a capacity to each object that is proportional to
the object’s popularity. The choice of policy belongs to each
individual node and does not require consultation with other
nodes in the system.

The choice of whether the peer advertises a re-allocation
of capacities is similar to the choice it faces when experienc-
ing extraneous load (Sect. 4.7). If a peer does not advertise
the change in its allocations and chooses simply to overbook
or borrow unused allocated capacity from one object to serve
requests for another, it alone is affected. Any overload the
peer experiences as a result is confined to that peer and does
not affect other nodes. If the peer chooses to advertise a new
maximum capacity as a result of adjusting its allocations,
then the effect is similar to the results of the dynamic replica
experiments because the node behaves as if it is leaving and
being replaced by a new node with a different maximum ca-
pacity.

5 Related work

Load-balancing has been the focus of many studies de-
scribed in the distributed systems literature. We describe
here previous techniques that could be applied in a peer-to-
peer context. Other techniques that cannot be directly ap-
plied in a peer-to-peer context such as task handoff through
redirection (e.g., [6, 7, 13]) or process migration (e.g., [30])
from heavily-loaded to lightly-loaded servers in a cluster are
described in thesis format [42].

5.1 Load-based algorithms

Of the algorithms based on load, a common approach to per-
forming load-balancing across a set of servers is to choose
the server with the least reported load from among a set



Practical load balancing for content requests in peer-to-peer networks 431

of servers. This approach has been used in commercial set-
tings [20] as well as in the research community and performs
well in a homogeneous system where the task allocation
is performed using complete up-to-date load information
[50, 51]. In a system where multiple dispatchers are inde-
pendently performing the allocation of tasks, this approach
however has been shown to behave badly, especially if load
information used is stale [21, 22, 33, 36, 46].

Many studies have focused on the strategy of using a
subset of the load information available. This has the advan-
tage of incurring less overall traffic because only load up-
dates from some of the servers are sent across the network
for an allocation decision. The approach involves first ran-
domly choosing a small number, k, of homogeneous servers
and then choosing the server with the smallest reported load
from within that set [8, 10, 11, 21, 23, 28, 35, 48]. In partic-
ular, for homogeneous systems, Mitzenmacher [35] studies
the tradeoffs of various choices of k and various degrees of
staleness of load information reported. As the degree of stal-
eness increases, smaller values of k are preferable. In our
work, we focus on heterogeneous servers. Max-Cap’s prob-
abilistic approach based on maximum capacities allows us
to avoid transmitting and using stale information altogether.

Dahlin [19] proposes load interpretation algorithms
which take into account the age (staleness) of the load in-
formation reported by each of a set of distributed homoge-
neous servers as well as an estimate of the rate at which new
requests arrive at the whole system to determine to which
server to allocate a request. As Dahlin shows, the primary
drawback of these algorithms is that they exhibit poor per-
formance if the estimate of the rate of request arrivals in the
system is inaccurate or is not known, as is the case when
arrivals are bursty or the workload is unpredictable. Also,
these algorithms assume that the clocks of the participat-
ing entities are synchronized, which is difficult to achieve
in a large peer-to-peer system spread across the Internet. For
these reasons, we have focused on developing an algorithm
that does not depend on the arrival rate being accurately
estimated.

CFS [18] uses proportional allocation of resources to
provide load-balancing of files across nodes. CFS is a file
system built on top of Chord [47], a peer-to-peer system that
implements a distributed hash table. In Chord, peers are re-
sponsible for a portion of an identifier space (conceptually
depicted as a ring). Queries in search of particular identifiers
are routed around the ring towards the peers responsible for
those identifiers. CFS deals with heterogeneity in file serv-
ing peers by allocating the ring across virtual peers instead
of actual peers and allowing administrators to assign to a
peer a number of virtual peers that is roughly proportional
to the peer’s network and storage capabilities.

The CFS authors suggest the possibility of having
servers delete virtual peers under high load. This deletion
causes other peers to acquire additional virtual peers to cover
the identifier space of the deleted virtual peers. Under high
overall system load, the authors suggest that a cascade of
deletions of virtual peers across the network might occur.

Deleting virtual peers under high load is analogous to send-
ing updates reporting reduced available capacity. As we con-
firm in this paper, as the overall load approaches the capacity
of the system, this kind of dynamic and inter-dependent be-
havior amongst peers can lead to oscillation and is not worth
the cost of propagating the updates.

Subsequent studies [25, 26, 39] examine how to pre-
vent this thrashing problem by moving virtual servers from
heavily-loaded to lightly-load peers only if the transfer
does not cause the load on the light peers to surpass some
pre-defined threshold. This and other studies on structured
Distributed Hash Tables [27, 29, 31] examine the load-
balancing problem from the perspective that each item is
stored on one virtual server and all requests for that item go
to the peer that owns that virtual server. In our study, we have
several replica nodes that can serve the item and the problem
is how to enable large numbers of widely-dispersed client
nodes to independently choose from amongst the replica
nodes such that the overall demand is fairly distributed
across those replicas.

5.2 Available-capacity-based algorithms

Of the algorithms based on available capacity, one com-
mon approach has been to choose amongst a set of servers
based on the available capacity of each server [52] or the
available bandwidth in the network to each server [14]. The
server with the highest available capacity/bandwidth is cho-
sen by a client with a request. The assumption here is that
the reported available capacity/bandwidth will continue to
be valid until the chosen server has finished servicing the
client’s request.

Another approach is to exclude servers that fail some
utilization threshold and to choose from the remaining
servers. Mirchandaney et al. [34] and Shivaratri et al. [46]
classify machines as lightly-utilized or heavily-utilized and
then choose randomly from the lightly-utilized servers. This
work focuses on local-area distributed systems. Colajanni
et al. use this approach to enhance round-robin DNS load-
balancing across a set of widely distributed heterogeneous
web servers [17]. The maximum capacities of the most ca-
pable servers are at most a factor of three that of the least
capable servers. As we see in Sect. 4.2, when applied in the
context of a peer-to-peer network where the maximum ca-
pacities of the replicas can differ by orders of magnitude,
excluding a serving node temporarily from the allocation de-
cision can result in severe load oscillation.

6 Conclusions

In this paper we examine the problem of load-balancing in a
peer-to-peer network where the goal is to distribute the de-
mand for a particular content fairly across the set of replica
nodes that serve that content. Existing load-balancing algo-
rithms proposed in the distributed systems literature are not



432 M. Roussopoulos, M. Baker

appropriate for a peer-to-peer network. Algorithms based
purely on load do not handle peer heterogeneity. Algorithms
based on available capacity can suffer from load oscillations
even when the workload request rate is well below (e.g.,
60%) the total maximum capacity of the replicas. These
load oscillations result in unutilized capacity. We provide a
model that shows when available capacity information de-
tracts rather than enhances the allocation decision.

We propose and evaluate Max-Cap, a practical load-
balancing algorithm that handles heterogeneity, yet does
not suffer from oscillations even as the workload rate ap-
proaches the total maximum capacity of the replicas. It ad-
justs better to large fluctuations in the workload and con-
stantly changing replica sets. Moreover, Max-Cap incurs
much less overhead, since unlike algorithms based on avail-
able capacity, it avoids chasing dynamic updates that are
interdependent. The contract issued by one replica is inde-
pendent of the contracts issued by others. In fact, if repli-
cas rarely choose to change contracts, Max-Cap incurs near-
zero overhead regardless of the network size. We believe this
makes Max-Cap a practical and elegant algorithm for load-
balancing in peer-to-peer networks and in other distributed
systems with a large number of client dispatchers and het-
erogeneous servers that are widely dispersed across the
Internet.

Acknowledgements The work presented here has benefited greatly
from discussions with Petros Maniatis, Armando Fox, Nick McKeown,
and Rajeev Motwani. We thank them for their invaluable feedback. We
also would like to thank the anonymous reviewers who suggested ways
to improve this paper, including suggesting the multiple-object scenar-
ios described above. This research has been supported by the National
Science Foundation (Grant No. 0446522), the Stanford Networking
Research Center, and by DARPA (contract N66001-00-C-8015).

Appendix A: Propagating LBI Updates

In this appendix we briefly describe how we leverage the CUP proto-
col [43] to study the load-balancing problem in a peer-to-peer context.
CUP is a protocol for maintaining caches of index entries in peer-to-
peer networks. We summarize how CUP works over structured peer-to-
peer networks. In such networks, lookup queries for particular content
follow a well-defined path from the querying node toward an authority
node, which is guaranteed to know the location of the content within
the network [40, 44, 47].

In CUP every node in the peer-to-peer network maintains two logi-
cal channels per neighbor: a query channel and an update channel. The
query channel is used to forward lookup queries for content of inter-
est to the neighbor that is closest to the authority node for that content.
The update channel is used to forward query responses asynchronously
to a neighbor. These query responses contain sets of index entries that
point to nodes holding the content in question. The update channel is
also used to update the index entries that are cached at the neighbor.

Figure 6 shows a snapshot of CUP in progress in a network of
seven nodes. The four logical channels are shown between each pair
of nodes. The left half of each node shows the set of content items
for which the node is the authority. The right half shows the set of
content items for which the node has cached index entries as a result
of handling lookup queries. For example, node A is the authority node
for content K 3 and nodes C,D,E,F, and G have cached index entries for
content K 3. The process of querying and updating index entries for a
particular content K forms a CUP tree whose root is the authority node

K1, K5K3 K4 K2, K5

K6 K1, K3, K5

K1, K3, K4K5 K7 K1, K2, K3

K1, K2 K3, K4, K5

C

K8, K9 K3, K4

A

F

D

B

E

G

Fig. 6 CUP trees

for content K . The branches of the tree are formed by the paths traveled
by lookup queries from other nodes in the network. For example, in
Fig. 6, node A is the root of the CUP tree for K 3 and branch {F,D,C,A}
has grown as a result of a lookup query for K 3 at node F.

It is the authority node A for content K 3 which is guaranteed to
know the location of all nodes, called content replica nodes, that serve
content K 3. Replica nodes first send birth messages to authority A
to indicate they are serving content K 3. They may also send periodic
refreshes or invalidation messages to A to indicate they are still serving
or no longer serving the content. A then forwards on any birth, refresh
or invalidation messages it receives, which are propagated down the
CUP tree to all interested nodes in the network. For example, in Fig. 6
any update messages for index entries associated with content K 3 that
arrive at A from replica nodes are forwarded down the K 3 CUP tree to
C at level 1, D and E at level 2, and F and G at level 3.

CUP reduces the average latency of content search queries by as
much as an order of magnitude across a variety of workloads and scales
to tens of thousands of nodes. For more details, we refer the reader to
prior published work [43].

We leverage CUP to propagate updates to load balancing informa-
tion such as replica load or available capacity to interested peer nodes
throughout the overlay network. These peer nodes use this information
when choosing to which replica a client request should be forwarded.

Appendix B: Inv-Load and Heterogeneity

In this appendix, we examine the performance of Inv-Load in a hetero-
geneous peer-to-peer environment. We use a fairly short inter-update
period of one second, which is quite aggressive in a large peer-to-peer
network. We have ten replica nodes that serve the content item of in-
terest. We generate request rates for that item according to a Poisson
process with arrival rate that is 80% the total maximum capacity of
the replicas. Under such a workload, a good load-balancing algorithm
should be able to avoid overloading some replicas while underload-
ing others. Figure 7a shows a scatterplot of how the utilization of each
replica proceeds with time when using Inv-Load. We define utilization
as the request arrival rate (load) observed by a replica divided by the
maximum request rate the replica can handle (maximum capacity) of
the replica. As described in Sect. 1, we assign maximum capacities of
1, 10, and 100 requests per second to nodes with probability of 0.1,
0.6, and 0.3, respectively. In this graph, we do not distinguish among
points of different replicas. We see that throughout the simulation, at



Practical load balancing for content requests in peer-to-peer networks 433

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500

U
til

iz
at

io
n 

Time (seconds)

100% Utilization
Replica Utilization

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

%
 Q

ue
rie

s 
O

ve
rlo

ad
ed

 

Replica ID

% Queries Over

Fig. 7 Inv-Load: a Replica Utilization versus Time, b Percentage Overloaded Requests versus Replica ID

any point in time, some replicas are severely overutilized (over 250%)
while others are lightly underutilized (around 25%).

Figure 7b shows for each replica, the percentage of all received
requests that arrive while the replica is overloaded. The replicas that
receive almost 100% of their requests while overloaded (i.e., replicas
0-6) are the low and medium-capacity replicas. The replicas that re-
ceive almost no requests while overloaded (i.e., replicas 7-9) are the
high-capacity replicas. We see that Inv-Load penalizes the less capable
replicas while giving the high-capacity replicas an easy time.

Inv-Load is designed to perform well in a homogeneous environ-
ment. When applied in a heterogeneous environment such as a peer-to-
peer network, it fails. As we see in Sect. 4.2, Max-Cap is much better
suited for heterogeneous environments. Moreover, a nice bonus is that
Max-Cap has better load-balancing performance than Inv-Load even
in a homogeneous environment since it does not require continuous
inter-dependent updates. Since the focus in this paper is on heteroge-
neous environments, such as those found in peer-to-peer networks, we
refer the reader to the first author’s thesis for more information about
homogeneous environments [42].

References

1. Http://www.overnet.com
2. Http://www.kazaa.com
3. Ns Project. Http://www.isi.edu/nsnam/ns/
4. Project: The Narses Network Simulator. Http://sourceforge.net/

projects/narses/
5. The Gnutella Protocol Specification v0.4. Http://gnutella.wego.

com
6. Andresen, D., Yang, T., Ibarra, O.H.: Towards a Scalable Dis-

tributed WWW Server on Networked Workstations. Journ. of Par-
allel and Distributed Computing 42, 91–100 (1996)

7. Aversa, L., Bestavros, A.: Load balancing a cluster of web servers
using distributed packet rewriting. In: IEEE Intl Performance,
Computing, and Communications Conference (2000)

8. Azar, Y., Broder, A., Karlin, A., Upfal, E.: Balanced allocations.
In: ACM Symp. on Theory of Computing (1994)

9. Blake, C., Rodrigues, R.: High availability, scalable storage, dy-
namic peer networks: pick two. In: HotOS (2003)

10. Byers, J., Considine, J., Mitzenmacher, M.: Simple load balancing
for distributed hash tables. In: IPTPS (2003)

11. Byers, J., Considine, J., Mitzenmacher, M.: Geometric generaliza-
tions of the powser of two choices. In: SPAA (2004)

12. Cao, P.: Search and Replication in Unstructured Peer-to-Peer
Networks (2002). Talk at http://netseminar.stanford.edu/

13. Cardellini, V., Colajanni, M., Yu, P.: Redirection algorithms for
load sharing in distributed web server systems. In: ICDCS (1999)

14. Carter, R., Crovella, M.: Server selection using dynamic path char-
acterization in wide-area networks. In: Infocom (1997)

15. Chu, J., Labonte, K., Levine, B.N.: Availability and locality mea-
surements of peer-to-peer file systems. In: Proc. ITCom: Scalabil-
ity and Traffic Control in IP Networks II Conferences (2002)

16. Cohen, B.: Incentives build robustness in bittorrent. In: Workshop
on the Economics of Peer-to-Peer Systems (2003)

17. Colajanni, M., Yu, P.S., Cardellini, V.: Dynamic load balancing in
geographically distributed heterogeneous web servers. In: ICDCS
(1998)

18. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.:
Wide-area cooperative storage with CFS. In: SOSP (2001)

19. Dahlin, M.: Interpreting stale load information. In: ICDCS (1999)
20. Delgadillo, K.: Cisco Distributed Director. Cisco Systems

Whitepaper (1997)
21. Eager, D., Lazowska, E., Zahorjan, J.: Adaptive load sharing in

homogeneous distributed systems. IEEE Trans. on Software Engi-
neering 12(5), 662–675 (1986)

22. Fox, A., Gribble, S.D., Chawathe, Y., Brewer, E.A., Gauthier, P.:
Cluster-based scalable network services. In: Symposium on Oper-
ating Systems Principles (1997)

23. Genova, Z., Christensen, K.J.: Challenges in URL switching for
implementing globally distributed web sites. In: Workshop on
Scalable Web Services (2000)

24. Giuli, T.J., Baker, M.: Narses: A Scalable, flow-based network
simulator. Technical Report cs.PF/0211024, Computer Science
Department, Stanford University, Stanford, CA, USA (2002)

25. Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R., Stoica,
I.: Load balancing in dynamic structured P2P systems. In: Info-
com (2004)

26. Godfrey, B., Stoica, I.: Heterogeneity and load balance in dis-
tributed hash tables. In: Infocom (2005)

27. Karger, D., Ruhl, M.: Simple efficient load balancing algorithms
for peer-to-peer systems. In: SPAA (2004)

28. Karp, R., Luby, M., Heide, F.M.: Efficient PRAM simulation on a
distributed memory machine. In: 24th ACM Symposium on The-
ory of Computing (1992)

29. Ledlie, J., Seltzer, M.: Distributed, secure load balancing with
skew, heterogeneity, and churn. In: Infocom (2005)

30. Lu, C., Lau, S.M.: An adaptive load balancing algorithm for het-
erogeneous distributed systems with multiple task classes. In:
ICDCS (1996)

31. Manku, G.S.: Balanced binary trees for ID management and load
balance in distributed hash tables. In: PODC (2004)

32. Markatos, E.P.: Tracing a large-scale peer-to-peer system: an hour
in the life of gnutella. In: 2nd IEEE/ACM Intl Symposium on
Cluster Computing and the Grid (2002)

33. Mirchandaney, R., Towsley, D., Stankovic, J.: Analysis of the Ef-
fects of Delays on Load Sharing. IEEE Trans. on Computers 38,
1513–1525 (1989)

34. Mirchandaney, R., Towsley, D., Stankovic, J.: Adaptive Load
Sharing in Heterogeneous Distributed Systems. Journal of Parallel
and Distributed Computing 9, 331–346 (1990)



434 M. Roussopoulos, M. Baker

35. Mitzenmacher, M.: The Power of Two Choices in Randomized
Load Balancing. PhD thesis, UC Berkeley (1996)

36. Mitzenmacher, M.: How useful is old information? In: PODC
(1997)

37. Paxson, V., Floyd, S.: Wide-area Traffic: The Failure of Poisson
Modeling. IEEE/ACM Transactions on Networking 3(3), (1995)

38. Ramasubramanian, V., Sirer, E.G.: Beehive: O(1) lookup perfor-
mance for power-law query distributions in peer-to-peer overlays.
In: Proceedings of Networked System Design and Implementation
(NSDI) (2004)

39. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.:
Load balancing in structured P2P systems. In: IPTPS (2003)

40. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A
scalable content-addressable network. In: SIGCOMM (2001)

41. Ripeanu, M., Foster, I.: Mapping the gnutella network: macro-
scopic properties of large-scale peer-to-peer systems. In: IPTPS
(2002)

42. Roussopoulos, M.: Controlled Update Propagation in Peer-to-Peer
Networks. PhD thesis, Stanford University (2002)

43. Roussopoulos, M., Baker, M.: CUP: Controlled update propaga-
tion in peer to peer networks. In: USENIX Annual Technical Con-
ference (2003)

44. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems. In: Mid-
dleWare (2001)

45. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study
of peer-to-peer file sharing systems. In: Proc. of Multimedia Com-
puting and Networking (2002)

46. Shivaratri, N., Krueger, P., Singhal, M.: Load Distributing for Lo-
cally Distributed Systems. IEEE Computer pp. 33–44 (1992)

47. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup service for internet appli-
cations. In: SIGCOMM (2001)

48. Vvedenskaya, N., Dobrushin, R., Karpelevich, F.: Queuing Sys-
tems with Selection of the Shortest of Two Queues: an Asymp-
totic Approach. Problems of Information Transmission 32, 15–27
(1996)

49. Wang, L., Pai, V., Peterson, L.: The effectiveness of request redi-
rection on cdn robustness. In: OSDI (2002)

50. Weber, R.: On the Optimal Assignment of Customers to Parallel
Servers. Journal of Applied Probability 15, 406–413 (1978)

51. Winston, W.: Optimality of the Shortest Line Discipline. Journal
of Applied Probability 14, 181–189 (1977)

52. Zhu, H., Yang, T., Zheng, Q., Watson, D., Ibarra, O.H., Smith, T.:
Adaptive load sharing for clustered digital library services. In: 7th
IEEE HPDC (1998)

Mema Roussopoulos is an Assistant Professor of Computer Science
on the Gordon McKay Endowment at Harvard University. Before join-
ing Harvard, she was a Postdoctoral Fellow in the Computer Science
Department at Stanford University. She received her PhD and Master’s
degrees in Computer Science from Stanford, and her Bachelor’s degree
in Computer Science from the University of Maryland at College Park.
Her interests are in the areas of distributed systems, networking, and
mobile and wireless computing.

Mary Baker is a Senior Research Scientist at HP Labs. Her research
interests include distributed systems, networks, mobile systems, se-
curity, and digital preservation. Before joining HP Labs she was on
the faculty of the computer science department at Stanford University
where she ran the MosquitoNet project. She received her PhD from the
University of California at Berkeley.


